Научная статья на тему 'Изучение формирования и свойств оксидных покрытий TiO2 с металлами триады железа'

Изучение формирования и свойств оксидных покрытий TiO2 с металлами триады железа Текст научной статьи по специальности «Химические науки»

CC BY
44
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
КАТАЛИЗАТОР / CATALYST / ОКСИДЫ ТИТАНА / TITANIUM OXIDES / ОКСИДНЫЕ ПОКРЫТИЯ / OXIDE COATINGS / ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОЕ ОКСИДИРОВАНИЕ / КАТАЛИТИЧЕСКАЯ АКТИВНОСТЬ / CATALYTIC ACTIVITY / PLASMA-ELECTROLYTIC OXIDIZING

Аннотация научной статьи по химическим наукам, автор научной работы — Sakhnenko M., Karakurkchi A., Galak A., Menshov S., Matykin O.

Исследовано влияние состава полилигантдных цитратно-дифосфатных электролитов и режимов плазменно-электролитического оксидирования на процессы формирования металлоксидных катализаторов TiOx·MOy (M=Fe, Co, Ni). Показаны пути управления морфологией поверхности, химическим составом покрытий и инкорпорированием в них оксидов металлов триады железа. Установлено, что полученные смешанные оксидные слои характеризуются повышенной коррозионной стойкостью и высокой каталитической активностью в реакциях окисления монооксида углерода

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Examining the formation and properties of TiO2 oxide coatings with metals of iron triad

We proposed a composition of citrate-pyrophosphate electrolytes with the addition of sulfates of iron triad metals for the formation of mixed oxide systems with the varied content of dopants. The introduction of an additional ligand contributes to an increase in the stability, operation period of working solutions and to the more uniform distribution of metals-dopants. The range of voltages for the single-stage plasma-electrolytic oxidizing of titanium alloys BT1-0 and OT4-1 is 120-160 V. As a result of oxidizing, we obtained metal-oxide systems TiOx·MOy (M=Fe, Co, Ni), which, depending on the nature of a dopant, have different types of surface structures. The largest content of dopant and the minimum size of the grain are characteristic of the cobalt-containing coatings. A potential possibility of obtaining the mixed oxide systems TiOx·(FeCoNi)Oy on the alloy OT4-1 is shown. We examined the dependences of spark voltage and the rate of change in the interelectrode voltage on the concentration of dopants in electrolyte. It was established that the formed mixed oxide coatings of titanium with the iron triad metals possess significant corrosion resistance; the highest value is inherent to the systems based on cobalt. It is shown that the incorporation of iron triad metals into the composition of oxide layers leads to an increase in the degree of surface development. This ensures an increase in the catalytic activity in the reactions of carbon mono-oxide oxidation. The obtained materials of varied thickness and morphology might be used in the technological systems of catalytic purification of natural and technogenic toxicants.

Текст научной работы на тему «Изучение формирования и свойств оксидных покрытий TiO2 с металлами триады железа»

Дослиджено вплив складу полшиандних ци-тратно-дифосфатних електролiтiв та режи-мiв плазмово-електролтичного оксидування на процеси формування металоксидних каталiза-торiв ТЮхМОу (M=Fe, Со, Ш). Показан шляхи керування морфологieю поверхт, хiмiчним складом покривiв та ткорпоруванням в них окси&в металiв трiади залiза. Встановлено, що одержат змшаш оксидн покриви характеризують-ся тдвищеною корозшною стштстю та високою каталтичною активтстю в реакщях окиснення монооксиду вуглецю

Ключовi слова: каталiзатор, оксиди титану, оксидш покриви, плазмово-електролтичне оксидування, каталтична активтсть

□-□

Исследовано влияние состава полилигантд-ных цитратно-дифосфатных электролитов и режимов плазменно-электролитического оксидирования на процессы формирования метал-локсидных катализаторов ТОхМОу (M=Fe, Со, Ш). Показаны пути управления морфологией поверхности, химическим составом покрытий и инкорпорированием в них оксидов металлов триады железа. Установлено, что полученные смешанные оксидные слои характеризуются повышенной коррозионной стойкостью и высокой каталитической активностью в реакциях окисления монооксида углерода

Ключевые слова: катализатор, оксиды титана, оксидные покрытия, плазменно-электроли-тическое оксидирование, каталитическая активность

-□ □-

UDC 621.35: 620.1

|DOI: 10.15587/1729-4061.2017.97550|

EXAMINING THE FORMATION AND PROPERTIES OF TiO2 OXIDE COATINGS WITH METALS OF IRON TRIAD

M. Sakhnenko

Doctor of Technical Sciences, Professor, Head of Department* E-mail: sakhnenko@kpi.kharkov.ua A. Karakurkchi PhD, Head of Research Laboratory** E-mail: anyutikukr@gmail.com A. Galak PhD*

E-mail: galak79@gmail.com S. Menshov

Postgraduate student* E-mail: menshov2277@gmail.com O. Matyki n

Postgraduate student* E-mail: lelik19798089@gmail.com *Department of Physical Chemistry*** **Research Laboratory Military Training Faculty*** ***National Technical University «Kharkiv Polytechnic Institute» Kyrpychova str., 2, Kharkiv, Ukraine, 61002

1. Introduction

Intensive economic activity and increase in the production capacities of different sectors of industry lead to the growth of the pollution of air and water basins by toxic substances of different nature and chemical stability. Given this, the organization of removal of natural and technogenic contaminators from air and aqueous medium is impossible without the use of effective and accessible catalysts.

At present, however, there is no a universal device or a substance, which makes it possible to solve the indicated problem. Nevertheless, the attention of researchers is drawn among many applied materials to the oxides of titanium [1]. Catalysts based on TiO2 possess a wide spectrum of functional properties, because of which they are effectively employed in the organic synthesis [2], chemical [3] and paint and varnish industry [4], in the systems of air [5, 6] and water purification [7, 8]. Of particular scientific interest, due to the high chemical inertness, affordability, low toxicity of the products of purification, are the photocatalysts based on TiO2 [9, 10].

However, the analysis of existing technical solutions, development and improvement of methods for obtaining the effective metal oxide catalysts remain relevant.

2. Literature review and problem statement

In the heterogeneous catalysis, the most common are the catalysts based on titanium dioxide in the form of powders with different dispersiveness [11]. The higher catalytic properties in this case are demonstrated by the the nano-struc-tured oxide systems that have large specific surface [12].

It should be noted, however, that from the point of view of the application convenience, a better technological form of a catalyst are the thin-film oxide coatings, formed directly on the main metal-carrier by the method of plasma-electrolytic oxidizing (PEO).

A plasma-electrolytic treatment of titanium in the electrolytes of different composition makes it possible to obtain in one stage the uniform coatings of titania. The matrix of base metal is incorporated with the oxides of components of electrolyte, as well as the products of thermochemical and

©

electrochemical transformations. The composition and properties of the formed oxide layers depend on the nature of oxidized metal, parameters of the electrolysis process and the components (dopants) of the utilized electrolytes [13, 14]. Of special interest is the oxide systems with nonstoichiometric composition, since the rate of electrochemical and chemical processes grows at an increase in the degree of deviation from the stoichiometry.

In order to enhance the functional properties of the obtained oxide systems, the composition of surface layers can additionally be introduced with the nonmetals, the transition, rare and trace elements.

In article [15], PEO of titanium in orthophosphoric acid with the addition of copper nitrate made it possible to obtain porous oxide coatings of titanium phosphates with the inclusions of copper ions. Such coatings possess bactericidal properties.

The authors of [16] received composite coatings Ti/ TinOm-ZrxOy that demonstrate photocatalytic properties by oxidizing the titanium in electrolytes with the addition of zirconium oxide.

In order to increase the catalytic activity, it is also expedient to introduce ions of the polyvalent metals into the composition of materials [17].

The authors of [18] formed on the alloys of titanium and aluminum the oxide-phosphate coatings doped with nickel and iron at the anodic and anode-cathode polarization of working electrodes. The increased chemical and thermal resistance characterizes the obtained systems.

In paper [19], the mixed oxide systems doped with manganese are synthesized by the oxidizing in the electrolyte based on potassium permanganate.

To obtain the PEO-coatings on valve metals, it is also possible to use polyphosphate electrolytes. In paper [20], authors obtained the oxide coatings of nickel and zinc with a broad range of the concentrations of dopants. Article [21] is devoted to the formation of mixed oxide systems TixZnyOz from the alkaline electrolytes based on diphosphate with the addition of zinc oxide. In paper [22], silicate electrolyte with the addition of cobalt acetate was used to obtain the oxide coatings of titanium with cobalt. The PEO of titanium was conducted in one stage at effective current density 10-20 A/dm2 during 10 min. In order to increase the catalytic activity of coatings in the CO oxidation reaction, the impregnation and annealing of the obtained oxide systems were additionally used.

In order to optimize the technological process of obtaining the catalytically active materials, it is expedient to use plasma-electrolytic oxidizing. This regime of synthesis of the mixed oxide systems makes it possible to incorporate, in one stage, active constituents into the matrix of oxide of a base metal. This will allow receiving functional materials with the high content of dopants and with a wide scope of application.

3. The aim and tasks of the study

The aim of present work is a single-stage formation on the titanium alloys by the method of plasma-electrolytic oxidizing of TiO2 functional coatings with metals of iron triad.

To achieve the set aim, the following tasks are to be solved:

- to substantiate the selection of components of electrolytes for obtaining the TiO2 oxide coatings with metals of iron triad;

- to propose the mode of plasma-electrolytic oxidizing for receiving the catalysts based on titanium oxide with transition metals;

- to establish a relation between the composition of electrolyte and the content of alloying additives in the oxide coatings;

- to examine the composition, morphology and properties of the obtained metal-oxide systems.

4. Procedure for obtaining the oxide coatings of titanium dioxide with metals of iron triad, a study of the composition, morphology and properties

4. 1. Electrolytes and PEO modes

The coatings with complex oxides TiOxMOy (M= =Fe, Co, Ni) were formed on the alloys of titanium VT1-0 and OT4-1 by the method of PEO under galvanostatic mode with the use of the direct current source B5-50 at current density 1-5 A/dm2, voltage 120-160 V. Electrochemical treatment was conducted in the solutions that contained diphosphate, citrate of alkali metal, as well as the cations of coprecipitated metals Fe2+, Co2+, Ni2+ (Table 1). The process of oxidizing was carried out for 30-60 minutes at constant agitation of the electrolyte. The flow circulation cooling maintained temperature within the limits of 20-25 °C.

Table 1

Composition of electrolytes and parameters of the synthesis of oxide systems

No. Electrolyte composition Current density i, A/dm2 Voltage sparking Us, V Maximum voltage, Umax, V

Components Concentration, mol/dm3

1 K4P2O7 NasC6H5O7 FeSO4 0.3 0.1 0.1 1.0-5.0 75-80 120-135

2 K4P2O7 NaaC6H5O7 CoSO4 0.3 0.1 0.1 80-85 130-140

3 K4P2O7 NasC6H5O7 NiSO4 0.3 0.1 0.1 90-95 145-160

A pretreatment of the samples included mechanical cleaning from the technological impurities, degreasing in the 0.2-0.3 M solution of NaOH, etching in the mixture of acids 0.1-0.3 M HF and 0.3-0.9 M HNO3, washing with the distilled water.

4. 2. Methods of examining the oxide coatings of titanium dioxide with metals of iron triad

In order to explore the morphology of surface of the obtained catalytic materials, we used the scanning electronic microscope ZEISS EVO 40XVP (Germany). Chemical composition of the surface oxide layers was determined on the energy-dispersion spectrometer Oxford INCA Energy 350 (Great Britain) with the integrated programming environment SmartSEM.

Research of corrosion behavior of titanium alloys with the oxide coatings was conducted by the method of impedance spectroscopy using the automatic alternating-current bridge P-5083 (Ukraine) in the range of frequencies 20-1x10s Hz in the medium of 0.1 M NaCl by sequential scheme

with the use of auxiliary electrodes - the coplanar plates made of corrosion-resistant steel X18H10T [23].

Catalytic activity of the oxide systems was tested in the reaction CO oxidation in CO2. Experimental studies were carried out using the laboratory bench in a tubular flowing reactor, as it is indicated in article [24].

5. Results of obtaining the oxide coatings on the alloys of titanium

As was previously demonstrated [19, 24], the use of diphosphate electrolytes for the PEO of aluminum and titanium alloys makes it possible to obtain oxide systems with different content of metals in a coating.

In order to form the mixed oxides of TiO2 with metals of iron triad (Fe, Co, Ni), the composition of working solutions is introduced with an additional ligand - citrate-ion. This ensures an increase in the stability and operation period of the utilized electrolytes due to the formation of sufficiently stable complexes of the composition [MCit]- [25], and it also contributes to the more uniform distribution of metals-dopants in coatings.

The chronograms of interelectrode voltage for the mixed oxide coatings (Fig. 1) take a classical form with three characteristic sections. In the pre-spark region (section 1), the U(t)-dependences are practically linear since in the first 2-3 minutes there occurs the formation of the barrier titanium oxide with the current output close to 100 %.

In the electrolytes that contain Fe(II) and Co(II), the oxidation of particles and formation of the mixed oxides of TO2M3O4 occurs even in the pre-spark region (Fig. 1).

With the onset of sparking (section 2), an increase in the voltage considerably slows down as a result of the breakdown of TiO2 barrier film, the rate of formation of titania is lowered, and the oxides of M3O4 dopants undergo thermal decomposition. A transition into the region of micro-arcs (section 3) is characterized by insignificant change in the voltage and by relative stability of the process while the range of PEO voltages is in the interval of 120-160 V.

t, min

Fig. 1. Chronograms of interelectrode voltage of the systems based on titanium oxides and metals of iron triad: 1 — pre-spark region, 2 — region of sparking, 3 — region of micro-arcs. Ion-dopant concentration in the electrolyte is 0.1 mol/dm3. Current density is 1 A/dm2

It was established that the dependence of spark voltage on the concentration of dopant is linear for all electrolytes (Fig. 2). The spark voltage grows in a series Fe<Co<Ni.

Dependences of the rate of change in voltage dU/dt on the applied voltage (Fig. 3) are also analogous for all dopants by form.

105

> 90 75

0,1 0,2 0,3

c, mol/dm3

Fig. 2. Dependences of spark voltage on the concentration of dopant in the diphosphate-citrate electrolyte:

1 - Fe2+; 2 - Co2+; 3 - Ni2+

Fig. 3. The rate of change in the interelectrode voltage of the mixed oxide coatings vs the voltage. The concentration of dopant is 0.1 mol/dm3. Current density is 1 A/dm2

The extremum, related to the thermal dissociation of the oxides of polyvalent metals, occurs in the transition to the region of sparking on all dependences.

Results of microscopic examinations of the morphology of coatings TiOx-FeOy; TiOx-CoOy and TiOx-NiO testify to the formation a toroidal structure of surface (Fig. 4); in this case, the porosity of coatings is lower in comparison with the oxide systems TiOx-MnOy [24].

In the course of studies of the element composition of the coatings, synthesized on the alloy OT4-1, we discovered (Table 2) the traces of manganese.

Table 2

Element composition of coating with the mixed oxides on the alloy OT4-1

Electrolyte Element composition, % by mass

C O Na P K Ti Mn Fe Co Ni

1 5.98 46.06 1.24 17.07 5.56 18.38 0.19 5.23 - -

2 6.22 44.54 1.39 16.60 7.24 15.82 0.23 - 7.76 -

3 6.24 46.28 0.58 16.59 4.94 21.65 0.22 - - 3.17

On the alloy OT4-1, we also obtained a mixed oxide system, which includes all metals form the family of iron (Fig. 5). The formed coating has the following composition, % by mass: Ti - 16.54; O - 44.73; P - 16.7; Fe - 2.05; Co -2.74; Ni - 2.36, the rest are impurities.

1.5

ia

<L>

s i

1.0

0.5

0 CoO

NiO

FeO

Fig. 4. Microphotographs of the surface, and the composition of oxide coatings on BT1-0: a - TiOx-FeOy; b - TiOx-CoOy; c - TiO^NiO. Magnification x200

Fig. 6. Deep corrosion index of metal oxide systems TiOx-MOy in 0.1 M NaCl

Testing the catalytic activity of coating with the mixed titanium oxides with nickel, cobalt and iron is carried out in the model reaction of oxidation of carbon oxide (II). It was established that the ignition temperature Ti, which matches the start of effective work of the catalyst, is in the interval of 250-270 °C, whereas for platinum it is 200 °C. The oxide systems TiOx CoOy, TiOxNiO, TiOx FeOy at 420 °C ensure the degree of CO conversion at 68 %, 57 % and 46 %, respectively (Table 3). Complete conversion of carbon mono-oxide on these materials is achieved at temperature higher than 500 °C.

Table 3

Characteristics of coating with the mixed oxides

Electrode material Content of alloying component ro, % by weight Conversion degree X,% Ignition temperature Ti, °C

Pt[25] 100 100 200

Pt r Lexp 100

TiOx-CoOy Co-7.7 68 280

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

TiOx-NiO Ni-3.2 57 270

TiOx-FeOy Fe-5.2 46 290

b

Fig. 5. Microphotographs of the surface of coating with the mixed oxides TiOx-(FeCoNi)Oy on OT4-1: a — magnification x200; b — magnification x500

According to the results of testing the corrosion resistance of the mixed TiO2 coatings with metals of iron triad, we determined the deep corrosion indices kh (Fig. 6).

6. Discussion of the composition, morphology and properties of the oxide coatings on titanium alloys

The character of chronograms of the interelectrode voltage (Fig. 1), the antibatic dependence of spark voltage on the concentration of dopant in the electrolyte (Fig. 2), as well as impact of the nature of cation-dopant on the spark voltage (Fig. 3), all are predetermined by a number of circumstances.

First, iron and cobalt, in contrast to nickel, are the polyvalent metals; therefore, they can form a number of oxides with variable composition, including those nonstoichiomet-ric (M3O4) that are the systems of the spinel type. It should be noted that the stability of oxidation degree +3 decreases in a series Fe>Co.

Second, the oxides of different composition differ by the value of specific resistivity (Table 4), which depends on the number of cation vacancies and oxygen in a crystal lattice, as well as on temperature. The thermal resistance of oxides is reduced both with the increase in the metal oxidation

c

number and in a series: Fe3O4>Co3O4; the oxides of the MO composition prove to be the most thermoresistant.

Table 4

Specific resistivity and thermal resistance of the oxides of iron triad metals

Metal Oxide Specific resistivity p (Q-cm) at 293 K Thermal resistance

Fe FeO 105-108 semiconductor of the p-type -

Fe2O3 105-108 1500-1690 K 6Fe2O3^4Fe3O4+O2

Fe3O4 4-10-3 degenerated semiconductor T>1900 K 2Fe3O4^6FeO+O2

Co CoO 106-1010 -

Co3O4 4-103-105 1200-1230 K 2Co3O4^6CoO+O2

Ni Ni1-xO 106-1013 -

NiO 1013-1015 -

A decrease in dU/dt in the pre-spark region (Fig. 2) is caused by the oxidation of the cations of dopants and by incorporation in the composition of the surface layer of more electro-conductive oxides and hydroxides. For the nickel-containing electrolytes, the appearance of an extremum is caused by the formation of cation vacancies and by the corresponding increase in the specific electrical conductivity. Further reduction in the rate of change in voltage in the region of sparking and micro-arc discharges is connected with an increase in the thickness of coatings and the introduction of the oxides of dopants during a stable degree of oxidation.

An analysis of surface morphology of the synthesized oxide systems (Fig. 4) allows us to draw a conclusion that the highest content of dopant and the minimum size of grain, other conditions being equal (identical concentration of salts in the electrolyte and unchanged modes of electrolysis), are demonstrated by the systems TiOx-CoOy.

At the surface of systems TiOx-CoOy (Fig. 4, a) there appear spheroids, as a result it becomes more developed and relief. The nickel-containing mixed oxides are characterized by the formation of larger globules, which overlap pores (Fig. 4, c).

An analysis of the element composition of oxide systems (Fig. 4) indicates the inclusion in the matrix of Titania of alloying metals Fe, Co, Ni, as well as phosphorus and potassium. The content of dopants in coatings grows with an increase in the current density and ratio of the concentrations of ligands diphosphate/citrate.

Manganese is included into the composition of alloy OT4-1 in the amount of 0.7-2.0 % by mass. That is why the presence of this element in the coatings (Table 3) is prede-temined by the formation of its oxides in the process of PEO. There is a possibility of an alternative two-stage path for the inclusion of manganese into the composition of coatings. The ionization of manganese and the transition into the electrolyte with the formation of complex particles occur at the initial stage. At the second stage, under the action of electrical discharges, there is the incorporation of manganese oxides into the composition of the formed layers.

Compositional analysis of the mixed oxide system TiOxx x(FeCoNi)Oy reveals that the content of dopants in a coat-

ing differs unessentially since the salt concentration in the electrolyte is identical. A smaller amount of iron is explained by the formation in the solution of more stable complexes Fe(II) with both ligands [26, 27]. The stability of electrolyte in this case substantially grows. The complexes of cobalt with citrate- and pyrophosphate ions are the least stable, which explains its content in the coating, the largest in the row of the indicated metals. The morphology of surface of a multicomponent oxide includes elements of all three types of the structures: microporous, characteristic for TiOx-CoOy, globular relief of TiOx-NiO and toroidal of TiOx-FeOy.

Results of testing the corrosion resistance of oxide systems testify to the high protective properties of the coatings, which contain oxides Fe, Co and Ni. The TiOx-CoOy coatings manifest the largest corrosion resistance among the systems being investigated.

An analysis of the catalytic activity of coating with the mixed oxides in the reaction of CO oxidation testifies to an increase in the conversion degree in the row:

FeOy<NiO<CoOy<Pt and reduction in the ignition temperature in the row:

FeOy>CoOy>NiO>Pt.

Based on the aforementioned, it is possible to argue that Pt, the oxides of FeOy and NiO demonstrate high catalytic activity in the reaction of oxygen release with the formation of the O-O bond. The CoOy system is distinguished by high activity in the oxidation processes, which are accompanied by the destruction of the O-O bond. This particular influence ensures an increase in the rate of CO oxidation to CO2.

Thus, the mixed oxide systems TiOxMOy (M=Mn, Fe, Co, Ni) of the varied thickness and morphology, obtained as a result of PEO of titanium alloys, can find their application in the catalytic systems of air and water purification.

7. Conclusions

1. We substantiated the choice of component composition of PEO electrolytes of titanium alloys for the formation of coating with the mixed oxides with metals of iron triad. The citrate-pirofosfatnye electrolytes are proposed with the addition of sulfates of iron triad metals for the formation of oxide systems with a varied content of dopants. The introduction of an additional ligand contributes to an increase in the stability, operation period of working solutions and to the more uniform distribution of metals-dopants in the coatings.

2. A technique for obtaining the metal-oxide catalysts TiOxMOy (M=Fe, Co, Ni) by the method of plasma-electrolytic oxidizing is proposed. The electrochemical treatment of titanium alloys in the citrate-diphosphate electrolytes at voltage 120-160 V makes it possible to form the mixed metal-oxide systems with the content of iron triad metals at 3-8 at. %. It is shown that the antibatic dependence of spark voltage on the concentration of dopant in an electrolyte is caused by an increase in electrical conductivity of the growing mixed oxide as a result of the higher conductivity of oxides of dopants.

3. Depending on the nature of dopant, the surface of coating with mixed oxides has a different structure. The Ti-

Ox-CoOy coatings are microporous, the TiOx-NiO coatings have a globular relief, the TiOx-FeOy coatings are toroidal. The porosity and size of the grains of coating with the mixed oxides grow in the row of dopants cobalt - nickel - iron.

4. The obtained oxide coatings are characterized by the developed toroidal surface, enhanced corrosion resistance and high catalytic activity in the carbon (II) oxide conversion reaction.

References

1. Anpo, M. Environmentally Benign Photocatalysts: Applications of Titanium Oxide-based Materials [Text] / M. Anpo, P. V. Ka-mat. - Springer New York, 2010. - 757 p. doi: 10.1007/978-0-387-48444-0

2. Bagheri, S. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis [Text] / S. Bagheri, N. Muhd Julkapli, S. Bee Abd Hamid // The Scientific World Journal. - 2014. - Vol. 2014. - P. 1-21. doi: 10.1155/2014/727496

3. Lanziano, C. S. Catalytic Conversion of Glucose Using TiO2 Catalysts [Text] / C. S. Lanziano, F. Rodriguez, S. C. Rabelo, R. Guirar-dello, V. T. da Silva, C. B. Rodella // Chemical Engineering Transactions. - 2014. - Vol. 37. - P. 589-594.

4. Gazquez, M. J. A Review of the Production Cycle of Titanium Dioxide Pigment [Text] / M. J. Gazquez, J. P. Bolivar, R. Garcia-Tenorio, F. Vaca // Materials Sciences and Applications. - 2014. - Vol. 05, Issue 07. - P. 441-458. doi: 10.4236/msa.2014.57048

5. Lin, L. Photocatalytic oxidation for degradation of VOCs [Text] / L. Lin, Y. Chai, B. Zhao, W. Wei, D. He, B. He, Q. Tang // Open Journal of Inorganic Chemistry. - 2013. - Vol. 03, Issue 01. - P. 14-25. doi: 10.4236/ojic.2013.31003

6. Berdahl, P. Evaluation of Titanium Dioxide as a Photocatalyst for Removing Air Pollutants [Text] / P. Berdahl, H. Akbari. - California Energy Commission, PIER Energy-Related Environmental Research Program, 2008. - 33 p.

7. Verma, A. Photocatalytic degradability of insecticide Chlorpyrifos over UV irradiated Titanium dioxide in aqueous phase [Text] / A. Verma, Poonam, D. Dixit // International Journal of Environmental Sciences. - 2012. - Vol. 3, Issue 2. - P. 743-755.

8. Herrmann, J.-M. New industrial titania photocatalysts for the solar detoxification of water containing various pollutants [Text] / J.-M. Herrmann, C. Guillard, J. Disdier, C. Lehaut, S. Malato, J. Blanco // Applied Catalysis B: Environmental. - 2002. - Vol. 35, Issue 4. - P. 281-294. doi: 10.1016/s0926-3373(01)00265-x

9. Fujishima, A. TiO2 Photocatalysis: Fundamentals and Applications [Text] / A. Fujishima, K. Hashimoto, T. Watanabe. - Tokyo, 1999. - 176 p.

10. Hashimoto, K. TiO2 Photocatalysyis: A Historical Overview and Future Prospects [Text] / K. Hashimoto, H. Irie, A. Fujishima // Japanese Journal of Applied Physics. - 2005. - Vol. 44, Issue 12. - P. 8269-8285. doi: 10.1143/jjap.44.8269

11. Ismagilov, Z. R. Synthesis and stabilization of nano-sized titanium dioxide [Text] / Z. R. Ismagilov, L. T. Tsikoza, N. V. Shikina, V. F. Zarytova, V. V. Zinoviev, S. N. Zagrebelnyi // Russian Chemical Reviews. - 2009. - Vol. 78, Issue 9. - P. 873-885. doi: 10.1070/ rc2009v078n09abeh004082

12. Chaturvedi, S. Applications of nano-catalyst in new era [Text] / S. Chaturvedi, P. N. Dave, N. K. Shah // Journal of Saudi Chemical Society. - 2012. - Vol. 16, Issue 3. - P. 307-325. doi: 10.1016/j.jscs.2011.01.015

13. Gupta, P. Electrolytic plasma technology: Science and engineering - An overview [Text] / P. Gupta, G. Tenhundfeld, E. O. Daigle, D. Ryabkov // Surface and Coatings Technology. - 2007. - Vol. 201, Issue 21. - P. 8746-8760. doi: 10.1016/j.surfcoat.2006.11.023

14. Lukiyanchuk, I. V. Plasma electrolytic oxide layers as promising systems for catalysis [Text] / I. V. Lukiyanchuk, V. S. Rudnev, L. M. Tyrina // Surface and Coatings Technology. - 2016. - Vol. 307. - P. 1183-1193. doi: 10.1016/j.surfcoat.2016.06.076

15. Rokosz, K. GDOES, XPS, and SEM with EDS analysis of porous coatings obtained on titanium after plasma electrolytic oxidation [Text] / K. Rokosz, T. Hryniewicz, S. Raaen, P. Chapon, L. Dudek // Surface and Interface Analysis. - 2016. - Vol. 49, Issue 4. -P. 303-315. doi: 10.1002/sia.6136

16. Sakhnenko, N. D. Characterization and photocatalytic activity of Ti/TinOm-ZrxOy coatings for azo-dye degradation [Text] / N. D. Sa-khnenko, M. V. Ved, V. V. Bykanova // Functional materials. - 2014. - Vol. 21, Issue 4. - P. 492-497. doi: 10.15407/fm21.04.492

17. Glushkova, M. Electrodeposited cobalt alloys as materials for energy technology [Text] / M. Glushkova, T. Bairachna, M. Ved', M. Sakhnenko // MRS Proceedings. - 2013. - Vol. 1491. - P. 18-23. doi 10.1557/opl.2012.1672

18. Rudnev, V. S. Iron- and Nickel-Containing Oxide-Phosphate Layers on Aluminum and Titanium [Text] / V. S. Rudnev, V. P. Moro-zova, T. A. Kaidalova, P. M. Nedozorov // Russian Journal of Inorganic Chemistry. - 2007. - Vol. 52, Issue 9. - P. 1350-1354. doi: 10.1134/s0036023607090069

19. Sakhnenko, N. D. Formation of coatings of mixed aluminum and manganese oxides on the AL25 alloy [Text] / N. D. Sakhnenko, M. V. Ved', D. S. Androshchuk, S. A. Korniy // Surface Engineering and Applied Electrochemistry. - 2016. - Vol. 52, Issue 2. -P. 145-151. doi: 10.3103/s1068375516020113

20. Boguta, D. L. Effect of ac Polarization on Characteristics of Coatings formed from Polyphosphate Electrolytes of Ni(II) and Zn(II) [Text] / D. L. Boguta, V. S. Rudnev, O. P. Terleeva, V. I. Belevantsev, A. I. Slonova // Russian Journal of Applied Chemistry. -2005. - Vol. 78, Issue 2. - P. 247-253. doi: 10.1007/s11167-005-0269-0

21. Bykanova, V. V. Synthesis and photocatalytic activity of coatings based on the Ti x Zn y O z system [Text] / V. V. Bykanova, N. D. Sakhnenko, M. V. Ved' // Surface Engineering and Applied Electrochemistry. - 2015. - Vol. 51, Issue 3. - P. 276-282. doi: 10.3103/s1068375515030047

22. Vasilyeva, M. S. Cobalt-containing oxide layers on titanium, their composition, morphology, and catalytic activity in CO oxidation [Text] / M. S. Vasilyeva, V. S. Rudnev, A. Yu. Ustinov, I. A. Korotenko, E. B. Modin, O. V. Voitenko // Applied Surface Science. -2010. - Vol. 257, Issue 4. - P. 1239-1246. doi: 10.1016/j.apsusc.2010.08.031

23. Ved, M. V. Stability control of adhesional interaction in a protective coating/metal system [Text] / M. V. Ved, N. D. Sakhnenko, K. V. Nikiforov //Journal of Adhesion Science and Technology. - 1998. - Vol. 12, Issue 2. - P. 175-183. doi: 10.1163/156856198x00047

24. Sakhnenko, N. A study of synthesis and properties of manganese-containing oxide coatings on alloy VT1-0 [Text] / N. Sakhnenko, M. Ved, A. Karakurkchi, A. Galak // Eastern-European Journal of Enterprise Technologies. - 2016. - Vol. 3, Issue 5 (81). - P. 37-43. doi: 10.15587/1729-4061.2016.69390

25. Snytnikov, P. V. Kinetic Model and Mechanism of the Selective Oxidation of CO in the Presence of Hydrogen on Platinum Catalysts [Text] / P. V. Snytnikov, V. D. Belyaev, V. A. Sobyanin // Kinetics and Catalysis. - 2007. - Vol. 48, Issue 1. - P. 93-102. doi: 10.1134/s0023158407010132

26. Karakurkchi, A. V. Electrodeposition of Iron-Molybdenum-Tungsten Coatings from Citrate Electrolytes [Text] / A. V. Karakurkchi, M. V. Ved', N. D. Sakhnenko, I. Yu. Yermolenko // Russian Journal of Applied Chemistry. - 2015. - Vol. 88, Issue 11. - P. 1860-1869. doi: 10.1134/s1070427215011018x

27. Sakhnenko, N. D. Functional Coatings of Ternary Alloys of Cobalt with Refractory Metals [Text] / N. D. Sakhnenko, M. V. Ved, Yu. K. Hapon, T. A. Nenastina // Russian Journal of Applied Chemistry. - 2015. - Vol. 88, Issue 12. - P. 1941-1945. doi: 10.1134/ s1070427215012006x

Розроблено епоксикомпозитш матерiали триботехшчного призначення, як здатш реа-лiзувати ефект вибiркового перенесення пи) час трибовзаемоди. Дослиджено вплив рiзно-функцюнальних наповнювачiв на зносостш-тсть епоксикомпозитiв, що експлуатуються в жорстких умовах навантажувально-швидтс-них режимiв трибовзаемодИ. Визначено хiмiч-ний склад i проаналiзовано структуру трибо-поверхонь епоксикомпозитних матерiалiв та контртша. Встановлено послiдовнiсть етатв формування фрагментiв захисног мiдноi плiвки на дотичних поверхнях триботш

Ключовi слова: епоксикомпозитний матерi-ал, порошок оксиду мiдi, хiмiчний аналiз, вибiр-

кове перенесення, трибоповерхня, контртшо □-□

Разработаны эпоксикомпозитные материалы триботехнического назначения, которые способны реализовать эффект выборочного переноса при трибовзаимодействии. Исследовано влияние разнофункциональных наполнителей на износостойкость эпоксикомпозитов при жестких условиях нагрузочно-скоростных режимов трибовзаимодействия. Определен химический состав и проанализирована структура трибо-поверхностей эпоксикомпозитных материалов и контртела. Установлена последовательность этапов формирования фрагментов защитной медной пленки на соприкасающихся поверхностях триботел

Ключевые слова: эпоксикомпозитный материал, порошок оксида меди, химический анализ, выборочный перенос, трибоповерхность, контртело

TT

UDC 621.763:667.637.22

[DOI: 10.15587/1729-4061.2017.97418|

EXAMINING A MECHANISM OF GENERATING THE FRAGMENTS OF PROTECTIVE FILM IN THE TRYBOLOGICAL SYSTEM EPOXYCOMPOSITE -

STEEL"

V. Kas hy ts kyi

PhD, Associate Professor* E-mail: kashickij@ya.ru O. Sadova PhD, Assistant* E-mail: sadova111oksana@gmail.com O. L i u s h u k Postgraduate student* E-mail: oleksandrlusuk30@gmail.com O. Davyd i u k Assistant* E-mail: davydyuk90@gmail.com S. Myskovets PhD*

E-mail: serval25@i.ua *Department of material science Lutsk National Technical University Lvivska str., 75, Lutsk, Ukraine, 43018

1. Introduction

Use of polymercomposite materials in friction nodes of modern machines and mechanisms enhances their opera-

tional and technical and economic characteristics. It increases the manufacturability and makes it possible to refuse the alloys of nonferrous metals short in supply and to reduce the weight and cost of machinery [1].

©

i Надоели баннеры? Вы всегда можете отключить рекламу.