Научная статья на тему 'Исследование влияния режимов работы Nd:YAG лазера на напряженно-деформированные состояния в обрабатываемой полупроводниковой структуре'

Исследование влияния режимов работы Nd:YAG лазера на напряженно-деформированные состояния в обрабатываемой полупроводниковой структуре Текст научной статьи по специальности «Физика»

CC BY
72
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
ЛАЗЕРНЫЕ ТЕХНОЛОГИИ / ТЕРМОНАПРЯЖЕНИЕ / ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ / LASER TECHNOLOGIES / THERMODEFORMED / NUMERICAL SIMULATION

Аннотация научной статьи по физике, автор научной работы — Куликова Ирина Владимировна, Малюков Сергей Павлович, Калашников Глеб Валерьевич, Приступчик Никита Константинович, Бростилов С. А.

В статье представлены результаты исследования влияния режимов работы Nd:YAG лазера, таких как скорость сканирования и мощность лазерного луча на максимальную темпераутру и термодеформированное состояние в структуре сенсибилизированного красителем солнечного элемента. Получены зависимости компонент тензора напряжений при различных режимах работы при помощи численного эксперимента. Результаты исследований показали, что основной вклад в напряженно-деформированное состояние вносит градиент температуры, а не различие коэффициентов линейного расширения тела, которые в данной структуре отличаются незначительно.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Куликова Ирина Владимировна, Малюков Сергей Павлович, Калашников Глеб Валерьевич, Приступчик Никита Константинович, Бростилов С. А.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Research of Nd:YAG laser processing on intense the deformed conditions in semiconductor structure

Results of research of influence of processing operations of Nd:YAG of the laser are presented in article, such as the speed of scanning and power of a laser beam on maximum temperature and the thermodeformed status in structure dye-sensitized solar cell. Dependences a component of a tensor of tension are received at various processing operations by means of numerical experiment. Results of researches showed that in intense the deformed status is depend on temperature gradient more, then on coefficients of linear expansion of structure which in this structure differ slightly.

Текст научной работы на тему «Исследование влияния режимов работы Nd:YAG лазера на напряженно-деформированные состояния в обрабатываемой полупроводниковой структуре»

Исследование влияния режимов работы ^:УАС лазера на напряженно-деформированные состояния в обрабатываемой полупроводниковой структуре

И.В. Куликова, С.П. Малюков, Г.В. Калашников, Н.К. Приступчик

Введение

В настоящее время практически во всех областях производства микро-и наноэлектроники широко используются лазерные технологические операции. Наиболее важными из лазерных технологических процессов обработки являются «лазерная абляция», «лазерная рекристаллизация» и «лазерный отжиг», которые позволяют получить высококачественные полупроводниковые структуры. Это достигается за счет локальности, импульсного характера и селективности лазерного излучения [1-3], что является важным шагом на пути к созданию тонкопленочных солнечных элементов [4] и перфорированных мембран для элементов микросистемной техники [5, 6]. Однако локализация теплового воздействия приводит к значительным градиентам температуры и как следствие к появлению термонапряжений в области обработки [3, 7, 8]. Исследование данного вопроса особенно важно для многослойных полупроводниковых структур, в который пленки имеют различные термомеханические параметры, что в свою очередь может привести к появлению дефектов.

Экспериментальное исследование напряженно-деформированного состояния в процессе лазерной обработки весьма затруднительно. Поэтому применяются моделирование лазерных технологических операций, которые позволяют значительно сократить не только время и стоимость исследований, но и рассчитать оптимальные параметры данной технологической операции [1, 2, 7-12].

Разработка модели напряженно-деформированного состояния

В работе было проведено исследование влияния режимов обработки Nd:YAG лазера с длинной волны 1064 нм, таких как плотность мощности лазерного луча и скорости сканирования, на распределение температуры в сложных многослойных полупроводниковых структурах

сенсибилизированных красителем солнечных элементов (СЭ) при помощи численного эксперимента.

Задача была разделена на две части:

- решение нестационарного уравнения теплопроводности;

- решение задачи напряженно-деформированного состояния.

Для первой части задачи была разработана программа численного моделирования распределения температуры в исследуемой структуре на основе метода конечных разностей. В основу модели было положено нестационарное уравнение теплопроводности с граничными условиями третьего рода, которые позволили учесть конвективную и излучательную диссипацию тепловой энергии с поверхности структуры в процессе лазерной обработки. Источником тепла являлось лазерное излучение. В модели использовалось так же уравнение Бугера-Ламберта-Бера, которое позволило учитывать оптическую прозрачность некоторых слоев в структуре [1, 7, 12].

Для второй части задачи разработана программа численного моделирования распределения тензора напряжений, возникающих под действием, рассчитанного на первом этапе, температурного поля. В основу модели положены уравнения равновесия, уравнения совместимости и обобщенный закон Гука с учетом теплового расширения тела. Задача решалась в напряжениях. Граничные условия для данной системы были получены из уравнений равновесия с учетом отсутствия механического воздействия на поверхности обрабатываемой структуры [2, 7, 8].

Результаты моделирования

Разработанное программное обеспечение позволило провести исследования влияния скорости сканирования и мощности лазерного

излучения на максимальную температуру и максимальные напряжения вызываемые градиентом температуры в структуре.

В качестве теста была выбрана структура сенсибилизированного солнечного элемента, состоящего из стекла, слоя 8пО2:Б и ТЮ2 при обработке Кё:УЛО лазером с длинной волны 1064 нм. Скорость сканирования лазерного луча изменялась в пределах от 5 мм/с до 100 мм/с а мощность от 25 Вт до 80 Вт. Параметры структуры солнечного элемента приведены в таблице 1.

Таблица № 1

Оптические и тепловые параметры слоев солнечного элемента

Толщина к,Вт м • К кг р, -3 м с, Дж кг • К 1 а, — м Е, Па V 1 аТ, — Т К

Стекло 1 мм 1 2.52е3 800 66 72е9 0.22 8.6е-6

8пО2:Б 0,8 мкм 3.2 6.95е3 353 5е5 401е9 0.29 7.8е-6

Т1О2 10 мкм 8.5 3.89е3 690 4е3 52е9 0.4 8.4е-6

На рисунке 1 представлена зависимость максимальной температуры в обрабатываемой структуре СЭ от различной скорости сканирования и плотности мощности лазерного луча.

Результаты моделирования показали, что максимальная температура в структуре линейно зависит от плотности мощности лазерного излучения, в то время как зависимость от скорости сканирования является нелинейной. Так же стоит заметить, что необходимую температуру при лазерной обработке можно получить двумя путями: увеличивая мощность лазера и уменьшая скорость сканирования (рисунок 1).

Однако уменьшение скорости сканирования приводит к растеканию тепла по структуре, что не во всех случаях допустимо, а увеличение мощности с одновременным увеличением скорости приводит к локализации теплового воздействия.

На рисунках 2 и 3 представлены зависимости минимальных и максимальных, соответственно сжатия и растяжения, значений компонент тензора напряжений при различных режимах обработки структуры. Скорости

сканирования и мощность лазера были подобраны так, чтобы максимальный перегрев структуры не превышал 400 оС, при этом скорости сканирования изменялись от 5 до 55 мм/с, а мощность лазерного луча от 15 до 80 Вт.

Рис. 1 - Зависимость максимальной температуры в структуре при различных

режимах сканирования лазерным лучом.

х 10

тах д Т = 400

га о.

с -6 с

Е

-10

-12

10

12

0

2

4

6

8

Рис. 2 - Зависимость сжимающих напряжения при различных режимах

лазерной обработки

4.5 4 3.5 3

га

^ 2.5 С X га

Е

х 2 а2

1.5 1

0.5 0

ху

10

12

о

хх

с»

уу

2

4

6

8

Рис. 3 - Зависимость растягивающих напряжения при различных режимах

лазерной обработки

Заключение

В работе представлены результаты численного эксперимента для сенсибилизированного красителем солнечного элемента, состоящего из стеклянной подложки с нанесенными на нее слоями 8п02:Б и ТЮ2, при различных скоростях сканирования поверхности и мощности лазерного луча.

Моделирование показало, что основной вклад в напряженно деформированное состояние вносит градиентов температур, а не различие коэффициентов линейного расширения слоев, которое в данной структуре было незначительно. Увеличение скорости сканирования подложки лазерным лучом от 5 мм/с до 55 мм/с привело к увеличению максимального напряжения от 400 МПа к 1000 МПа. Так же стоит заметить, что максимальные нормальные напряжения сжатия локализованы непосредственно в зоне воздействия лазерного луча, в то время как напряжения сдвига максимальны за его пределами. Моделирование так же показало (см. рисунок 2, 3), что нормальное к поверхности напряжение и

напряжение сдвига (ayy axy ) в 20 раз меньше напряжения тангенциального к поверхности подложки (axx ).

Результаты исследований, изложенные в данной статье, получены при финансовой поддержке Минобрнауки РФ в рамках реализации проекта «Создание высокотехнологичного производства для изготовления комплексных реконфигурируемых систем высокоточного позиционирования объектов на основе спутниковых систем навигации, локальных сетей лазерных и СВЧ маяков и МЭМС технологии» по постановлению правительства №218 от 09.04.2010 г. Исследования проводились в ФГАОУ ВПО ЮФУ

Литература

1. Малюков С.П., Куликова И.В., Калашников Г.В. Моделирование процесса лазерного отжига структуры «кремний-стекловидный диэлектрик» [Текст] // Известия ЮФУ. Технические науки. Тематический выпуск «Интеллектуальные САПР». - 2011. - № 7. - С. 182-188.

2. Рындин Е.А., Исаева А.С., Рыжук Р.В. Математическая модель механических напряжений, инициированных лазерным импульсом [Текст] // Фундаментальные исследования. - 2012. - №11. - С.609 - 614

3. W.-S. Kim, L. G. Hector, R. B. Hetnarski. Thermoelastie stresses in a bonded layer due to repetitively pulsed laser radiation. [Text] // Acta Mechanica 125, 107-128 (1997). Springer-Verlag.

4. Малюков С.П., Куликова И.В., А.В. Саенко, А.С. Рукавишникова. Теоретическое исследование влияния толщины и структуры электрода TiO2 на фотоэлектрические характеристики солнечного элемента. Известия ЮФУ. Технические науки. - 2012. - № 1. - с. 247.

5. Куликова И.В., Шпак А.А. Методика расчета эквивалентных механических параметров мембран сложной топологии для элементов микросистемной техники. «Инженерный вестник Дона», 2013, № 2. - Режим

доступа: http://ivdon.ru/ magazine/archive/n2y2013/1648 (доступ свободный) -Загл. с экрана. - Яз. Рус.

6. Лысенко И.Е. Модель равновесия подвижных элементов микромеханических зеркал с внутренними подвесами. [Текст] // «Инженерный вестник Дона», 2013, № 2 - Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2013/1604 (доступ свободный) -Загл. с экрана. - Яз. Рус.

7. Мажукин В.И., Hocoe B.B., U. Semmler. Исследование тепловых и термоупругих полей в полупроводниках при импульсной обработке. [Текст] // Матем. моделирование, 12:2 (2000), 75-83.

8. B. S. Yilbas & N. Ageeli (2006) Thermal stress development due to laser step input pulse heating. [Text] // Journal of Thermal Stresses, 29:8, 721-751 To link to this article: http://dx.doi.org/10.1080/01495730600705349

9. Баранова Д. А. Математическая модель деформирования подкрепленных оболочек вращения при учете различных свойств материала. [Текст] // «Инженерный вестник Дона», 2012, № 2 - Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2012/745 (доступ свободный) - Загл. с экрана. - Яз. Рус.

10. Рындин Е.А., Леньшин А.С. Методика численного моделирования спектрометрических газочувствительных сенсорных систем. [Текст] // «Инженерный вестник Дона», 2012, № 4, Ч. 2. - Режим доступа: http://www.ivdon.ru/magazine/archive/n4p2y2012/1360 (доступ свободный) -Загл. с экрана. - Яз. Рус.

11. Онишкова А.М. Численное решение задачи для плоской области со свободной границей. [Текст] // «Инженерный вестник Дона», 2012, № 4, ч. 1 - Режим доступа: http://www.ivdon.ru/magazine/archive/n4p1y2012/1205 (доступ свободный) - Загл. с экрана. - Яз. Рус.

12. Малюков С.П., Куликова И.В., Бростилов С.А. Моделирование теплового воздействия лазерного излучения на биологические ткани. [Текст] // Фундаментальные исследования. Часть 2. - 2012. -№ 11. - C. 425-429.

i Надоели баннеры? Вы всегда можете отключить рекламу.