КИНЕМАТИЧЕСКИМ АНАЛИЗ МЕХАНИЗМА ПРИЖИМНОИ ЛАПКИ ВЫШИВАЛЬНОГО ПОЛУАВТОМАТА
Д.В. Грот, Б.С. Сункуев, А.Г Кириллов
УДК 687.053.1/.5
РЕФЕРАТ
ABSTRACT
ВЫШИВАЛЬНЫМ ПОЛУАВТОМАТ, КИНЕМАТИЧЕСКИЙ АНАЛИЗ, ПРИЖИМНАЯ ЛАПКА
SEMIAUTOMATIC, MULTICOLOR, MACHINE EMBROIDERY, PRESSER FOOT, KINEMATIC ANALYSIS
Цель работы - аналитическое исследование механизма прижимной лапки полуавтомата многоцветной вышивки. Предметом исследования является механизм подвижной лапки полуавтомата с упругой связью между звеньями.
Составлены уравнения кинематики подвижной лапки с учетом влияния упругой связи. Для уравнений кинематики разработан алгоритм программного расчета, в соответствии с которым в среде Delphi составлена программа кинематического анализа механизма.
По разработанной программе выполнены кинематические исследования движения подвижной лапки полуавтомата многоцветной вышивки, разработанного кафедрой машин и аппаратов легкой промышленности УО «ВГТУ» совместно с ОАО «НП ОКБМ» г. Витебска. Установлено, что в ходе шитья обнаруживается незначительный отрыв подвижной лапки от источника движения, что не создает ухудшающих условий для процесса шитья.
Предложенные методика расчета и программное обеспечение рекомендуются к применению при оценке работы механизмов подвижных лапок вышивальных полуавтоматов.
In semiautomatic mechanism used mobile presser foot with elastic coupling between the links. This paper presents the results of the kinematic analysis of a mechanism to assess the impact of elastic coupling on the law of motion of the driven member.
EI staff «VSTU» and OPC «NP OKBM» designed semiautomatic multicolor embroidery on leather.
Compiled equations kinematics mobile foot with the influence of elastic coupling.
On the developed program of research carried out kinematic motion of the moving foot semiautomatic multicolor embroidery developed by the Department of machines and apparatus of light industry EI «VSTU» in conjunction with «NP OKBM» Vitebsk.
It was established that during the sewing detected light mobile take off foot traffic from the source that does not create worsening conditions for the sewing process.
Сотрудниками УО «ВГТУ» и ОАО «НП ОКБМ» разработан полуавтомат многоцветной вышивки на изделиях из кожи [1]. В полуавтомате использован механизм подвижной прижимной лапки изменяемой структуры с упругой связью между звеньями. Вопросы анализа и синтеза подобных механизмов в специальной литературе практически не рассматривались. Известные работы [2] посвящены, главным образом, исследованию кинематики волновых передач и механизмов схватов роботов и манипуляторов. В настоящей работе рассмотрена методика численного анализа
кинематики механизма подвижной прижимной лапки с использованием известных положений теории механизмов и теории колебаний. Цель работы - оценить влияние упругой связи на выполняемую прижимной лапкой технологическую функцию.
Схема механизма показана на рисунке 1. Ползун 2 получает движение от кривошипа АВ через шатун ВС. Прижимная лапка 3 прижимается к ползуну пружиной 1. Представим механизм в виде системы, состоящей из двух звеньев -ползуна 2, совершающего движение по закону,
определяемому размерами кривошипно-пол-зунного механизма ABC и прижимной лапки 3, совершающей движение под действием ползуна 2, пружины 1 и поверхности сшиваемого материала 4, играющей роль ограничителя. Угловую координату ф кривошипа АВ будем отсчитывать по часовой стрелке от оси Oy с началом 0, расположенным на поверхности игольной пластины 5.
Положение ползуна 2 будем определять координатой y1 точки, совпадающей с точкой D контакта пружины 1 с поверхностью прижимной лапки. Координата y1 определяется из формулы
$>1~Ул+г
• eos<p^¡L2 — (г • sin<p)~ + а, (1)
где а - расстояние между центром шарнира С и й, г = АВ, Ь = ВС.
Положение прижимной лапки 3 будем определять координатой у2 точки й контакта с пружиной 1.
Без учёта динамики системы графики зависимостей у1 и у2 от ф могут быть представлены соответственно в виде кривых I и II (рисунок 2 а). На участках аЬ и Са кривые I и II совпадают: прижимная лапка 3 и ползун 1 движутся совместно. На участке ЬС прижимная лапка неподвижна и прижимает сшиваемый материал 4 к игольной пластине 5, а ползун 3 движется вниз до точки с и возвращается в положение с координатой у1 = к, где к - высота прижимной лапки 3 (рис. 1).
На рисунке 2 б представлены графики зависимостей скоростей У1 и У2 ползуна 2 и прижимной лапки 3 соответственно в виде кривых I и II.
Рассмотрим закон движения прижимной лапки 3 на участке Са (рис. 2 а). В начале участка ползун 2 движется со скоростью
где Q - угловая скорость кривошипа АВ, ф=
Уравнение(2) получено дифференцированием уравнения (1) по времени Лапка 3 в этот момент неподвижна. Таким образом, имеет место ударное взаимодействие ползуна 2 и прижимной лапки 3. Начиная с этого момента движение прижимной лапки 3 может быть представлено в виде уравнения
Верхняя часть правой части уравнения (3) выражает свободные колебания прижимной лапки, где А - амплитуда свободных колебаний, м; с = 0,012 , с-1; ал = V 1 / т ■ А , с-1;
' ' ' 0 ' ' 0 ' п ' '
т - масса прижимной лапки, 3 кг; Ап - осевая податливость пружины 1, м/Н; а0 - круговая частота собственных колебаний прижимной лапки 3, с-1; а0 = V а02 - с2; а - начальная фаза свободных колебаний прижимной лапки 3, рад; к0 - координата точки й пружины 1, находящейся в свободном состоянии, м; к0 = уе - Н0; Н0 - длина пружины 1 в свободном состоянии.
Величину У0 определим из следующих соображений. При t = 0 имеет место ударное взаимодействие ползуна 3 и прижимной лапки 2. Согласно [3, с. 392], если движущееся тело (ползун
3) имеющее массу т2 и скорость У2, ударяет в неподвижное тело (прижимную лапку 2) массы т, то конечная скорость после удара У0 (общая для обоих тел) может быть определена из соотношения
V —V
»I + 171,
т.
За массу т2 примем сумму приведенных к ползуну 2 масс: ползуна тп, шатуна тш, кривошипа тк и связанных с ним главного вала и звеньев привода: т2 = тп + тш + тк . Так как т2 значительно больше т, то У0 ~ У2 (формула 2).
Для определения постоянных А и а в уравнении (3) рассмотрим начальные условия: t = 0; у2 = у0 = У1 - К АУ1 / А г = У0 . Подставив эти условия в (3), определим:
Решая приведённую систему уравнений, определим:
Нижняя часть уравнения (3) выражает совместное движение прижимной лапки 3 и ползуна 2. С учётом изложенного анализ движения прижимной лапки 3 может быть выполнен численным методом. Ниже предоставлена блок-схема алгоритма.
Рисунок 3 - Блок-схема алгоритма
\_'
По приведённому алгоритму составлена программа расчёта положений ползуна 2 и прижимной лапки 3 на интервале [pd,фь] значений ф по этой программе выполнены расчёты y1 и y2 для механизма прижимной лапки полуавтомата многоцветной вышивки на изделиях из кожи при следующих исходных данных: (pd = 273°; (р = 84°, yA = 160 мм; yE = 187 мм; r = 17,5 мм; L = 42 мм; a = 8 мм; Q = 100 рад/с; с = 0,012фо. Расчёты выполнены для пружин, спроектированных по методике, изложенной в [4] при различных требуемых усилиях прижатиях изделий из кожи.
На рисунке 2 а в виде пунктирной линии III показан график пути y2 прижимной лапки 3, соответствующий [cpd, фе ] углов ф, на котором имеет место нарушение контакта ползуна 2 и прижимной лапки 3. На интервале [фа , фь]
■Pf^H dtilS jd xj
[Enter lfp u. 110 СШ7, G4 .7 1GB > ~z\
105 0.76 214 —
273 G.im 130 S81 130 E81
270 is. ffiatt 132 ачз 5 33 48"?
£83 0ЛИ2 133 448 13S JI51
2SW II, ИЙ 134 758 138 F46
293 0.603 135 977 140 658
29 8 0.004 157 i04 142 47Я
Ж 0.605 13Й 135 144 008
"J 0.696 139 070 145 251
313 0.ИГ 139 91® 14ft 216
313 0-0138 140 S.S6 146 114 3
323 CI. №8 141 311 147 357
328 0,6109 141 Р7Й 147 554
333 0.610 142 353 147 515
33ft 0,011 142 745 147 24?
243 O.MS 143 3 46 7Б5
348 0,613 143 281 146 Й40
3^3 е_И13 143 428 145 183
358 0.614 143 495 143 940
363 0.615 143 483 143 483
368 0.616 143 392 143 392
373 0 . 617 143 221 143 221
378 0.618 142 970 142 970
3S3 0.618 142 636 142 636
3SS 0 .619 142 219 142 219
394 0,620 141 716 111 716
O.O'Hl ill 124 141 124
404 0.622 140 442 140 442
4Й? 0.623 139 139 668
414 0.623 13ft 600 13B £00
419 0.624 137 P36 13? £36
494 Pi 1 36 1 36 7','fi
429 0.626 135 £22 135 622
434 0.627 134 374 134 374
439 0.628 133 УЗЙ 133 038
444 0,628 131 f 20 131 620
Ф t y1 У2 Jd
hi I и ш
Л
V
Рисунок 4 - Образец распечатки результатов расчётов y1 и y2
J
нарушение контакта ползуна 2 и прижимной лапки не наблюдается. Величину максимального расхождения графиков y1 и y2 на интервале \т,, w ] обозначим Ay .
LTd^^ v max
На рисунке 4 приведен образец распечатки результатов расчётов y1 и y2 , а на рисунке 4 - графики зависимостей y1 = f(t) и y2 = f(t), полученные на ЭВМ для пружины с диаметром проволоки d = 0,68 мм. Результаты расчётов для пружины с другими параметрами, спроектированных по методике, изложенной в \4], сведены в таблицу.
Из таблицы следует, что для всех пружин интервалы значений ф, в которых имеется нарушение контакта прижимной лапки 3 и ползуна 2, находятся в пределах ф = 278°...358°, а величина расхождения Aymax. ^ 6,3 мм. Подобный закон движения прижимной лапки 3 не вызывает нарушения процесса шитья, так как на участке bd (рисунок 2 а) прижимная лапка контролирует сшиваемый материал.
г
y,MM
1 3 5 7 9 11 и 15 17 IS 21 53 25 27 29 51 33 35 1
- yi - y 2
Рисунок 5 - Графики зависимостей y1 = f(t) и
у 2 = f(t)
ВЫВОДЫ
Предложена методика и алгоритм численного анализа кинематики механизма прижимной лапки.
С использованием этой методики проведен
Таблица 1 - Результаты расчётов для пружины с другими параметрами
№ й, мм Фй . ° Ли , мм ** тах '
1 0,32 278 353 6,010
2 0,41 278 358 6.190
3 0,47 278 358 6,231
4 0,52 278 358 6,244
5 0,56 278 358 6,251
6 0,59 278 358 6,254
7 0,63 278 358 6,256
8 0,65 278 358 6,257
9 0,68 278 358 6,306
10 0,71 278 358 6,259
11 0,73 278 358 6,260
12 0,75 278 358 6,260
13 0,77 278 358 6,260
14 0,79 278 358 6,261
15 0,81 278 358 6,261
16 0,83 278 358 6,261
17 0,85 278 358 6,261
18 0,87 278 358 6,050
19 0,88 278 358 6,262
анализ кинематики механизма прижимной лапки вышивального полуавтомата для различных пружин.
Установлено, что имеет место нарушение контакта ведомого звена механизма с ползуном кривошипно-ползунного механизма, которое не приводит к нарушению выполняемой технологической функции. Предложенная методика может быть использована при проектировании аналогичных механизмов переменной структуры с упругой связью.
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ
REFERENCES
1. Сункуев, Б.С., Буевич, А.Э., Буевич, Т.В., Грот, Д.В., Раков, В.А., Шнейвайс, И.Л., Ткачёв, Ю.Л., (2011), Новое в технике и технологии текстильной и лёгкой промышленности, Материалы международной научной конференции, Витебск, 2011, С 290.
2. Добролюбов, А.И., (1984), Механизмы на гибких и упругих элементах, Минск, 117 с.
3. Тимошенко, С.П., (1959), Колебания в инженерном деле, Москва, 439 с.
1. Sunkuev, B.S. Semi-automatic multi-color embroidery on leather / B.S. Sunkuev, A.E. Buevich, T.V. Buevich, D.V. Grot, V.A. Rakov, I.L. Shneyvays, J.L. Tkachev / New in equipment and technology for textile and light industry: proceedings of the international scientific conference. Vitebsk, in November 2011. In 24.4.2 / UO "VSTU." - Vitebsk, 2011 - 290 p.
2. Dobrolybov, A.I. Mechanisms for flexible and elastic elements / Ed., E.A. Starodetko. - Mn.: Science and Technology, 1984 -117 p., il.
4. Грот, Д.В., Кириллов, А.Г., Сункуев, Б.С. (2013), Проектный расчёт пружины механизма подвижной прижимной лапки многоигольного вышивального полуавтомата, Висник Кииеско-го национального университету технологий та дизайну, 2013, № 3, С 192.
3. Timoshenko, S.P. Fluctuations in engineering: a tutorial / S.P. Timoshenko. - Moscow: Fizmatchiz, 1959. - 439 p.
4. Grot, D.V. Project calculation of the spring mechanism of the mobile multi-needle embroidery presser foot semiautomatic / D.V. Grot, A.G. Kirillov, B.S. Sunkuev // Bulletin of Kiev National University of Technology and Design. Number 3, 2013. / KNUTD - Kiev, 2013 - 192 p.
Статья поступила в редакцию 24. 04. 2014 г.