Научная статья на тему 'К решению задачи об управляемости нагрева металла в промышленных печах'

К решению задачи об управляемости нагрева металла в промышленных печах Текст научной статьи по специальности «Строительство и архитектура»

CC BY
260
28
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
НАГРЕВ МЕТАЛЛА / ТЕПЛОФИЗИЧЕСКИЕ СВОЙСТВА / ПРОМЫШЛЕННЫЕ ПЕЧИ / ТРАЕКТОРИЯ НАГРЕВА / УПРАВЛЯЕМОСТЬ / СКАЛЯРНОЕ УПРАВЛЕНИЕ / МАТРИЧНОЕ ОПИСАНИЕ / МАТРИЦА УПРАВЛЯЕМОСТИ / РАНГ МАТРИЦЫ / METAL HEATING / THERMOPHYSICAL PROPERTIES / INDUSTRIAL FURNACES / HEATING TRAJECTORY / CONTROLLABILITY / SCALAR CONTROL / MATRIX DESCRIPTION / CONTROLLABILITY MATRIX / MATRIX RANK

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Панферов Владимир Иванович, Панферов Сергей Владимирович

В рабочем пространстве камерных или в зоне проходных нагревательных печей одновременно греются слитки или заготовки с различными теплофизическими и иными характеристиками. Вследствие этого для каждого слитка и каждой заготовки оптимальные с точки зрения выбранного критерия траектории нагрева будут различными. Вместе с тем из-за конструктивных особенностей нагревательных печей на все слитки или заготовки приходится одно управляющее воздействие температура рабочего пространства (обеспечивается соответствующим расходом топлива в рабочее пространство) камерной печи или в зоне проходной. В связи с этим вполне естественно возникает вопрос о том, принципиально возможно ли в такой ситуации создать индивидуальные траектории нагрева для каждого слитка или заготовки, т. е. в работе рассмотрено решение задачи об управляемости процесса нагрева металла в промышленных печах прокатного производства. Для решения этой задачи предложено математическое описание процесса нагрева. Это описание представляет собой матричную систему дифференциальных уравнений первого порядка. Найдены условия полной управляемости объекта. При этом была вычислена матрица управляемости, показано, что ее определитель может быть выражен через определитель Вандермонда. Это обстоятельство существенно упростило определение условий управляемости. Установлено, что для полной управляемости объекта необходимо, чтобы нагреваемые слитки или заготовки имели бы различные постоянные времени нагрева, что обуславливается различными теплофизическими либо геометрическими характеристиками. В большинстве практических случаев такого различия обычно нет, поэтому процесс нагрева металла в промышленных печах, как правило, является неполностью управляемым. Вследствие этого максимальный эффект с точки зрения выбранного критерия качества нагрева обычно не может быть получен.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы — Панферов Владимир Иванович, Панферов Сергей Владимирович

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

TO THE SOLUTION OF THE PROBLEM ON THE CONTROLLABILITY OF HEATING OF METAL IN INDUSTRIAL FURNACES

In the working space of the chamber or in the zone of through heating furnaces, ingots or billets with different thermal and other characteristics are simultaneously heated. As a result, the heating trajectories that are optimal for the selected criterion for each ingot and each billet will be different. At the same time, due to the design features of heating furnaces, all the ingots or billets have one controlling effect the temperature of the working space (provided by the corresponding fuel consumption into the working space) of the chamber furnace or in the passage zone. In this connection, the question naturally arises whether it is fundamentally possible in such a situation to create individual heating trajectories for each ingot or billet, i.e. The paper considers the solution of the problem of the controllability of the process of heating a metal in industrial furnaces for rolling production. To solve this problem, a mathematical description of the heating process has been proposed. This description is a matrix system of first-order differential equations. Found conditions complete controllability of the object. In this case, the controllability matrix was calculated, it was shown that its determinant can be expressed in terms of the Vandermonde determinant. This circumstance greatly simplified the definition of the conditions of controllability. It has been established that for complete controllability of an object it is necessary that the heated ingots or billets have different heating time constants, which is caused by different thermal or geometric characteristics. In most practical cases, this difference is usually not, therefore, the process of heating the metal in industrial furnaces, as a rule, is not fully controlled. As a result, the maximum effect from the point of view of the selected criterion of the quality of heating can usually not be obtained.

Текст научной работы на тему «К решению задачи об управляемости нагрева металла в промышленных печах»

Металлургическая теплотехника и теплоэнергетика

УДК 681.5.013 DOI: 10.14529/met190209

К РЕШЕНИЮ ЗАДАЧИ ОБ УПРАВЛЯЕМОСТИ НАГРЕВА МЕТАЛЛА В ПРОМЫШЛЕННЫХ ПЕЧАХ

В.И. Панферов1'2, С.В. Панферов1

1 Южно-Уральский государственный университет, г. Челябинск, Россия,

2 Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия им. проф. Н.Е. Жуковского и Ю.А. Гагарина», филиал в г. Челябинске,

г. Челябинск, Россия

В рабочем пространстве камерных или в зоне проходных нагревательных печей одновременно греются слитки или заготовки с различными теплофизическими и иными характеристиками. Вследствие этого для каждого слитка и каждой заготовки оптимальные с точки зрения выбранного критерия траектории нагрева будут различными. Вместе с тем из-за конструктивных особенностей нагревательных печей на все слитки или заготовки приходится одно управляющее воздействие - температура рабочего пространства (обеспечивается соответствующим расходом топлива в рабочее пространство) камерной печи или в зоне проходной. В связи с этим вполне естественно возникает вопрос о том, принципиально возможно ли в такой ситуации создать индивидуальные траектории нагрева для каждого слитка или заготовки, т. е. в работе рассмотрено решение задачи об управляемости процесса нагрева металла в промышленных печах прокатного производства. Для решения этой задачи предложено математическое описание процесса нагрева. Это описание представляет собой матричную систему дифференциальных уравнений первого порядка. Найдены условия полной управляемости объекта. При этом была вычислена матрица управляемости, показано, что ее определитель может быть выражен через определитель Вандермонда. Это обстоятельство существенно упростило определение условий управляемости. Установлено, что для полной управляемости объекта необходимо, чтобы нагреваемые слитки или заготовки имели бы различные постоянные времени нагрева, что обуславливается различными теплофизическими либо геометрическими характеристиками. В большинстве практических случаев такого различия обычно нет, поэтому процесс нагрева металла в промышленных печах, как правило, является неполностью управляемым. Вследствие этого максимальный эффект с точки зрения выбранного критерия качества нагрева обычно не может быть получен.

Ключевые слова: нагрев металла, теплофизические свойства, промышленные печи, траектория нагрева, управляемость, скалярное управление, матричное описание, матрица управляемости, ранг матрицы.

Постановка задачи

Нагрев металла в рабочем пространстве камерных или в зоне проходных нагревательных печей характеризуется тем, что одновременно греется несколько слитков или заготовок, причем, как правило, с различными теп-лофизическими характеристиками, а также часто и с различными температурами посада, с различным временем посада и длительностью всего процесса нагрева в целом. Вследствие различия этих условий для каждого слитка и каждой заготовки оптимальные с точки зрения выбранного критерия траекто-

рии нагрева будут различными. Поэтому в такой ситуации требуется, чтобы управление было бы таким, что в каждый момент времени нагрева достигаются различные температуры заготовок. Вместе с тем из-за конструктивных особенностей нагревательных печей на все слитки или заготовки приходится одно управляющее воздействие - температура рабочего пространства (обеспечивается соответствующим расходом топлива в рабочее пространство) камерной печи или в зоне проходной. В связи с этим вполне естественно возникает вопрос о том, принципиально возможно ли в

такой ситуации создать индивидуальные траектории нагрева для каждого слитка или заготовки, т. е. ставится задача об управляемости процесса нагрева металла. Таким образом, необходимо исследовать вопрос об управляемости технологического процесса нагрева металла в промышленных печах, причем управляемость будем понимать в смысле работ [1-5]. Как отмечено в [3], управляемость в данном случае означает и достижимость состояния объекта.

Подчеркнем также, что в случае полной управляемости объекта, т. е. в случае создания индивидуальных траекторий нагрева, может быть получен максимальный эффект с точки зрения выбранного критерия оптимальности.

Решение задачи

Следуя, например [6-9], опишем процесс нагрева металла в печи полностью линеаризованным уравнением теплопроводности

81 (х, т) 82^ х, т)

=а- „ ,0<х<L, т>0 (1)

с начальным

8xL

t(x, 0)=10(x), 0 < x < L и граничными условиями:

-x8tM = 0, т, 0;

8x

=«[tn(T)-1(L,т)], т>0,

8x

(2)

(3)

(4)

где t (х, т) - температура в точке с пространственной координатой х в момент времени т ; а и X - соответственно коэффициенты температуропроводности и теплопроводности; Ь - расчетное сечение заготовки; 10(х) - некоторая функция, описывающая начальное температурное поле заготовки; а - коэффициент теплоотдачи; ^ (т) - температура печи (рабочего пространства печи).

Проинтегрируем уравнение (1) по координате х в пределах от 0 до Ь и разделим обе его части на Ь, тогда получим

dt a d т L

L

8t (L, т) 8t (0, т)

8x

8x

(5)

где t = 1J t(x, т) dx

среднее значение тем-

0

пературы заготовки (среднемассовая температура).

Подставим соотношения (3) и (4) в уравнение (5), тогда получим, что

dt aar . . ,т

-Г = ТгМт) -1 (L, т)]. d т Л L

(6)

Если предположить, что температура поверхности t(L, т) равна среднемассовой тем-

1 ь

пературе 7 = 1} t(х, т) dx, как это имеет место Ь 0

для термически тонких тел, то уравнение (6) перепишется в виде

dt 1 г _, — =—КП(т) -1 ], d т Г1 П J

Л L

(7)

где Т =- - постоянная времени нагрева

а а

заготовки.

Далее, что касается термически массивных тел, то отметим следующее. Как это достаточно широко известно, при построении автоматизированных систем управления технологическим процессом (АСУ ТП) методических печей динамику среднемассовой температуры металла нередко описывают с помощью так называемых экспоненциальных моделей [10]. Причем такой прием достаточно апробирован на практике [10-12], приемлемая точность математического описания достигается за счет того, что процесс нагрева условно разбивается на несколько участков, на каждом из которых параметры модели имеют свои собственные численные значения. Примечательно, что при этом утверждается, что структура таких моделей выбирается в основном из эвристических соображений, подчеркивается статистический характер этих моделей [10]. Однако в работе [9] показано, что экспоненциальные модели обуславливаются (с некоторой погрешностью) самой физикой процесса нагрева, описываемой дифференциальным уравнением теплопроводности. Там же указана достаточно простая схема перехода от параметров модели, ядром которой является дифференциальное уравнение теплопроводности, к параметрам упрощенной модели для среднемассовой температуры. Кроме того, как это нетрудно видеть, описание нагрева металла с помощью экспоненциальных моделей означает, что в дифференциальном представлении процесс описывается именно уравнением вида (7). Поэтому будем считать, что нагрев 7-й заготовки в печи описывается следующим дифференциальным уравнением:

гШ+% (,)=,п(,).

а х

Перепишем уравнение (8) в стандартном для теории управляемости [1-5] виде:

ат(х) 1 ч 1 , ч -— =--(х) + — и(х),

ах т т

(8)

(9)

где и(х)=tп(х) - управляющее воздействие.

Таким образом, нагрев всех п слитков или заготовок в рабочем пространстве нагревательных печей может быть описан следующим матричным уравнением: dt(х)

ах

где t (х) =

-=At(х) + Ви (х).

>х(х)" t2(х)

А =

^ (х)

(10)

" 1 - т 0 . . 0

0 1 - т" 0. . . 0

0 1

т п _

; В=

1 т

т

т

; и(х)=t п(х) - скалярное управление.

Условие полной управляемости системы (10) дается теоремой Калмана [1, 2, 13-19] Для проверки условия теоремы Калмана вычислим матрицу управляемости В данном случае эта матрица будет иметь следующий вид:

ВАВА2 В... Ап-1В

ВАВА2 В... Ап-1В

1 1 1 .. (-1)п-1-1- тп

т - т2 т3.

1 1 1 .. (-1)п-1 — п т2

т - т2 2 т3 ' 2

1 т

Т2

т3

. . (-1)п-1 —

4 ' тп

(11)

Далее следует определить ранг этой матрицы, для этого нужно вычислить ее определитель. Если при этом учесть известное свойство определителей, то определитель данной матрицы управляемости может быть представлен следующим об

разом: 1

det

ВАВА2 В... Ап-1В

11 1 п (п-1) =-X-X. X-X (-1) 2

т Т Тп

1

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1 — —г

1

т

т12

т1

п-1

1 — —г

т

т2

т

п-1

т т2

п

т

п-1

(12)

Как видно из (12), определитель в данном соотношении является определителем Вандермон-да [20], поэтому

det

ВАВА2 В... Ап-1В

11 1 г п

= — X-X ... X-X (-1)

Т Т2 Тп

п (п-1) 2

X П

п> 1 > к >1

_1 -_1

V Т Тк )

(13)

1

1

1

1

1

Понятно, что он не будет равен нулю только при условии, что

T Ф Tk при i Ф k. (14)

Только в этом случае ранг матрицы управляемости будет равен n и согласно теореме Калмана [1, 2, 13-19] объект вполне управляем, т. е. в принципе существует управление и(т)=t д(т), которое может обеспечить различные траектории нагрева различных слитков или заготовок. Для этого различные заготовки, как это следует из условия (14), должны иметь различные постоянные времени нагрева, т. е. конкретно слитки или заготовки должны иметь отличающиеся либо теп-лофизические, либо геометрические характеристики. Выполнить такие условия, как правило, не представляется возможным, так как обычно несколько одновременно нагреваемых заготовок имеют одинаковые характеристики. Поэтому в большинстве случаев процесс нагрева в промышленных печах не вполне управляем, т. е. не существует управления u(x)=tn (т), которое способно обеспечить различные траектории нагрева различных слитков или заготовок. Очевидно, что возможны разные траектории только для разных групп заготовок с одинаковыми характеристиками.

Выводы

Рассмотрена задача об управляемости процесса нагрева металла в промышленных печах. Установлено, что для полной управляемости объекта необходимо, чтобы все нагреваемые слитки или заготовки имели бы различные постоянные времени, что обуславливается различными теплофизическими либо геометрическими характеристиками. В большинстве практических случаев процесс нагрева металла в промышленных печах следует считать не полностью управляемым.

Литература

1. Воронов, А.А. Устойчивость, управляемость, наблюдаемость / А.А. Воронов. -М.: Наука, 1979. - 336 с.

2. Дорф, Р. Современные системы управления: пер с англ. / Р. Дорф, Р. Бишоп. - М.: Лаборатория Базовых Знаний, 2002. - 832 с.

3. Гудвин, Г.К. Проектирование систем управления: пер с англ. /Г.К. Гудвин, С.Ф. Гре-бе, М.Э. Сальгадо. - М. : Бином. Лаборатория знаний, 2004. - 911 с.

4. Растригин, Л.А. Современные принципы управления сложными объектами / Л.А. Растригин. - М.: Сов. радио, 1980. - 232 с.

5. Панферов, В.И. Об управляемости процесса нагрева металла в нагревательных печах / В.И. Панферов, Б.Н. Парсункин, В.К. Тузов // Изв. вузов. Черная металлургия. - 1983.-№ 5. - С. 156-157.

6. Исследование температурного режима нагревательных печей прокатных станов при изменении сортамента нагреваемого металла / С.И. Гинкул, А.Н. Лебедев, Ю.В. По-добед, Ю.М. Сапронова // Научные труды Донецкого национального технического университета. Серия «Металлургия». - 2010. -Вып. 12 (177). - С. 201-206.

7. Ткаченко, В.Н. Математическое моделирование, идентификация и управление технологическими процессами тепловой обработки материалов / В.Н. Ткаченко. - Киев: Наукова думка, 2008. - 243 с.

8. Автоматизация металлургических агрегатов / Ю.В. Липухин, Ю.И. Булатов, К. Адельман, М. Кнорр - М.: Металлургия, 1992. - 304 с.

9. Панферов, В.И. К теории моделирования нагрева металла в печах / В.И. Панферов, Е.В. Торопов // Изв. вузов. Черная металлургия. - 1992. - № 3. - С. 79-82.

10. Автоматизация методических печей / Л.И. Буглак, И.Б. Вольфман, С.Ю. Ефроймо-вич и др. - М. : Металлургия, 1981. - 196 с.

11. Вольфман, И.Б. Статистические модели нагрева металла и проверка их адекватности / И.Б. Вольфман, С.Ю. Ефроймович, М.Д. Климовицкий // Изв. вузов. Черная металлургия. - 1978. - № 9. - С. 157-159.

12. Анисимов, Е.Ф. Численное исследование алгоритмов идентификации модели нагрева / Е.Ф. Анисимов, Н.В. Борковская, И.Б. Вольфман // Изв. вузов. Черная металлургия. - 1987. - № 9. - С. 113-117.

13. Kalman, R.E. Controllability of linear dynamical systems / R.E. Kalman, Y.C. Ho, K.S. Narendra // Contributions to differential equations. -1963. - Vol. 1, no. 2. - P. 189-213.

14. Ailon, A. Controllability of generalized linear time-invariant systems / A. Ailon // IEEE Transactions on Automatic Control. - 1987. -Vol. 32, iss. 5. - P. 429-432. DOI: 10.1109/tac.1987.1104626

15. Cobb, D. Controllability, observability and duality in singular systems / D. Cobb // IEEE Transactions on Automatic Control. - 1984. -

Vol. 29, iss. 12. - P. 1076-1082. DOI: 10.1109/tac.l984.1103451

16. Campbell, S.L. Observability of linear time varying descriptor systems / S.L. Campbell, W.J. Terrel // SIAM J. Matrix Anal. Appl. -1991. - Vol. 12, iss. 3. - P. 484-496. DOI: 10.1137/0612035

17. Cheng Z. Controllability of generalized dynamical systems with constrained control / Z. Cheng, H. Hong, J. Zhang // J. Austral. Math. B. - 1988. - Vol. 30, no. 1. - P. 69-78.

18. Koumboulis, F.N. On Kalman's Controllability and Observability Criteria for Singular

Systems /F.N. Koumboulis, B.G. Mertzios // Circuits, Systems and Signal Processing. - 1999. -Vol. 18, iss. 3. - P. 269-290. DOI: 10.1007/bf01225698

19. Paraskevopoulos P.N. Observers for singular systems / P.N. Paraskevopoulos, F.N. Koumboulis // IEEE Transactions on Automatic Control. - 1992. - Vol. 37, iss. 8. -P. 1211-1215. DOI: 10.1109/9.151109

20. Иванов, В.А. Математические основы теории автоматического регулирования / В.А. Иванов, В.С. Медведев, Б.К. Чемоданов, А.С. Ющенко. -М.: Высшая школа, 1971. - 808 с.

Панферов Владимир Иванович, д-р техн. наук, профессор, профессор кафедры информационно-аналитического обеспечения управления в социальных и экономических системах, Южно-Уральский государственный университет; профессор кафедры авиационных комплексов и конструкций летательных аппаратов, Военный учебно-научный центр Военно-воздушных сил «Военно-воздушная академия им. проф. Н.Е. Жуковского и Ю.А. Гагарина», филиал в г. Челябинске, г. Челябинск; [email protected].

Панферов Сергей Владимирович, канд. техн. наук, доцент кафедры градостроительства, инженерных сетей и систем, Южно-Уральский государственный университет, г. Челябинск; [email protected].

Поступила в редакцию 9 апреля 2019 г

DOI: 10.14529/met190209

TO THE SOLUTION OF THE PROBLEM ON THE CONTROLLABILITY OF HEATING OF METAL IN INDUSTRIAL FURNACES

V.I. Panferov1'2, [email protected], S.V. Panferov1, [email protected]

1 South Ural State University, Chelyabinsk, Russian Federation,

2 Russian Air Force Military Educational and Scientific Center "Air Force Academy named after Professor N.E. Zhukovsky and Y.A. Gagarin", Chelyabinsk branch, Chelyabinsk, Russian Federation

In the working space of the chamber or in the zone of through heating furnaces, ingots or billets with different thermal and other characteristics are simultaneously heated. As a result, the heating trajectories that are optimal for the selected criterion for each ingot and each billet will be different. At the same time, due to the design features of heating furnaces, all the ingots or billets have one controlling effect - the temperature of the working space (provided by the corresponding fuel consumption into the working space) of the chamber furnace or in the passage zone. In this connection, the question naturally arises whether it is fundamentally possible in such a situation to create individual heating trajectories for each ingot or billet, i.e. The paper considers the solution of the problem of the controllability of the process of heating a metal in industrial furnaces for rolling production. To solve this problem, a mathematical description of the heating process has been proposed. This description is a matrix system of first-order differential equations. Found conditions complete

controllability of the object. In this case, the controllability matrix was calculated, it was shown that its determinant can be expressed in terms of the Vandermonde determinant. This circumstance greatly simplified the definition of the conditions of controllability. It has been established that for complete controllability of an object it is necessary that the heated ingots or billets have different heating time constants, which is caused by different thermal or geometric characteristics. In most practical cases, this difference is usually not, therefore, the process of heating the metal in industrial furnaces, as a rule, is not fully controlled. As a result, the maximum effect from the point of view of the selected criterion of the quality of heating can usually not be obtained.

Keywords: metal heating, thermophysical properties, industrial furnaces, heating trajectory, controllability, scalar control, matrix description, controllability matrix, matrix rank.

References

1. Voronov A.A. Ustoychivost', upravlyayemost', nablyudayemost' [Stability, Controllability, Observability]. Moscow, Science, 1979. 336 p.

2. Dorf R., Bishop R. Sovremennyye sistemy upravleniya. Per. s angl. [Modern Control Systems]. Transl. from Engl. Moscow, Laboratory of Basic Knowledge, 2002. 832 p.

3. Goodwin G.K., Grebe S.F., Salgado M.E. Proyektirovaniye sistem upravleniya. Per. s angl. [Design Control Systems]. Transl. from Engl. Moscow: Binom. Laboratory of Knowledge, 2004. 911 p.

4. Rastrigin L.A. Sovremennyye printsipy upravleniya slozhnymi ob"yektami [Modern Principles of Management of Complex Objects]. Moscow, Sov. Radio, 1980. 300 p.

5. Panferov V.I., Parsunkin B.N., Aces V.K. [On the Controllability of the Process of Heating a Metal in Heating Furnaces]. Izv. vuzov. Chernaja metallurgija [News of Higher Education Institutions Ferrous Metallurgy], 1983, no. 5, pp. 156-157. (in Russ.)

6. Ginkul S.I., Lebedev A.N., Podobed Ju.V., Sapronova Ju.M. [Investigation of the Temperature Regime of Heating Furnaces of Rolling Mills with a Change in the Range of the Heated Metal]. Nauchnye trudy Doneckogo nacional'nogo tehnicheskogo universiteta. Serija "Metallurgija". [Scientific Works of Donetsk National Technical University. Series "Metallurgy"], 2010, vol. 12 (177), pp. 201-206. (in Russ.)

7. Tkachenko V.N. Matematicheskoye modelirovaniye, identifikatsiya i upravleniye tekhnologiches-kimi protsessami teplovoy obrabotki materialov [Mathematical Modeling, Identification and Control of Technological Processes of Heat Treatment of Materials]. Kiev, Naukova Dumka, 2008. 243 p.

8. Lipukhin Yu.V., Bulatov Yu.I., Adelman K., Knorr M. Avtomatizatsiya metallurgicheskikh agre-gatov [Automation of Metallurgical Units]. Moscow, Metallurgy, 1992. 304 p.

9. Panferov V.I., Toropov E.V. [To the Theory of Modeling of Metal Heating in Furnaces]. Izv. vuzov. Chernaja metallurgija [The News of High Schools. Ferrous Metallurgy], 1992, no. 3, pp. 79-82. (in Russ.)

10. Buglak L.I., Wolfman I.B., Efroimovich S.Yu., Zakharov G.K., Klimovitsky M.D, Segal A.M. Avtomatizatsiya metodicheskikh pechey [Automation of Methodical Furnaces]. Moscow, Metallurgy, 1981. 196 p.

11. Wolfman I.B., Efroimovich S.Yu., Klimovitsky M.D. [Statistical models of metal heating and checking their adequacy]. Izv. vuzov. Chernaja metallurgija [The News of High Schools. Ferrous Metallurgy], 1978, no. 9, pp. 157-159. (in Russ.)

12. Anisimov E.F., Borkovskaya N.V., Wolfman I.B. [Numerical Study of the Heating Model Identification Algorithms]. Izv. vuzov. Chernaja metallurgija [The News of High Schools. Ferrous Metallurgy], 1987, no. 9, pp. 113-117. (in Russ.)

13. Kalman R.E., Ho Y.S., Narendra K.S. Controllability of Linear Dynamical Systems. Contributions to Differential Equations, 1963, vol. 1, no. 2, pp. 189-213.

14. Ailon A. Controllability of Generalized Linear Time-Invariant Systems. IEEE Transactions on Automatic Control, 1987, vol. 32, iss. 5, pp. 429-432. DOI: 10.1109/tac.1987.1104626

15. Cobb D. Controllability, Observability and Duality in Singular Systems. IEEE Transactions on Automatic Control, 1984, vol. 29, iss. 12, pp. 1076-1082. DOI: 10.1109/tac.1984.1103451

16. Campbell S.L., Terrel W.J. Observability of Linear Time Varying Descriptor Systems. SIAM J. Matrix Anal. Appl., 1991, vol. 12, iss. 3, pp. 484-496. DOI: 10.1137/0612035

17. Cheng Z., Hong H., Zhang J. Controllability of Generalized Dynamical Systems with Constrained Control. J. Austral. Math. B, 1988, vol. 30, no. 1, pp. 69-78.

18. Koumboulis F.N., Mertzios B.G. On Kalman's Controllability and Observability Criteria for Singular Systems. Circuits, Systems and Signal Processing, 1999, vol. 18, iss. 3, pp. 269-290. DOI: 10.1007/bf01225698

19. Paraskevopoulos P.N., Koumboulis F.N. Observers for Singular Systems. IEEE Transactions on Automatic Control, 1992, vol. 37, iss. 8, pp. 1211-1215. DOI: 10.1109/9.151109

20. Ivanov V.A., Medvedev V.S., Chemodanov B.K., Yushchenko A.S. Matematicheskiye osnovy teorii avtomaticheskogo regulirovaniya [Mathematical Foundations of the Theory of Automatic Control]. Moscow. Vysshaya shkola, 1971. 808 p.

Received 9 April 2019

ОБРАЗЕЦ ЦИТИРОВАНИЯ

FOR CITATION

Панферов, В.И. К решению задачи об управляемости нагрева металла в промышленных печах / В.И. Панферов, С.В. Панферов // Вестник ЮУрГУ. Серия «Металлургия». - 2019. - Т. 19, № 2. - С. 79-85. DOI: 10.14529/шеи 90209

Panferov V.I., Panferov S.V. To the Solution of the Problem on the Controllability of Heating of Metal in Industrial Furnaces. Bulletin of the South Ural State University. Ser. Metallurgy, 2019, vol. 19, no. 2, pp. 79-85. (in Russ.) DOI: 10.14529/met190209

i Надоели баннеры? Вы всегда можете отключить рекламу.