Научная статья на тему 'Kinetic adsorption of ammonium onto some loess soils of Northern Iran'

Kinetic adsorption of ammonium onto some loess soils of Northern Iran Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
38
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ADSORPTION / AMMONIUM / KINETIC

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Esmael Dordipour, Safiye Charkazi, Mojtaba Barani Motlagh, Saeed Nasrolanezhad

Высокая адсорбция аммония наблюдалась в почве в Кордкоском районе, а низкая наблюдалась в почве в Хуттане 2. Степень адсорбции аммония во всех почвах можно лучше всего описать при помощи псевдо второго порядка, степенной функции и упрощенных уравнений Эловича.Сщру кинетикасын зерттеу катысушы тетiктердi тусшу Yшiн ете мацызды. Сiиiру YPДiсiне катысушы тетiктi жэне массаньщ козгалысы, жеке араласу Yрдiсi жэне химиялык реакцияны алдын ала болжау Yшiн эксперименталдык мэлiметтерге сэйкес келу Yшiн бiрнеше кинетикалык Ynri пайдаланылды, дэлiрек айтканда нелдiк реттеп, бiрiншi реттегi, жалFан-екiншi реттегi, жецшдетшген Elovich, параболалык араласу жэне ш функциясыныц Yлгiсi. Бл зерттеуде 0,25 мен 384 с шщде 100 мг/л аммоний хлоридш камтитын ерiтiндi пайдаланумен аммонидiц сiиiруiне кинетикалык тэшрибе ЖYргiзiлдi. Аммонидiц сiиiруiнiи кинетикалык теигерiлiмi ец аз шаршылык кемiмелдi талдау эдiсi бйынша аныкталFан эрбiр теигерiм Yшiн баFалаудыц стандартты кемшiлiктерi (SE) мен айкындау коэффициенттерiн (r2) салыстыру аркылы баFаланды. Кинетикалык сiцiрудi зерттеу нэтижелерi керсеткендей, аммоний алFашкы бiрнеше саFат iшiнде тез сiцiрiледi, бiрак уакыт ете баяу сiцiрiледi. Аммонидщ ец кеп сiцiрiлуi Кордкоск ауданында, ал ец аз сiцiрiлуi Хуттане 2 топыраFында байкалды. Аммонидiц барлык топыракка сiцiрiлу децгейiн жалFан екiншi реттiц, дэрежелiк функция жэне Эловичтщ жецiлдетiлген тецгерiмi кемегiмен сипаттаFан жаксы.The study of adsorption kinetics is very useful for understanding the mechanisms that are involved. In order to predict the mechanism involved during the present sorption process and the potential rate controlling steps such as mass transport, pore diffusion and chemical reaction processes, several kinetic models were used to fit the experimental data, namely, zero-order, first-order, pseudo-second-order, simplified Elovich, parabolic diffusion and power function models. At the present study, an ammonium adsorption kinetic experiment was conducted using solution containing 100 mg/l of ammonium chloride at the times of 0.25 to 384 h. Kinetic equations for ammonium adsorption were evaluated by comparing coefficients of determination (r2) and standard errors of estimate (SE) for each equation, which were determined by least square regression analysis. The results of adsorption kinetic study showed that ammonium is adsorbed fast within the first hours, but with elapsing the time, it will be slow. The most ammonium adsorption was in Kordkoy soil and the lowest one was observed in the Houttan soil 2. The rates of ammonium adsorption in all soils could be best described by the pseudo second order, power function and simplified Elovich equations.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Kinetic adsorption of ammonium onto some loess soils of Northern Iran»

SOIL CHEMISTRY

Esmael Dordipour Safiye Charkazi 2, Mojtaba Barani Motlagh Saeed Nasrolanezhad 2

KINETIC ADSORPTION OF AMMONIUM ONTO SOME LOESS SOILS OF NORTHERN IRAN

' Department of Soil Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran, e.dordipour@yahoo.com , Tel: +981714426523 2 Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural

Resources, Gorgan, Iran

Abstract. The study of adsorption kinetics is very useful for understanding the mechanisms that are involved. In order to predict the mechanism involved during the present sorption process and the potential rate controlling steps such as mass transport, pore diffusion and chemical reaction processes, several kinetic models were used to fit the experimental data, namely, zero-order, first-order, pseudo-second-order, simplified Elovich, parabolic diffusion and power function models. At the present study, an ammonium adsorption kinetic experiment was conducted using solution containing 100 mg/l of ammonium chloride at the times of 0.25 to 384 h. Kinetic equations for ammonium adsorption were evaluated by comparing coefficients of determination (r2) and standard errors of estimate (SE) for each equation, which were determined by least square regression analysis. The results of adsorption kinetic study showed that ammonium is adsorbed fast within the first hours, but with elapsing the time, it will be slow. The most ammonium adsorption was in Kordkoy soil and the lowest one was observed in the Houttan soil 2. The rates of ammonium adsorption in all soils could be best described by the pseudo second order, power function and simplified Elovich equations.

Key words: Adsorption, ammonium, kinetic.

INTRODUCTION

Nitrogen is an essential macronutrient for plant and in the modern agriculture, nitrogen deficiency is very common. Ammonium and nitrate are important inorganic forms of nitrogen in soil. Ammonium can be fixed among layers of some 2:1 clay minerals, particularly vermiculite and Illite (Hadas etal., 1986). The fixed ammonium and ammonium-fixing capacity is positively correlated with the amount of 2:1 type clay minerals (Zhang, 2006).

Understanding the kinetics and reaction mechanism involved is essential for fully understanding the dynamic interactions of nutrients with soil and predicting their fate over time, dynamic, species formation and bioavailability of nutrients (Sparks, 1989 and 2000). Adsorption can be known as the accumulation of substance or material at interface between solid surface and surrounding solution. Adsorption and desorption are time-dependent processes, and knowledge of adsorption and desorption rates are essential for planning, evaluation and recovery of adsorbent. Ammonium adsorption kinetic

was investigated by many researchers and various kinetic models were used to fit the data. Various kinetic models like zero, first and pseudo-second orders, power function, simple Elovich and parabolic diffusion models were used to describe the kinetic of soil chemical processes such as ammonium adsorption kinetic (Sparks, 1986).

Zhu et al (2011), in the study of Kinetic adsorption of ammonium nitrogen by various substrate materials reported that ammonium adsorption by different materials initially rises sharply, after a while it becomes slow, and finally reaches a constant level. They also stated that pseudo-second order equation is the best model to explain the ammonium adsorption. Kithome et al (1998) in the study of ammonium adsorption and desorption kinetics by natural zeolite clinoptilotite reported that the adsorption process reaches equilibrium at 60 to 120 minutes. They introduced the first order, Elovich, parabolic diffusion and homogeneous diffusion equations as the best describing equation of ammonium ad-

sorption. Lebedynets et al (2004) also investigated the adsorption of ammonium on natural zeolite and concluded that ammonium adsorption reaches equilibrium in 24 h and then it becomes constant. They introduced the first-order equation as the best model to explain the adsorption of ammonium. The aim of this research was to investigate the adsorption of ammonium in some loess derived soils in the north of Iran, and to select the best describing equation of ammonium adsorption kinetics.

MATERIAL AND METHODS Soil samples from the areas in Kordkouy, Houtan and the Karasu in the north of Iran, Golestan province were collected, air-dried and passed through a 2 mm sieve. Soil texture (Gee and Bauder, 1986), calcium carbonate (Nelson, 1982), organic carbon (Nelson and Sommers, 1982), pH and electrical conductivity (Rowell, 1995) and CEC (Chapman, 1965) of soil samples were determined. Kinetic experiments were performed using batch technique (Zhu et al, 2011). In this method, 2 g soil samples in triplication were weighed and poured into centrifuge tube. Then, 2 ml ammonium chloride solution (100 mg/l) was added and shaken for 2, 4, 8, 16, 24, 48, 96, 192, and 384 h time intervals (Steffens and

Sparks, 1997). After shaking, each sample was centrifuged at 3000 rpm for 5 minutes, and then equilibrated ammonium concentration in the supernatant was determined using Steam distillation apparatus. The adsorbed ammonium content was obtained from the difference of initial and equilibrium ammonium concentrations in the solution. Two drops of chloroform were added to each sample to inhibit microbial activities at the beginning of experiment. Six kinetic models i.e. zero-order, first-order, pseudo-second-order, simplified Elovich, parabolic diffusion and power function, were used to fit the experimental data. Kinetic equations for ammonium adsorption were evaluated by comparing coefficients of determination (r2) and standard errors of estimate (SE) for each equation, which were determined by least square regression analysis.

RESULTS AND DISCUSSION Some physical and chemical properties of the soils are given in Table 1. The selected soils had different clay content and minerals. Smectite was dominant in the soils collected from Kordkoy and Karasou, while illite was prevailing in the soils of Hottan (Farshadirad

et al, 2012; B ahreini et al, 2010). Table 1 - Some physical and chemical properties ofthe soils

Clay CCE OM CEC

Soils Texture pH % Cmol(+)/kg

Houtan 2 SiL 7.2 11 13 0.5 13.5

Karasou C 7.3 48 26 2.8 23.7

Kordkouy 1 SiC 7.5 28 2 2.7 26.7

Ammonium adsorption of soils Ammonium ad sorption in soils a s a function of time is shown in Fig 1. In initial stages, ammonium is rapidly adsorbed with soil. But with time, the curve slope and the ammonia adsorption are reduced. The adsorption capacities of the all soils increased steeply from 0 to 8 h, then rose progressively from 8 to 24 h, and finally reached equilibrium after 24 h. This can be explained with the availability of adsorbent sites at early-stage of adsorption and with the saturation by am-

monium by the passing of time. Zhu et al (2011) also found similar results. When the adsorption sites were occupied, the adsorption rate declined and became equal to the desorption rate at the end. The biphasic adsorption or release (initial rapid and the next slow phases) is the characteristic of a process that is controlled by diffusion, which has been previously observed for ammonium (Steffens and Sparks, 1997; Kithome et al, 1998), and other similar ions such as potassium

(Feigenbaum et al, 1981); Martin and Sparks, 1983). Ugurlu and Karaoglu (2011) concluded that ammonium adsorption with fly ash and sepiolite reaches equilibrium in nearly 1 h, afterwards, adsorption rate fixes. Kithome et al (1998) reported that ammonium adsorption by natural zeolite clinoptilolite reaches equilibrium at 60 to 120 min. Liu et al (2010) stated that the ammonium adsorption process from aqueous solution by strawberry leaf powder occurs in three steps. The ammonium adsorption occurred slowly and steadily in the initial stage. The adsorption capacities increased sharply within the middle stage, and the adsorption processes reached equilibrium in 14 h. The equilibrium might be due to the saturation of the efficient active sites.

-100

Among soils, Kordkouy had the most ammonium adsorption, and Houtan 2 had the lowest. Higher adsorption in Kordkouy soil can be attributed to its high percentage and type of clay. Ammonium adsorption has also increased with the increase of clay content. The adsorption of ammonium in soils with dominant smectite was more than Illite dominant soils. Karasou soil adsorption was less than Kordkouy-1 soil. Because Karasou soil has a high lime (table 1), it probably masked the adsorbent sites and the ammonium adsorption was prevented. Steffens and Sparks (1997) stated that non-exchangeable ammonium release from soils reduced with acidic resins. This is due to neutralization with lime.

E

"c o E E

(Q

E

_Q i-o trt

■o <

Kordkouy 1 (day,2B%)

300

to

no

¡F"

200

Karasou (day, 48%)

100

Houtari 2 (day, 11%)

100

200

300

400

Time {h)

Figure 1 - Adsorption of soils from ammonium chloride solution

Comparison of kinetic equations data of ammonium adsorption by soils are

Standard error of estimate (SE) and coeffi- shown in figures. 2 and 3. Lagergren pseudo-

cients of determination (r2) for the different fitted second-order model was widely used to esti-

equations in different soils are presented in Table mate the ammonium adsorption kinetics (Ho

2. Mathematical analysis of the ammonium ad- and Mckay, 1994). Researchers found that if a

sorption data showed that pseudo-second order, reaction is controlled by ion exchange, the

power function and simplified Elovich equations pseudo-second order model has best fit with

were the best model to describe the ammonium the experimental data (Lei et al., 2008); Zheng

adsorption rate by the soils. Pseudo-second- et al., 2008). Pseudo-second-order equation

order and power function equations fitted on the was introduced by Ugurlu and Karaoglu

(2011) and Moussavi et al (2011) as the best model to explain the adsorption of ammonium by fly ash, sepiolite and natural zeolite. Zhu et al. (2011); Huang et al. (2010); Wahab et al. (2010); Liu et al. (2010); Guo et al. (2008) and Wen et al. (2006) also reported that the pseudo-second or-

der equation is the best model to explain the ammonium adsorption.

The good fit of the power function and simplified Elovich models to ammonium adsorption data indicate a slow diffusion of ammonium into interlayer position of the soil

Figure 2 - Kinetic of ammonium adsorption according to Pseudo-second-order model for the

soils

6.0

J

• Houtan 2 ■ Karasou a Kordkouy 1

-2

Tn t

Figure 3 - Kinetic of ammonium adsorption according to power function model for the soils

Table 2 - Standard error of estimate (SE) and coefficients of determination (r2) for adsorption kinetic equations on the soils

Simplified Power Pseudo- First-order Zero-order Parabolic

Elovich function second-order diffusion

Soils SE R2 SE R2 SE R2 SE R2 SE R2 SE R2

Houtan 2 3.28 0.84 0.02 0.84 0.00 18 1 0.38 0.80 5.54 0.52 5.92 0.47

Karasou 2.97 0.94 0 .01 0 .93 0.006 1 0.47 0.8 1 8.8 7 0.41 7.46 0.59

Kordkouy 1 3.09 0.95 0.01 0.94 0.003 1 0.53 0.73 10.02 0.42 8.31 0.61

minerals and rate controlling process. Kinetic studies performed on potassium which behaves very similar to ammonium (Sparks and Huang, 1985) suggest that parameters similarity of three

well fitted models of simplified Elovich, power function and parabolic diffusion is indicative of slow potassium diffusion from/ into interlayer positions of mica and rate con-

trolling process. Bache and Williams (1971) indi- sponse that lasted about 8 h which continued cated that the energy of adsorption decreased ex- by a slower reaction and finally reached equi-ponentially with the increase of surface satura- librium in 24 h. Among the soils, the most amtion when the adsorption fitted the Freundlich monium adsorption was in Kordkoy soil and equation or power function (Kuo and Lotse the lowest one was in the Houttan soil 2. 1974). Comparison of Standard error of estimate

Interactions between the molecules may ex- (SE) and coefficients of determination (r2) for

plain the decreasing energy of adsorpti°n with the equations indicated that the rates of ammo-

surface saturation increase. nium adsorption in all soils could be best de-

CONCLUSION scribed by the pseudo second order, power

The results showed that in aU studied soils, function and simplified Elovich equations. ammonium adsorption pattern was as a rapid re-

REFERENCES

Azizian, A., 2004. Kinetic models of sorption: a theoretical analysis. J. Colloid Interface Sci. 276(1), 47-52.

Bache, B.W., Williams, E.G., 1971. A phosphate sorption index for soils. J. Soil Sci. 22, 289-301.

Bahreini Touhan, M., Dordipour, E., Movahedi Naeini, S.A., 2010. Kinetic of non-exchangeable potassium release using citric acid and CaCl2 in dominant farmlands soil series in Golestan province. J. Sci. Technol. Agric. Nat. Resour., Water Soil Sci. 14 (53), 113-127. (In Persian)

Chapman, H. D., 1965. Cation exchange capacity. In: Black, C.A., Evans, D.D., White, L.J., Ensminger, L.E., Clark, F.E. (Eds.), Methods of Soil Analysis. American Society of Agronomy, Madison, WI., pp. 891-901.

Chien, S.H., Clayton, W.R., 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J. 44, 265-268.

Everett, D.H., 1965. Interactions between adsorbed molecules. Discuss. Faraday Soc. 40, 177-187.

Farshadirad, A., Dordipour, E., Khormali1, F., 2012. Kinetics of non-exchangeable potassium release from soil and its components in some soils of Golestan province. J. Sci. Technol. Agric. Nat. Resour., Water Soil Sci. 16 (59), 273-285.

Feigenbaum, S., Edelstein, R., Shainberg, I., 1981. Release rate of potassium and structural cations from micas to ion exchangers in dilute solutions. Soil Sci. Soc. Am. J. 45, 501-506.

Gee, G.W., and Bauder, J.W. 1986. Particle-size analysis. In: Klute, A. (Ed.), Methods of Soil Analysis. Part I. Physical and Mineralogical Methods. 2nd ed. ASA, SSSA, Madison, WI. USA., pp. 383-411.

Guo, X.J., Zeng, L., Li, X.M., Park, H.S., 2008. Ammonium and potassium removal for an-aerobically digested wastewater using natural clinoptilolite followed by membrane pretreat-ment. J. Hazard. Mater. 151, 125-133.

Hadas, A., Feigenbaum, S., Feigin, A., Portnoy, R., 1986. Distribution of nitrogen forms and availability indices in profiles of differently managed soil types. Soil Sci. Soc. Am. J. 50, 308313.

Havlin, J.L., Westfall, D.G., 1985. Potassium Release Kinetics and Plant Response in Calcareous Soils. Soil Sci. Soc. Am. J. 49, 366-370.

Havlin, J.L., Westfall, D.G., Olsen, R.S., 1985. Mathematical models potassium release kinetics in calcareous soils. Soil Sci. Soc. Am. J. 49, 371-376.

Ho, Y.S., McKay, G., 1994. Pseudo-second order model for sorption processes. Process Biochem. 34, 451-465.

Huang, H., Xiao, X., Yan, B., Yang, L., 2010. Ammonium removal from aqueous solutions by using natural Chinese (Chende) zeolite as adsorbent. J. Haz. Mat. 175, 247-252.

Keeney, D.R., Nelson, D.W., 1982. Nitrogen- Inorganic forms. In: Page, A. L., et al. (Eds.), Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI., USA., pp. P649-693.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Kithome, M., Paul, J.W., Lavkulich, L.M., Bomke, A.A., 1998. Kinetics of ammonium adsorption and desorption by the natural zeolite clinoptilotite. Soil Sci. Soc. Am. J. 62, 622-629.

Kuo, S., Lotse, G., 1974. Kinetics of phosphate adsorption and desorption by hematite and gibbsite. Soil Sci. 116, 400-406.

Lebedynets, M., Sprynskyy, M., Sakhnyuk, I., zbytniewski, R., Golembiewski, R., Buszewski, B., 2004. Adsorption of ammonium ions onto a natural zeolite: Transcarpathian Clinoptilolite. Adsorpt. Sci. Technol. 22 (9), 731-741.

Lei, L.C., Li, X.J., Zhang, X.W., 2008. Ammonium removal from aqueous solutions using microwave-treated natural Chinese zeolite. Sep. Purif. Technol. 58, 359-366.

Liu, H., Dong, Y., Wang, H., Liu, Y., 2010. Ammonium adsorption from aqueous solutions by strawberry leaf powder: Equilibrium, Kinetic and effects of coexisting. Desalination 263, 70-75. Martin, H.W., Sparks, D.L., 1983. Kinetics of nonexchangeable potassium release from two

coastal plain soils. Soil Sci. Soc. Am. J. 47, 883-887.

Moussavi, Gh., Talebi, S., Farrokhi, M., Sabouti, R.M., 2011. The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chem. Eng. J. 171, 1159-1169.

Muljadi, D., Posner, A.M., Quirk, J.P., 1966a. The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. Part I. The isotherms and the effect of pH on adsorption. J. Soil Sci. 17, 212-229.

Muljadi, D., Posner, A.M., Quirk, J.P., 1966b. The mechanism of phosphate adsorption by kaolinite, gibbsite and pseudoboehmite. Part II. The location of the adsorption sites. J. Soil Sci. 17,230-237.

Nelson, R.E., 1982. Carbonate and gypsum. In: Page, A.L. (Eds.), Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy/Soil Science Society of America, Madison, Wisconsin, USA., pp. 181-197.

Nelson, D.W., Sommers. L. E., 1982. Total carbon, organic carbon and organic matter. In: Page, A. L. et al. (Eds.), Methods of soil analysis. Part 2. 2nd ed. ASA. SSSA. Madison, WI. USA, pp. 539-579.

Oustan, Sh., 2004. Environmental Soil chemistry. Tabriz Univ. Press, Iran. (In Persian). Parravano, G., Boudant, M., 1955. Chemisorption and catalysis on oxide semiconductors. In: Frankenburg, W.G., et al. (Eds.), Advances in catalysis. Academic Press, New York., P47.

Rowell, D.L., 1995. Soil Science: Methods and Applications. Longman Scientific and Technical, Harlow, UK.

Sharpley, A.N., 1983. Effect of soil properties on the kinetics of phosphorus desorption. Soil Sci. Soc. Am. J. 47, 462-467.

Sparks, D.L., 1986. Kinetics of reactions in pure and mixed systems. In: Sparks, D.L. (Ed.), Soil physical chemistry. CRC Press, Boca Raton, FL., pp. 83-145.

Sparks, D.L., 1989. Kinetics of soil chemical process. Academic Press. San Diego. California. USA.

Sparks, D.L., 2000. Kinetics and mechanisms of soil chemical reactions. In: Summer, M. E. (Ed.), Handbook of soil science. CRC Press Inc. Boca Raton Florida. USA, pp. 123-168.

Sparks, D.L., Huang, P.M., 1985. The physical chemistry of soil potassium. In: Munson, R. (Ed.), Potassium in Agriculture. ASA, CSSA, SSSA and Madison, WI., pp. 202-276.

Steffens, D., Sparks, D.L., 1997. Kinetics of nonexchangeable ammonium release from

soils. Soil Sci. Soc. Am. J. 61, 455-462.

Ugurlu, M., Karaoglu, M.H., 2011. Adsorption of ammonium from an aqueous solution by fly ash and sepiolite: Isotherm, kinetic and thermodynamic analysis. Microporous and Mesoporous Mater. 139, 173-178.

Ungarish, M., Aharoni, C., 1981. Kinetics of chemisorption: Deducing kinetic laws from experimental data. J. Chem. Soc. Faraday Trans. 77, 975-979.

Wahab, M.A., Jellali, S., Jedidi, N., 2010. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresour. Technol. 101, 5070-5075.

Wen, D.H., Ho, Y.S., Tang, X.Y., 2006. Comparative sorption kinetic studies of ammonium onto zeolite. J. Hazard. Mater. 133, 252-256.

Yasrebi, J., Karimian, N., 1995. Distribution of nitrogen different forms in soils beneath the Doroudzan dam of Fars province. In: SSSI (Ed.), Proceedings ofthe 3rd Congress of Soil Science, Karaj, Iran, pp. 2.108-117.

Zhang, Y.Z., 2006. Fixed ammonium content and maximum capacity of ammonium fixation in major types of tillage soils in Hunan province, China. Agriccultural Sciences in China, 6 (4), 466-474.

Zheng, H., Han, L.J., Ma, H.W., Zheng, Y., Zhang, H.M., Liu, D.H., Liang, S.P., 2008. Adsorption characteristics of ammonium ion by zeolite 13X. J. Hazard. Mater. 158, 577-584.

Zhu, W. L., Cui, L. H., Ouyang, Y., Long, C. F. Tang, X. D., 2011. Kinetic adsorption of ammonium nitrogen by substrate materials for constructed wetlands. Pedosphere. 21, 4. 454-463.

РЕЗЮМЕ

Эсмаел Дордипурл1, Сафие Чаркази2, Можтаба Барани Мотлаф1, Саед Насролланежад2

КИНЕТИЧЕСКАЯ АДСОРБЦИЯ АММИАКА НА НЕКОТОРЫХ ЛЁССОВЫХ ПОЧВАХ

СЕВЕРНОГО ИРАНА

' Департамент почвоведения, Горганский университет сельскохозяйственных наук и

природных ресурсов, Горган, Иран, e.dordipour@yahoo.com , Тел: +981714426523 2 Отделение защиты растений, Горганский университет сельскохозяйственных наук и

природных ресурсов, Горган, Иран

Изучение кинетики адсорбции очень важно для понимания участвующих механизмов. Для того чтобы предсказать механизм, принимающий участие в настоящем процессе сорбции и потенциальную степень регулирующих этапов, таких как перемещение массы, процессов порозной диффузии и химической реакции, были использованы несколько кинетических моделей для соответствия экспериментальных данных, а именно, нулевого порядка, первого порядка, псевдо-второго порядка, упрощенный Elovich, параболические диффузии и модели функции силы. В данном исследовании, проводился кинетический эксперимент адсорбции аммония с использованием раствора, содержащего 100 мг/л хлорида аммония в течение 0,25 до 384 ч. Кинетические уравнения адсорбции аммония оценивали путем сравнения коэффициентов определения (r2) и стандартных погрешностей оценки (SE) для каждого уравнения, которые определялись по методу анализа наименьшей квадратной регрессии. Результаты исследования кинетической адсорбции показали, что аммоний адсорбируется быстро в течение первых нескольких часов, но со временем, это происходит медленнее. Наиболее

высокая адсорбция аммония наблюдалась в почве в Кордкоском районе, а низкая наблюдалась в почве в Хуттане 2. Степень адсорбции аммония во всех почвах можно лучше всего описать при помощи псевдо второго порядка, степенной функции и упрощенных уравнений Эловича.

Ключевые слова: адсорбция, аммоний, кинетический.

ТYЙIН

Э. Дордипурл1, С. Чаркази2, М. Барани Мотлаф1, С. Насролланежад2

СОЛТYСТIК ИРАННЬЩ КЕЙБ1Р САРГЫШ ТОПЫРА^ТЫ ЖЕРЛЕР1НДЕ АММИАКТЬЩ

КИНЕТИКАЛЬЩ СЩШЛУ

' Топырацтану департамент1, Горган ауылшарушалыц гылымдары жэне табиги ресурстаруниверситетг, Горган, Иран, e.dordipour@yahoo.com , Teл : +981714426523 2 Qсiмдiкmердi цоргау бвлiмi, Горган ауылшарушалыц гылымдары жэне табиги ресурстар

универсиmеmi, Горган, Иран

Сщру кинетикасын зерттеу катысушы тетiктердi тусшу Yшiн ете мацызды. Сiиiру YPДiсiне катысушы тетiктi жэне массаньщ козгалысы, жеке араласу Yрдiсi жэне химиялык реакцияны алдын ала болжау Yшiн эксперименталдык мэлiметтерге сэйкес келу Yшiн бiрнеше кинетикалык Yлгi пайдаланылды, дэлiрек айтканда нвлдiк реттеп, бiрiншi реттегi, жалFан-екiншi реттегi, жецшдетшген Elovich, параболалык араласу жэне ^ш функциясыныц Yлгiсi.

Б^л зерттеуде 0,25 мен 384 с шщде 100 мг/л аммоний хлоридш камтитын ерiтiндi пайдаланумен аммонидiц сiиiруiне кинетикалык тэшрибе ЖYргiзiлдi. Аммонидiц сiиiруiнiи кинетикалык теигерiлiмi ей аз шаршылык кемiмелдi талдау эдiсi бйынша аныкталFан эрбiр теигерiм Yшiн баFалаудыц стандартты кемшiлiктерi ^Е) мен айкындау коэффициенттерiн (г2) салыстыру аркылы баFаланды.

Кинетикалык сiиiрудi зерттеу нэтижелерi керсеткендей, аммоний алFашкы бiрнеше саFат iшiнде тез сiиiрiледi, бiрак уакыт ете баяу сiиiрiледi. Аммонидщ ей кеп сiиiрiлуi Кордкоск ауданында, ал ей аз сiиiрiлуi Хуттане 2 топыраFында байкалды. Аммонидiи барлык топыракка сiиiрiлу деигейiн жалFан екiншi реттiи, дэрежелiк функция жэне Эловичтщ жеиiлдетiлген теигерiмi кемегiмен сипаттаFан жаксы.

Юлттг свздер: сщру, аммоний, кинетикалык.

i Надоели баннеры? Вы всегда можете отключить рекламу.