Научная статья на тему 'Исследование возможности использования понятия геометрической вероятности для оценки вероятности захвата скопления пелагических рыб канатным разноглубинным тралом'

Исследование возможности использования понятия геометрической вероятности для оценки вероятности захвата скопления пелагических рыб канатным разноглубинным тралом Текст научной статьи по специальности «Математика»

CC BY
132
12
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
РАЗНОГЛУБИННЫЙ ТРАЛ / ВЕРТИКАЛЬНОЕ РАСКРЫТИЕ / ТЕОРИЯ ВЕРОЯТНОСТЕЙ / ЗАДАЧА О ВСТРЕЧЕ / КИНЕМАТИЧЕСКАЯ МОДЕЛЬ / ВЗАИМОДЕЙСТВИЕ СИСТЕМЫ СУДНО + ТРАЛ И СКОПЛЕНИЯ РЫБЫ / УГОЛ УХОДА СКОПЛЕНИЯ РЫБ / MIDWATER TRAWL / VERTICAL OPENING / PROBABILITY THEORY / PROBLEM ABOUT THE MEETING / KINEMATIC MODEL / INTERACTION BETWEEN THE SYSTEM ‘VESSEL + TRAWL’ AND FISH / ANGLE OF FISH AGGREGATION ROUTING

Аннотация научной статьи по математике, автор научной работы — Дверник Александр Васильевич, Янчук Анна Николаевна

Рассматривается возможность использования одного из методов теории вероятностей в классической задаче о встрече применительно к вопросу о полном охвате скопления ставриды юго-восточной части Тихого океана канатной частью разноглубинного трала. Расчеты значения геометрической вероятности захвата производились для тралов 69/318 и 120/980 компании ООО «Фишеринг сервис». Предложена кинематическая модель взаимодействия скопления рыбы и системы судно + трал, при условии, что скопление уходит в сторону устья трала под нижнюю подбору. Получены результаты, подтверждающие плодотворность использования понятия геометрической вероятности для определения вероятности захвата и средневзвешенного значения угла ухода стаи. Проведены соответствующие расчеты погрешности таких измерений. Представляется целесообразным продолжить исследования по предлагаемой методике для получения средневзвешенных величин, которые необходимы для дальнейшего совершенствования методов расчетов технических параметров канатных разноглубинных тралов.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по математике , автор научной работы — Дверник Александр Васильевич, Янчук Анна Николаевна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

STUDY OF THE POSSIBILITY OF USING THE CONCEPT OF GEOMETRIC PROBABILITY TO ESTIMATE THE PROBABILITY OF CAPTURE OF PELAGIC FISH AGGREGATIONS BY MIDWATER ROPE TRAWL

The article discusses the possibility of using one of the methods of probability theory in the classical problem about the meeting in relation to the issue of full coverage of Jack mackerel aggregations in the Southeast Pacific by the rope part of the midwater trawl. Calculations of the values of the geometric probability of capture were carried out with trawls 69/318 and 120/980 of "Fishering service", LLC. The article proposes a kinematic model of interaction between fish and the system ‘vessel + trawl’, provided that the fish directs to the trawl mouth under the ground line. The results obtained confirm the fruitfulness of using the concept of geometric probability to determine the probability of capture and the average value of the angle of the fish shoal’s routing. There were carried out relevant calculations of errors of such measurements. It has been found reasonable to continue research based on the proposed method for obtaining average weighed values, which are necessary for further improvement of the methods of calculation of technical parameters of the midwater rope trawls.

Текст научной работы на тему «Исследование возможности использования понятия геометрической вероятности для оценки вероятности захвата скопления пелагических рыб канатным разноглубинным тралом»

DOI 10.24143/2073-5529-2017-2-45-55 УДК 639.2.081.117.212

А. В. Дверник, А. Н. Янчук

ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ ПОНЯТИЯ ГЕОМЕТРИЧЕСКОЙ ВЕРОЯТНОСТИ ДЛЯ ОЦЕНКИ ВЕРОЯТНОСТИ ЗАХВАТА

СКОПЛЕНИЯ ПЕЛАГИЧЕСКИХ РЫБ КАНАТНЫМ РАЗНОГЛУБИННЫМ ТРАЛОМ

Рассматривается возможность использования одного из методов теории вероятностей в классической задаче о встрече применительно к вопросу о полном охвате скопления ставриды юго-восточной части Тихого океана канатной частью разноглубинного трала. Расчеты значения геометрической вероятности захвата производились для тралов 69/318 и 120/980 компании ООО «Фишеринг сервис». Предложена кинематическая модель взаимодействия скопления рыбы и системы судно + трал, при условии, что скопление уходит в сторону устья трала под нижнюю подбору. Получены результаты, подтверждающие плодотворность использования понятия геометрической вероятности для определения вероятности захвата и средневзвешенного значения угла ухода стаи. Проведены соответствующие расчеты погрешности таких измерений. Представляется целесообразным продолжить исследования по предлагаемой методике для получения средневзвешенных величин, которые необходимы для дальнейшего совершенствования методов расчетов технических параметров канатных разноглубинных тралов.

Ключевые слова: разноглубинный трал, вертикальное раскрытие, теория вероятностей, задача о встрече, кинематическая модель, взаимодействие системы судно + трал и скопления рыбы, угол ухода скопления рыб.

Введение

Понятие геометрической вероятности приложимо к определенной категории изучаемых ситуаций, в которых постановочная часть обычно выглядит следующим образом [1].

Пусть на плоскости имеется некоторая область G и в ней содержится другая область -g с квадрируемой границей. В область G наудачу бросается точка В и спрашивается, чему будет равна вероятность того, что точка попадет в область g. При этом выражению «точка бросается наудачу в область G» придается следующий смысл: брошенная точка может попасть в любую точку области G, а вероятность попасть в какую-либо часть области G пропорциональна мере этой части (длине, площади, объему и т. д.) и не зависит от ее расположения и формы. Таким образом, по определению, вероятность попадания в область g при бросании наудачу точки в область G равна

mes g

Р =-n •

mes G

Это выражение справедливо также для ситуации, в которой точка В выбирается не случайным образом [2]. Тогда предполагается равновероятным любое распределение g и G. К понятию геометрической вероятности естественно обращаться во всех случаях, когда G > g, поскольку при mes g = mes G геометрическая вероятность будет равна 1. Как известно, в общем случае вероятность есть числовая характеристика возможности появления какого-либо определенного события в тех или иных условиях, которые могут повторяться неограниченное количество раз. Все сказанное выше позволяет рассматривать геометрическую вероятность как меру совершенства реализации процесса попадания точки В область g. Таким образом, поскольку в реальных событиях вероятность р зависит от комплекса технических средств, обеспечивающих этот процесс, то геометрическую вероятность в известных пределах можно рассматривать как обобщенную характеристику эффективности реализации этого процесса.

Одним из классических примеров практического применения геометрической вероятности является так называемая задача о встрече, рассматриваемая в трудах по теории вероятности [1]. Сущность ее состоит в том, что два объекта (А и В) договариваются встретиться в опреде-

ленном месте в течение определенного промежутка времени ДГ. При этом пришедший первым ждет другого только в течение отрезка времени Дt в несколько минут, а затем немедленно уходит. Для того чтобы указанная встреча произошла, необходимо и достаточно чтобы в задаваемых декартовых координатах х и у в выбранном масштабе в 1 минуту

[х- у]< А^

Все возможные исходы при такой постановке задачи изобразятся точками квадрата со сторонами ДГ, а благоприятствующие встрече расположатся в заштрихованной области (рис. 1).

Рис. 1. Задача о встрече

Искомая вероятность будет равна отношению площади заштрихованной фигуры к площади всего квадрата как

Р =

AT2 -(AT-At) ~ÄT2

После такого пояснения сущности задачи о встрече обратимся к ситуации, с которой нам пришлось столкнуться при исследованиях проблемы биотехнического обоснования параметров канатного разноглубинного трала [3-5].

2

Применение метода классической задачи о встрече к вопросу о полном охвате скопления ставриды юго-восточной части Тихого океана

Скопление ставриды, которое облавливается канатным разноглубинным тралом (в диапазоне глубин пелагиали 100-200 м), при некоторых значениях факторов окружающей среды проявляет видотипичную реакцию, состоящую в отрицательном восприятии шумов приближающегося траулера. Это выражается в заглублении скопления под судно и его уходе в направлении трала. В такой ситуации естественной может быть постановка следующего вопроса: «Чему равна вероятность встречи некоторой характерной точки В скопления ставриды с выбранной точкой А, принадлежащей плоскости устья трала?»

Взаимодействия скопления ставриды и системы судно + трал представляется целесообразным рассматривать, описывая реальный процесс с помощью последовательно используемых трех моделей: графической, кинематической и модели с применением понятия геометрической вероятности.

Хотя наша задача и является во многом идентичной классической задаче о встрече, в ней имеются следующие отличия:

1. Объекты встречи А и В (трал и рыба) физически не могут условиться о встрече и договориться о ее деталях. Более того, во встрече нуждается только партнер А, а партнер В даже может противиться этой встрече.

2. Момент и место встречи зависимы и строго определяются такими характеристиками скопления, как дальность реакции, скорость и угол ухода, а также величина его заглубления.

3. Попадая в место возможной встречи, рыба немедленно уходит.

Очевидно, что без дополнительных уточняющих условий задача о встрече некоторой точки плоскости устья канатной части трала с выбранной характерной точкой скопления не будет иметь положительного решения.

Во-первых, здесь необходимо обозначить границы области G, в которой происходит взаимодействие скопления рыбы и трала. Если рассматривать наиболее часто встречающийся на практике случай - промысловую ситуацию [6], когда стремятся реализовать полный охват скопления, то высота HG зоны G равна толщине наиболее плотного слоя hск с учетом величины заглубления рыбы АН. В этом случае верхняя кромка скопления и гуж верхней подборы должны располагаться на одной и той же глубине г (рис. 2). Горизонтальная протяженность области G на рис. 2 обозначена как LG, которая включает в себя Lк.ч - длину канатной части, м; Lкр - длину крыльев в проекции на продольную ось симметрии трала, м; Lкаб - длину кабелей в проекции на продольную ось симметрии трала, м; Lтр - дистанцию между досками и кормой траулера, м; Lс/2 - половину длины судна с учетом расположения вибратора гидролокатора, м; Dр - дальность реакции скопления, м; /ск - длину скопления, м.

Во-вторых, необходимо назначить величину заглубления рыбы АН. Третьим необходимым и достаточным условием является соблюдение равенства

la _ lв

(1)

где LA - путь, проходимый тралом до встречи с рыбой; LB - путь, проходимый рыбой; Утр и V, -скорость движения трала и рыбы соответственно.

Тогда решение задачи можно свести к определению геометрической вероятности встречи скопления ставриды с плоскостью устья трала при неизвестном, но задаваемом значении угла заглубления, случайные колебания которого находятся в некотором диапазоне, ограниченном условием 0° < в < 90°.

Картина взаимодействия объекта лова и траловой рыболовной системы, а также принятые условные обозначения показаны на рис. 2. На этом рисунке продольное сечение скопления представлено в виде прямоугольника с высотой hск и длиной 1ск.

LJ2

H

х

Рис. 2. Процесс взаимодействия системы судно + трал и скопления ставриды

Здесь за основу выбрана схема полного охвата зоны обитания рыбы, высота которой включает в себя вертикальное развитие стаи и величину ее заглубления.

В выражении (1), как уже отмечалось, параметры LA и LB означают путь, который трал и рыба проходят за один и тот же промежуток времени At.

La = Аф + + Lw + LJ2 + Dp + - Н tg в,

H - h^, (2)

cos в

Lb =

где ДН - заглубление скопления, м; в - угол заглубления выбранной точки В скопления, град; Н - вертикальное раскрытие трала, м (в первом приближении форма устья принимается круговой); hск - высота скопления, м.

Исходное расположение плоскости устья ОО\ канатной части К, а также скопления со специально выбранной характерной точкой В (по условию обеспечения полного охвата скопления при попадании точки В в точку А плоскости устья трала ОО1) представлено на рис. 3.

Т

z

А.

О

К

т

H

Ol

Рис. 3. Область G реализации процесса лова и зона gi, благоприятствующая встрече канатной части трала со скоплением

Равенство (2), с учетом (1), представим в виде уравнения

L + L , + L +

кр каб тр

L

+ Dp + L I-AHtgß

H - Кк Vp cos ß'

(3)

которое можно назвать [4] кинематической моделью взаимодействия трала и скопления, испугавшегося шумов судна и уходящего с заглублением в сторону устья. На первом этапе исследований (именно его результаты изложены в настоящей статье) будем полагать, что уход рыб происходит строго в вертикальной плоскости.

В частном случае, полагая для простоты расчетов, что устье имеет круговую форму, равенство (3) можно преобразовать и определить вертикальное раскрытие трала как

Vp cos ß

H =-

Lkp + 4аб + Lp + L + Dp + 1ск I-AH tgß

V

+ К

(4)

Из выражений (2)-(4) видно, что исключительно большое влияние на результат лова (встречи скопления и трала) оказывает угол заглубления р.

В этой связи вначале рассмотрим 3 варианта встречи трала и скопления, отличающиеся только произвольно выбранными углами заглубления - р = 55°, 75°, 85°.

В общем виде решение будет выглядеть следующим образом. Все возможные исходы встречи скопления с канатной частью трала К изобразятся точками прямоугольника со сторонами по вертикали На, по горизонтали LG, представляющего собой зону лова G, а благоприятствующие встрече (охвату скопления канатной частью) - расположатся в заштрихованной области g (см. рис. 2 и 4). Площадь зоны G отсюда равна

S„ = Н„ • L„

(5)

где величина На равна вертикальному раскрытию трала Н, а площадь заштрихованной фигуры

S^ = Sa - 2SA = (1Ск + AH tg Р)(йСк + AH) - 2(1 AH tg ß • AH),

где - площадь прямоугольника ЕСДБ; SД - площадь треугольника АВБ (см. рис. 3).

2

Отсюда

S (l

Р __^ _ ' CI

АЯ tgß)(hCK + АН)- АН2 tgß

S

Я • L„

(7)

Выполним численные расчеты, выбрав в качестве примера трал 69/318 фирмы ООО «Фи-шеринг Сервис» [5], имеющий следующие параметры при облове ставриды в юго-восточной части Тихого океана (ЮВТО) (см. формулу (2) и рис. 2).

Я = 40 м; L^ = 40 м; Хкаб = 100 м; Ьтр = 118 м; LJ 2 = 30 м.

Для дальнейших расчетов необходимо также располагать значениями 5-ти параметров скопления ставриды: Dр, /ск, АЯ, Ур, Иск, которые являются случайными величинами. Для исследования взаимосвязи этих величин с техническими характеристиками системы судно + трал обычно прибегают к методам теории вероятностей [2, 7], используя данные подводных наблюдений или инструментальных измерений в промысловых условиях, обработанные с помощью методов математической статистики [8]. Эти данные содержатся в соответствующих научных отчетах или справочных пособиях. Одним из них является работа проф. В. К. Короткова «Реакция рыб на трал и технология их лова» [6]. Из нее были взяты следующие значения характеристик скоплений ставриды ЮВТО при их облове тралом с вертикальным раскрытием 40 м, Нск = 15 м, /ск = 3 х йск = 45 м, АЯ = 25 м, а также среднее значение Dj, = 200 м и Ур = 0,4 м/с. На первом этапе исследований будем считать их детерминированными величинами.

Теперь выполним соответствующие графические построения по методике геометрической вероятности с представлением на рис. 3 и 4 заштрихованных областей g, для трех вариантов углов ßb сопровождая их расчетами SG, Sgi, Р, по формулам (3)-(7).

А

Вариант 1 - ß = 55°

Вариант 2 - ß = 75°

Вариант 3 - ß = 85°

Рис. 4. Зоны, благоприятствующие встрече устья трала и скопления Полученные данные представлены в табл. 1.

y

х

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

x

Таблица 1

Расчет геометрической вероятности для ß = 55°, 75°, 85°

Вариант Параметры

ß, град LAi, м SGt • 103, м2 Утр, м/с Ssi • 103, м2 Р, = Sei/ Sei

1 55 554 23,6 6,20 2,3 0,10

2 75 497 23,6 2,15 3,3 0,14

3 85 305 23,6 0,43 4,0 0,26

Данные табл. 1 позволяют сделать следующие выводы:

1. Геометрическая вероятность Р захвата скопления ставриды имеет относительно низкие численные значения для всех вариантов, и, следовательно, разноглубинный траловый лов, несмотря на его высокую техническую оснащенность, предоставляет больше возможностей для дальнейшего совершенствования прицельности лова.

2. Наибольшее значение геометрической вероятности имеет вариант 3 с углом заглубления скопления в = 85°.

ч тг , Ш ^в

3. По затратам времени на захват скопления tр =- варианты располагаются в нижеприведенной последовательности: 1) 90 с; 2) 232 с; 3) 712 с, т. е. по этому показателю предпочтителен вариант 1, позволяющий сделать большее количество тралений в суточном интервале времени.

4. Вариант 1 (скорость траления V = 12,0 узл) требует применения новых мощных скоростных траулеров, целесообразность постройки и использования которых невозможно установить без предварительной оценки расходной и доходной части процесса. Здесь также следует учитывать, что траление при таких значениях скорости может привести к существенному ухудшению качества улова.

5. Хотя вариант 3 при скорости траления У3 = 0,8 узл имеет самую большую величину вероятности = 0,26, он представляется наиболее неблагоприятным для практического использования из-за очень малой скорости траления. С учетом сказанного, с одной стороны, будет высока вероятность непопадания рыбы в трал или ее выхода еще в передней части. С другой стороны, большая продолжительность траления отрицательно повлияет на количество промысловых циклов в суточном интервале времени.

6. По совокупности свойств вариант 2 не имеет существенных недостатков, присущих двум другим вариантам, за исключением относительно небольшого значения геометрической вероятности Р2 = 0,14. Поэтому можем предполагать, что при угле в = 75° этот вариант окажется наиболее близким к реальным условиям промысла.

Все численные расчеты параметров геометрической вероятности проводились на примере действующей траловой системы, в которой в течение последнего десятилетия применяется разноглубинный канатный трал 69/318 [5] для лова ставриды с судов типа СТР, ТСМ и БМРТ в диапазоне значений скорости от 4,3 до 5,0 узлов (2,2-2,67 м/с). Рассматривая этот многолетний опыт в известном смысле как критерий истины, можно определить, какие фактические значения угла в сопутствуют осуществлению этого лова.

По условиям этой задачи должно, как и в ранее рассмотренных примерах, соблюдаться условие

Ьр=к

V V '

тр р (8)

ЬА1 - АН 18в = Н - ^к

Vр 008 в V/

и продолжительность движения трала навстречу скоплению и время движения рыбы ^ по заглубляющей траектории (после действия шумов судового двигателя) должны быть одинаковыми.

Подставим в формулу (8) имеющиеся численные значения. Получим для

Ур = 2,2 м/с

540 - 25 гв в = 40 -15 2,2 " 0,4 008 p,

или 50

tx = 245-11,4 tg Р

Ч =

62,5 cos в

Далее решение целесообразно выполнить графически. Выберем диапазон изменения значений в: 60°, 65°, 70°, 80°. Поочередно подставим эти значения в выражение (9) и определим значения tg в и cos р. Затем в декартовых координатах построим графики зависимости t = ДР) (рис. 5).

400

55 53 61 64 67 70 7В 76 79 32 35г

а б

Рис. 5. Зависимость времени лова t от величины угла заглубления скопления в: а - для случая Утр = 2,2 м/с; б - для случая Утр = 2,67 м/с

В точке пересечения кривых для случая Утр = 2,2 м/с на рис. 5, а получим р1 = 72° Во втором случае для Vтр = 2,67 м/с имеем t2 = 202 - 9,4 tg р t2 = 50/cos р. В точке пересечения кривых на рис. 5, б получим р2 = 72°, т. е. р1 = р2.

t2 = 202-9,4 tg Р, t2 =

50 cos в

Полученное численное значение угла р подтверждает ранее высказанное предположение о близости варианта 2 к реальным условиям. Его можно использовать для выполнения предварительных расчетов вертикального раскрытия тралов и скорости траления по формуле (4).

Результаты исследований показали принципиальную возможность и полезность применения понятия геометрической вероятности Р для численной оценки вероятности захвата и других параметров скоплений ставриды, поведение которых при взаимодействии с траловой системой описывается кинематической моделью (3). Однако рассмотренный диапазон значений угла р не охватывает весь интервал возможных случайных колебаний этой величины.

Для устранения этого недостатка были выполнены дополнительные расчеты. Их результаты представлены в табл. 2, в которой для того же трала 69/318 значительно был расширен как диапазон значений угла р, так и количество их вариантов.

Таблица 2

Расчет геометрической вероятности для диапазона р = 10°-85°

и

Вариант Парамет] эы

в, град tg в АЯ tg в, м Sa, м2 So, м2 Ss, м2 PC

1 10 0,176 4,400 110,000 2 284,800 2 174,800 0,088

2 15 0,267 6,675 166,875 2 380,350 2 213,475 0,089

3 20 0,363 9,075 226,875 2 481,150 2 254,275 0,091

4 25 0,466 11,650 291,250 2 589,300 2 298,050 0,093

5 30 0,577 14,425 360,625 2 705,850 2 345,225 0,095

6 35 0,700 17,500 437,500 2 835,000 2 397,500 0,097

7 40 0,839 20,975 524,375 2 980,950 2 456,575 0,099

8 45 1,000 25,000 625,000 3 150,000 2 525,000 0,102

9 50 1,192 29,800 745,000 3 351,600 2 606,600 0,105

10 55 1,428 35,700 892,500 3 599,400 2 706,900 0,109

11 60 1,732 43,300 1 082,500 3 918,600 2 836,100 0,114

12 65 2,144 53,600 1 340,000 4 351,200 3 011,200 0,122

13 70 2,747 68,675 1 716,875 4 984,350 3 267,475 0,138

14 75 3,732 93,300 2 332,500 6 018,600 3 270,000 0,143

15 80 5,671 141,775 3 544,375 8 054,550 3 950,000 0,167

16 85 11,430 285,750 7 143,750 14 101,500 6 075,000 0,260

* В расчетах величина Sg = 590 ■ 40 = 23 600 м2.

Конечной целью этих расчетов является определение средних значений геометрической вероятности Рср и угла Рср. Поскольку все рассматриваемые случаи варьирования угла в отвечают требованиям независимости и несовместности [1], то для расчетов Рср естественно воспользоваться так называемым «средневзвешенным» из всех значений Рг, представленных в табл. 2. Каждое значение должно учитываться с соответствующим «весом», которым при использовании понятия геометрической вероятности является величина площади благоприятствующая удачному исходу встречи трала и рыбы для каждого значения угла рг.

Отсюда средневзвешенное значение геометрической вероятности целесообразно рассчитывать по формуле

Р,-5, + Р2 • 52 + Р3 • 53 + ... + Р • 5 У" Рг • 5Я

Р = 1 г! 2 г2 3 г3_п г" = ^ ,=1 I ¡г (10)

ср + 52 + 5 3 + ... + 5 У" 5 '

г1 г2 г3 гп ¿-4=,5 г-

После подстановки в формулу (10) соответствующих значений Рг и из табл. 2 получим

р„ = «07. = о,14. ср 48443

Этой величине соответствует среднее значение угла заглубления вср = 72°, которое было определено дополнительными расчетами по формуле

У" 1еВ. • Р

= = 3,15,

ЬУ У" р

¿-¡г=1 г

в = 72,5°.

Для проверки достоверности этого значения вср была сделана сравнительная оценка фактического значения вертикального раскрытия Нф и расчетного значения вертикального раскрытия Нр трала 69/318, имеющего по данным табл. 1 из [5] при скорости траления Утр = 2,2 м/с Н = 42 м, а на скорости Утр = 2,67 м/с - Н = 36 м. В результате расчетов по формуле (4) имеем:

0,4 • 0,31(540-77)

Н , = ---—Ь-L+ 15 = 41 м;

2,2

0,4 • 0,31(540-77)

Н2 = ---—Ь-L+ 15 = 36 м.

2,67

'р1

р2

Расчеты показали достаточно хорошую сходимость сравниваемых величин, что, в свою очередь, свидетельствует о плодотворности используемого подхода на основе понятия геометрической вероятности.

Аналогичные расчеты были сделаны для крупногабаритного трала 120/980 той же фирмы, который имеет вертикальное раскрытие Н = 100 м при скорости траления 2,82 м/с [5]. Для этого трала расчетная величина Нр = 93 м, т. е. расхождение не превышает 8 % при угле рср = 72° и средневзвешенной геометрической вероятности удачного захвата скопления Рср = 0,15.

Вместе с тем сравнение на сходимость данных по среднему углу заглубления, проведенное путем сопоставления значений вертикального раскрытия Нр и Нф может дать лишь приблизительное представление о сходимости значений угла РФ, т. к. на результат накладываются возможные погрешности других параметров (4). Для получения фактических данных угла вср необходимо проведение непосредственных наблюдений во всем диапазоне промысловых условий за поведением стай ставриды, реагирующих на приближающийся траулер, с последующей обработкой соответствующей информации методами математической статистики.

Но даже при отсутствии возможности реализовать такие исследования, в любом случае будет полезна информация, полученная по разовым наблюдениям. В частности, проф. В. К. Ко-ротков [6] отмечает, что при прохождении судна РТМС с тралом с раскрытием 80-100 м и скоростью 2,7-2,8 м/с скопление, находясь на дистанции 250-300 м, начинает заглубляться в направлении устья трала по некоторым траекториям (рис. 6).

На рис. 6 в соответствующем масштабе по данным гидроакустических приборов зафиксированы изменения горизонта нахождения стаи ставриды ЮВТО. По траектории движения стай нетрудно измерить в ср. В рассматриваемом нами слое обитания ставриды 80-150 м угол в равен 68-70°, что соответствует данным, полученным ранее на основе использования метода геометрической вероятности.

40 80 120 160 200

240 280 Дм

Рис. 6. Изменение горизонта нахождения стаи ставриды при прохождении судна РТМ-С

с тралом при скорости 2,7-2,8 м/с

600 400 200 0 200 400

К сказанному следует добавить, что величины рср = 71°-72° для двух тралов - малогабаритного 69/318 и крупногабаритного 120/980 - являются, как и все прочие случайные значения Рг, также случайными величинами, поэтому для оценки возможного рассеивания угла рср необходимо определить дисперсию, которую рассчитывают [9] по формуле

_2

°2 = ^ р р

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

где Р = I" P - сумма весов (частных вероятностей); оср - среднеквадратичная ошибка, которую рассчитывают по формуле

°ср:

1

I Р (в - вср )

п -1

2

где п - число наблюдений.

В результате расчетов после подстановки данных по 128 значениям вариации рг в диапазоне 0° < Р < 90° были получены величины оср = 9° и ор = 3°. Отсюда имеем рср - 71,5° ± 3,0°.

Выводы

В целом исследования подтвердили возможность и целесообразность использования понятия геометрической вероятности для изучения процесса взаимодействия скопления ставриды и трала с расчётами средневзвешенного значения угла рср на основе методологии решения задачи о встрече. Это позволяет с большей уверенностью продолжить исследования по предлагаемой методике для получения средневзвешенных величин: дальности реакции скорости заглубления рыбы Ур, а также заглубления АН, которые необходимы для дальнейшего совершенствования методов расчетов технических параметров канатных разноглубинных тралов.

СПИСОК ЛИТЕРА ТУРЫ

1. Гнеденко Б. В. Курс теории вероятностей. М.: Едиториал УРСС, 2005. 448 с.

2. Лукашов В. Н. Коэффициент уловистости рыболовной системы как вероятностная характеристика // Тр. КТИРПиХ. 1977. Вып. 62: Промышленное рыболовство. С. 3-12.

3. Дверник А. В., Волосникова Е. А. Зависимость вертикального раскрытия разноглубинного трала от характеристик скопления пелагических рыб и скорости траления с учетом погрешности измерения глубины хода трала // Вестн. Астрахан. гос. техн. ун-та. Сер.: Рыбное хозяйство. 2015. № 3. С. 67-77.

4. Дверник А. В., Недоступ А. А., Янчук А. Н. Особенности расчета вертикального раскрытия с учетом характера распределения пелагических рыб и тактики наведения разноглубинных тралов на косяк // Рыбное хозяйство. 2016. № 4. С. 99-102.

5. Дверник А. В., Шеховцев Л. Н. Устройство орудий рыболовства. М.: Колос, 2007. 272 с.

6. Коротков В. К. Реакция рыб на трал, технология их лова. Калининград: Страж Балтики, 1998. 397 с.

7. Кадильников Ю. В. Вероятностно-статистическая теория рыболовных систем и технической доступности для них водных биологических ресурсов. Калининград: АтлантНИРО, 2001. 271 с.

8. Раков А. И. Особенности проектирования промысловых судов. Л.: Судостроение, 1966. 142 с.

9. Щиголев Б. М. Математическая обработка наблюдений. М.: Гос. изд-во физ-мат. лит., 1962. 344 с.

Статья поступила в редакцию 27.03.2017

ИНФОРМАЦИЯ ОБ АВТОРАХ

Црерник Александр Васильевич - Россия, 236022, Калининград; Калининградский государственный технический университет; д-р техн. наук; профессор кафедры промышленного рыболовства; [email protected].

Янчук Анна Николаевна - Россия, 236022, Калининград; Калининградский государственный технический университет; аспирант кафедры промышленного рыболовства; [email protected].

A. V. Dvernik, A. N. Yanchuk

STUDY OF THE POSSIBILITY OF USING THE CONCEPT OF GEOMETRIC PROBABILITY TO ESTIMATE THE PROBABILITY OF CAPTURE OF PELAGIC FISH AGGREGATIONS BY MIDWATER ROPE TRAWL

Abstract. The article discusses the possibility of using one of the methods of probability theory in the classical problem about the meeting in relation to the issue of full coverage of Jack mackerel aggregations in the Southeast Pacific by the rope part of the midwater trawl. Calculations of the values of the geometric probability of capture were carried out with trawls 69/318 and 120/980 of "Fishering service", LLC. The article proposes a kinematic model of interaction between fish and the system 'vessel + trawl', provided that the fish directs to the trawl mouth under the ground line. The results obtained confirm the fruitfulness of using the concept of geometric probability to determine the probability of capture and the average value of the angle of the fish shoal's routing. There were carried out relevant calculations of errors of such measurements. It has been found reasonable to continue research based on the proposed method for obtaining average weighed values, which are necessary for further improvement of the methods of calculation of technical parameters of the midwater rope trawls.

Key words: midwater trawl, vertical opening, probability theory, problem about the meeting, kinematic model, interaction between the system 'vessel + trawl' and fish, angle of fish aggregation routing.

REFERENCES

1. Gnedenko B. V. Kurs teorii veroiatnostei [The training course on the probability theory]. Moscow, Editorial URSS, 2005. 448 p.

2. Lukashov V. N. Koeffitsient ulovistosti rybolovnoi sistemy kak veroiatnostnaia kharakteristika [The fishing system catchability coefficient as probability characteristics]. Trudy Kaliningradskogo tekhnicheskogo insti-tuta rybnoipromyshlennosti i khoziaistva, 1977, iss. 62: Promyshlennoe rybolovstvo. P. 3-12.

3. Dvernik A. V., Volosnikova E. A. Zavisimost' vertikal'nogo raskrytiia raznoglubinnogo trala ot kharakter-istik skopleniia pelagicheskikh ryb i skorosti traleniia s uchetom pogreshnosti izmereniia glubiny khoda trala [Dependency of the vertical opening of a midwater trawl on aggregation of pelagic fish and trawling speed subject to the depth measurement error]. Vestnik Astrakhanskogo gosudarstvennogo tekhnicheskogo universiteta. Seriia: Rybnoe khoziaistvo, 2015, no. 3, pp. 67-77.

4. Dvernik A. V., Nedostup A. A., Ianchuk A. N. Osobennosti rascheta vertikal'nogo raskrytiia s uchetom kharaktera raspredeleniia pelagicheskikh ryb i taktiki navedeniia raznoglubinnykh tralov na kosiak [Specific features of the trawl vertical opening subject to pelagic fish distribution and methods of a fish shoal coverage by the midwater trawl]. Rybnoe khoziaistvo, 2016, no. 4, pp. 99-102.

5. Dvernik A. V., Shekhovtsev L. N. Ustroistvo orudii rybolovstva [Fishing gear arrangement]. Moscow, Kolos Publ., 2007. 272 p.

6. Korotkov V. K. Reaktsiia ryb na tral, tekhnologiia ikh lova [The fish response to a trawl; fishing technologies]. Kaliningrad, Strazh Baltiki Publ., 1998. 397 p.

7. Kadil'nikov Iu. V. Veroiatnostno-statisticheskaia teoriia rybolovnykh sistem i tekhnicheskoi dostupnosti dlia nikh vodnykh biologicheskikh resursov [Application of probability-statistical theory for fishing systems and technological availability of water bioresources]. Kaliningrad, AtlantNIRO, 2001. 271 p.

8. Rakov A. I. Osobennosti proektirovaniia promyslovykh sudov [Specific features of a fishing vessel design]. Leningrad, Sudostroenie Publ., 1966. 142 p.

9. Shchigolev B. M. Matematicheskaia obrabotka nabliudenii [Mathematical processing of observations]. Moscow, Gosudarstvennoe izd-vo fiziko-matematicheskoi literatury, 1962. 344 p.

Dvernik Aleksandr Vasilievich - Russia, 236022, Kaliningrad; Kaliningrad State Technical University; Doctor of Technical Sciences; Professor of the Department of Industrial Fishing; nedostup @klgtu.ru.

Yanchuk Anna Nikolaevna - Russia, 236022, Kaliningrad; Kaliningrad State Technical University; Postgraduate Student of the Department of Industrial Fishing; [email protected].

The article submitted to the editors 27.03.2017

INFORMATION ABOUT THE AUTHORS

i Надоели баннеры? Вы всегда можете отключить рекламу.