Научная статья на тему 'Исследование теплофизических характеристик авокадо Юго-Восточной Азии'

Исследование теплофизических характеристик авокадо Юго-Восточной Азии Текст научной статьи по специальности «Физика»

CC BY
143
19
i Надоели баннеры? Вы всегда можете отключить рекламу.
Область наук
Ключевые слова
THERMO-PHYSICAL PROPERTIES / AVOCADO / SOUTHEAST ASIA / DIFFERENTIAL SCANNING CALORIMETRY / TEMPERATURE / ТЕПЛОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ / АВОКАДО / ЮГО-ВОСТОЧНАЯ АЗИЯ / ДИФФЕРЕНЦИАЛЬНЫЙ СКАНИРУЮЩИЙ КАЛОРИМЕТР / ТЕМПЕРАТУРА

Аннотация научной статьи по физике, автор научной работы — Ай Тун, Баранов Игорь Владимирович, Крылов Василий Александрович, Тамбулатова Екатерина Викторовна, Никитин Андрей Алексеевич

Проведено исследование теплофизических характеристик авокадо, в зависимости от температуры. Удельная теплоемкость пищевых продуктов играет важную роль при проектировании систем хранения и транспортировки. Известно большое количество методов, которые используются для определения ТФХ пищевых продуктов. Наиболее распространенным является метод ДСК. В работе применен метод ДСК (DSC 204 F1), с помощью которого определялась зависимость удельной теплоемкости авокадо в условиях замораживания и размораживания, в диапазоне температур от -25 до 25 ºC. Метод ДСК для определения удельной теплоемкости пищевых продуктов включал четыре этапа: задание температурной программы, коррекция, калибровка и измерение. В результате исследования показано, что удельная теплоемкость авокадо зависит от температуры. Полученные результаты могут быть непосредственно использованы при проектировании систем хранения и охлаждения пищевых продуктов в пищевой промышленности.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по физике , автор научной работы — Ай Тун, Баранов Игорь Владимирович, Крылов Василий Александрович, Тамбулатова Екатерина Викторовна, Никитин Андрей Алексеевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

THERMO-PHYSICAL PROPERTIES OF AVOCADO FROM SOUTHEAST ASIA

The article studies the effect of temperature on the thermo-physical properties (TPP) of avocado form Southeast Asia. The specific heat of food plays an important role in the design of storage and transport systems. A large number of methods are known that are used to determine the TPP of food products. The article concerns the most popular one - DSC 204 F1. Specific heat of avocado was determined by the DSC method under refrigerating conditions and in the temperature range of from -25 to 25 ºC. The DSC method for determining the specific heat capacity of food products included four stages: such as setting the temperature program, correction, calibration, and measurement. As a result, it was shown that the specific heat of the avocado depends on temperature. The results of the research are of immediate use in designing refrigerating and storage systems in food industry.

Текст научной работы на тему «Исследование теплофизических характеристик авокадо Юго-Восточной Азии»

УДК 536.1

Thermo-physical properties of avocado from Southeast Asia

AYE TUN1, D. Sc. I. V. BARANOV, V. A. KRYLOV, Ph. D. E. V. TAMBULATOVA,

Ph. D. A. A. NIKITIN

1 ayetunitmo@gmail.com ITMO University

The article studies the effect of temperature on the thermo-physical properties (TPP) of avocado form Southeast Asia. The specific heat offood plays an important role in the design of storage and transport systems. A large number of methods are known that are used to determine the TPP offood products. The article concerns the most popular one — DSC 204 F1. Specific heat of avocado was determined by the DSC method under refrigerating conditions and in the temperature range offrom -25 to 25 °C. The DSC method for determining the specific heat capacity offood products included four stages: such as setting the temperature program, correction, calibration, and measurement. As a result, it was shown that the specific heat of the avocado depends on temperature. The results of the research are of immediate use in designing refrigerating and storage systems in food industry.

Keywords: thermo-physical properties, avocado, Southeast Asia, differential scanning calorimetry, temperature. Article info:

Received 28/02/2020, accepted 28/04/2020 DOI: 10.17586/1606-4313-2020-19-2-60-64 Article in English For citation:

Tun Aye, Baranov I. V., Krylov V. A., Tambulatova E. V., Nikitin A. A. Thermo-physical properties of avocado form Southeast Asia. VestnikMezhdunarodnoi akademii kholoda. 2020. No 2. p. 60-64.

Исследование теплофизических характеристик авокадо юго-Восточной Азии

АЙ ТУН1, д-р техн. наук И. В. БАРАНОВ, В. A. КРЫЛОВ,

канд. техн. наук Е. В. ТАМБУЛАТОВА, канд. техн. наук А. А. НИКИТИН

'ayetunitmo@gmail.com

Университет ИТМО

Проведено исследование теплофизических характеристик авокадо, в зависимости от температуры. Удельная теплоемкость пищевых продуктов играет важную роль при проектировании систем хранения и транспортировки. Известно большое количество методов, которые используются для определения ТФХпищевых продуктов. Наиболее распространенным является метод ДСК. В работе применен метод ДСК (DSC 204 F1), с помощью которого определялась зависимость удельной теплоемкости авокадо в условиях замораживания и размораживания, в диапазоне температур от -25 до 25 °С. Метод ДСК для определения удельной теплоемкости пищевых продуктов включал четыре этапа: задание температурной программы, коррекция, калибровка и измерение. В результате исследования показано, что удельная теплоемкость авокадо зависит от температуры. Полученные результаты могут быть непосредственно использованы при проектировании систем хранения и охлаждения пищевых продуктов в пищевой промышленности.

Ключевые слова: теплофизические характеристики, авокадо, Юго-Восточная Азия, дифференциальный сканирующий калориметр, температура.

Информация о статье:

Поступила в редакцию 28.02.2020, принята к печати 28.04.2020 DOI: 10.17586/1606-4313-2020-19-2-60-64 Язык статьи — английский Для цитирования:

Tun Aye, Baranov I. V., Krylov V. A., Tambulatova E. V., Nikitin A. A. Thermo-physical properties of avocado form Southeast Asia. // Вестник Международной академии холода. 2020. № 2. С. 60-64.

Introduction

Avocado is considered to be a unique tropical fruit due to the content of fat-soluble vitamins, which are not so abundant in other fruits, as well as due to the high content of protein, potassium, and unsaturated fatty acids [1]. Avocado has high nutritional value and is of great use for human body growth and development [2, 3]. In Myanmar avocado is considered to be the main fruit being harvested from August till December. It is widely used not only for food, but also in medicine and cosmetology [1, 2, 5].

Export of tropical fruits is limited due to such factors as product shelf life and some difficulties in preserving the quality of the product in tropic climate and with poorly developed after-harvesting technologies in Southeast Asia [4]. A newer technology of after-harvesting avocado handling should then be implemented to enlarge export and increasing storage time for fresh fruits. However, due to its season character the storage systems of out-of-season availability are necessary, allowing to decrease production losses. Most fruits and vegetables stay «live» after harvesting; their biological processes are going on. The processes can be controlled by low temperature storage to a certain extent. For tropic fruits the storage time is greatly dependent on their properties, environmental conditions, after-harvesting handling, and microbial contamination.

Therefore, one should pay much attention to the thermo-physical properties (TPP) of food, namely heat conductivity, thermal conductivity, and specific heat capacity [6, 7]. Specific heat capacity of food is of great importance in designing storage systems and also is one of the main technological parameters of food, used when dealing with the issues of heat equilibrium and heat exchange. TPP data are necessary in calculating heat-and-mass-transfer equipment and developing storage technologies. The data on specific heat capacity of food can be taken form reference literature, as well as by experimental and analytic methods. Thermo-physical properties of food can be measured by a number of methods such as the method of mixtures, the method of steady regime, and differential scanning calorimetry [7, 8, 9].

In this regard the aim of the research is to determine the heat capacity of avocado by differential scanning calorimeter (DSC). DSC method is based on the measurement of the heat flow difference between sample and reference [10, 11]. Differential scanning calorimeter representing heat flow as a function of temperature is an adequate tool for measuring temperature-dependent specific heat and phase transfers [9]. The method is widely used in the research in various branches of science both in Russia and all over the world to determine TPP of different materials. The advantage of DSC method is that only a small amount of sample under investigation is necessary, which minimizes thermal lag in a system [9, 12,]. A number of researches used differential scanning calorimetry to determine specific heat capacity of such kinds of food as borage seeds (Yang et al, 2002) [13], papaya (Rosario et al, 2010) [14], edible-wild mushrooms (Soraya et al, 2017) [15], and refined sunflower oil (Fedorov et al, 2019) [16]. DSC is the most accurate and quick method of determining specific heat capacity among the available techniques. The measurement error is within 3% [17, 18].

Taking everything into consideration, the aim of the paper is to investigate the dependency of specific heat capacity

of avocado (of Southeast Asia origin) on the temperature by differential scanning calorimetry with the use of DSC 204 F1 (Phoenix by NETZSCH).

Methods

Currently a great number of methods for measuring specific heat capacity of the materials are available. The main methods are DSC method and the method of steady regime, DSC being the most frequent used in thermal analysis. Its main advantages are quick analysis, high relevance for the tasks of quality research and control, and the simplicity of measuring device, which is sure to contribute to its universal character. The values being measured are absolute temperature of the sample and temperature difference between sample and reference proportional to the difference of heat flow between them [11].

The measurement was carried out by DSC method according to the following equation [16, 19]:

DSCsample DSCbase DSCref - DSCbase

DSCsample DSCbase _

ref

DSCref - DSCbase

P,ref

(1)

(2)

sample

The operating temperature range of DSC 204 F1 is from -180 to 700 °C, its heating/ cooling rate is from 0.001 to 200 K/min, sensitivity: T-sensor — 3.2 mkV/mW and ^-sensor — 70 mkV/mW. The instrument response time is: for T-sensor — < 0.6 sec and for ^-sensor — < 3 sec [16, 20].

The experiment was carried out according the following procedure described by DSC method for determining specific heat capacity. To determine specific heat capacity all three measurements should be made with the same crucible and under the same conditions [21]. There were for stages in determining specific heat capacity of avocado samples:

— Setting temperature program;

— Correcting;

— Calibrating;

— Measuring.

In setting temperature program the measurement of specific heat capacity were made in the temperature range of from -25 to 25 °C at heating/cooling rate of 2 K/min and with gaseous nitrogen with flow rate of 20 ml/min and 50 ml/min. In the method the initial thermal scanning was made with an empty crucible to obtain a base line (correcting). Than a sapphire of 50.1 mg was used as a calibration reference and thermal scanning was carried out again. During the last measurements the sample was weighted and placed back into the crucible in calorimeter and the same scanning was repeated.

During the experiment avocado samples (Myanmar origin) were placed in a specialized aluminum crucible (Netzsch NGB810419) with aluminum lid (Netzsch NGB810420). The weight of samples were measured by AND HR-200 analytical weighing apparatus of the first accuracy class. Crucible mass was 38 mg, lid mass — 25 mg. From 26 to 31 mg of the samples were used in the experiments. Sample weight was measured with an accuracy of ±0.1 mg. Every experiment was repeated three times.

Results and Discussion

The results of investigation of avocado specific heat capacity in the temperature range of from -24 to 18 °C are

P

с, *Дж/(кг-К)

3--_ !

1

flr \ 2

25 -20 -1 5 -1 0 -5 0 5 1 0 15 f,°C

Рис. 1. Температурная зависимость удельной теплоемкости

авокадо для каждого образца Fig. 1. Temperature dependence of avocado specific heat capacity for each sample

shown in Fig. 1. As it can be seen from the figure, in the temperature dependencies for all avocado samples under conditions of freezing and defrosting specific heat capacity increased with the temperature increase of from -24 to -15 °C, increased sharply with the temperature increase of from -15 to -13 °C, then decreased sharply with the temperature increase of from -13 to -8 °C, and slightly decreased with the temperature increase of from -10 to -8 °C, respectively.

Temperature dependency for the arithmetic mean of specific heat capacity for all avocado samples is shown is Fig. 2. The data from [22, 23] show that in the range of в positive temperature avocado specific heat capacity is 3.67 kJ/(kgK) and 3.02 kJ/ (kgK). According to the experimental data average avocado specific heat capacity at the temperature of 5 °C is 3.147 kJ/ (kgK).

There were several scientific reports on experiments concerning determining specific heat capacity of food and crop materials. However, the data depend on the origin (variety), composition, processing conditions, and the structure

Литература

1. Nwaokobia K., Oghomwen O. H. and Omoregie P. O. Some Engineering Properties and Natural Durability of Avocado (Persea americana Mill.) Pulp and Seed. // World Scientific News. 2018 vol. 97. 125-138 p.

2. Patricia Fonseca Duarte, Marcia Alves Chaves, Caroline Dellinghausen Borges Carla Rosane Barboza Mendonga. Avocado: characteristics, health benefts and uses. // Ciencia Rural, Santa Maria, 2016. Vol. 46, n. 4, 747-754 p.

3. Leonia Ndesiamoo Henry, Upendo Yonnah Mtaita and Catherine Clemence Kimaro. Nutritional efficacy of avocado seeds.//Global Journal of Food Science and Technology.. Vol. 3 (5), 192-196 p.

4. Dewi Kusumaningrum, Seung-Hyun Lee, Wang-Hee Lee, Changyeun Mo, Byoung-Kwan Cho. A Review of Technologies to Prolong the Shelf Life of Fresh Tropical Fruits in Southeast

с, кДж/(кг-К)

■25 -20 -15 -1 0 -5 0 5 10 1 5 I ,°C

Рис. 2. Температурная зависимость средней арифметической

удельной теплоемкости авокадо Fig. 2. Temperature dependence of the arithmetic mean for specific heat capacity of avocado

of food. According to [9, 24, 25] specific heat capacity of food depend on its composition, structure, and temperature. Avocado specific heat capacity was discovered to depend on temperature. Specific heat capacity of unfrozen product is slightly decreased with the temperature increase of 0 to 20 °C [22]. As a result is has been demonstrated that avocado specific heat capacity decreased with the temperature increase of from 0 to 18 °C.

Conclusion

In the article the dependence of specific heat capacity of avocado from Southeast Asia on the temperature have been investigated by DSC method (DSC 204 F1). The results have demonstrated that the thermo-physical characteristics of avocado depend on the temperature, the origin, and the composition of raw materials and are of immediate use in designing food storage and refrigerating systems in food industry, engineering calculations for engineering constructions and in other fields of application.

References

1. Nwaokobia K., Oghomwen O. H. and Omoregie P. O. Some Engineering Properties and Natural Durability of Avocado (Persea americana Mill.) Pulp and Seed. World Scientific News. 2018 vol. 97. 125-138 p.

2. Patricia Fonseca Duarte, Marcia Alves Chaves, Caroline Dellinghausen Borges Carla Rosane Barboza Mendonja. Avocado: characteristics, health benefts and uses. Ciencia Rural, Santa Maria, 2016. Vol. 46, n. 4, 747-754 p.

3. Leonia Ndesiamoo Henry, Upendo Yonnah Mtaita and Catherine Clemence Kimaro. Nutritional efficacy of avocado seeds. Global Journal of Food Science and Technology. 2015. Vol. 3 (5), 192196 p.

4. Dewi Kusumaningrum, Seung-Hyun Lee, Wang-Hee Lee, Changyeun Mo, Byoung-Kwan Cho. A Review of Technologies to Prolong the Shelf Life of Fresh Tropical Fruits in Southeast

Asia. // Journal of Biosystems Engineering, 2015. 40 (4). 345358 p.

5. Баранов И. В., Ай Т. Расчетное определение теплофизиче-ских свойств авокадо при замораживании. // Проблемы развития АПК региона. 2018. № 4 (36). С. 170-174.

6. Филиппов В. И., Степанов А. В. Рациональная точность определения теплофизических характеристик пищевых продуктов в расчетах технологических параметров холодильной обработки. // Научный журнал НИУ ИТМО. Серия «Процессы и аппараты пищевых производств». 2015. № 2. 126-132 с.

7. Баранов И. В. Теория, методы и средства комплексного исследования теплофизических свойств в режиме разогрева — охлаждения: Дис.. .д.т. н. СПб.: СПбГУНиПТ, 2007.

8. Тамбулатова Е. В. Комплексное исследование тепловлаж-ностных свойств влагосодержащих материалов при температурах -60.80 °C: Дис.канд. техн. наук. СПб.: СПбГУ-НиПТ, 2010.

9. Serpil Sahin and Servet Gulum Sumnu. Physical Properties of Foods, New York, 2006. pp. 118-166.

10. Харитонова Е. П. Основы дифференциальной сканирующей калориметрии. М.: МГУ им. М. В. Ломоносова, 2010. 17 с.

11. Калошкина С. Д. Методы и средства измерений, испытаний и контроля, Современные методы исследований функциональных материалов. М.: МИСиС, 2011. 151 с.

12. Емелина А. Л. Дифференциальная сканирующая калориметрия. М.: МГУ им. М. В. Ломоносова. 2009. 42 с.

13. Yang W., Sokhansanj S., Tang J. And Winter P. Determination of Thermal Conductivity. Specific Heat and Thermal Diffusivity of Borage Seeds. // Biosystems Engineering. 2002. 82 (2), 169-176 p.

14. Rosario Espinoza-Guevara, Jose Caro-Corrales, Cesar Ordorica-Falomir, Jose Zazueta-Morales, Misael Vega-Garcia and Kevin Cronin. Thermophysical Properties of Pulp and Rind of Papaya Cv. Maradol. // International Journal of Food Properties. 2010. 13:1, 65-74.

15. Soraya Saenmuang, Arpassorn Sirijariyawat, and Nattapol Aunsri. (). The Effect of Moisture Content, Temperature and Variety on Specific Heat of Edible-Wild Mushrooms: Model Construction and Analysis. // Engineering Letters. 2017. vol. 25, no.4, pp. 446-454.

16. Федоров А. В., Баранов И. В., Тамбулатова Е. В., Волков С. М., Прохорова Л. Т., Крылов В. А. Исследование температурных зависимостей удельной теплоемкости рафинированных подсолнечных масел от их состава методом дифференциальной сканирующей калориметрии. // Вестник Международной академии холода. 2019. № 1. 52-63 с.

17. Каллаев С. Н., Митаров С. Н., Омаров З. М., Гаджиев Г. Г., Резниченко Л. А. Теплоемкость мультиферроиков на основе BiFeO3. // Журнал экспериментальной и теоретической физики. 2014. т. 145. № 2. с. 320-324.

18. Смирнова Н. Н., Маркин А. В. Прецизионные калориметрические измерения: аппаратура, методики. 2006. 76 с.

19. Дифференциальый сканирующий калориметр теплового потока DSC 204 F1 Phoenix®. Руководство по эксплуатации. 2006. 71 с.

20. Дифференциальная сканирующая калориметрия: Метод, техника, применение. DSC 204 Phoenix F1. Netzsch-Gerätebau GmbH, Германия. 2012. 24 с.

21. Höhne G. W. H., Hemminger G. F. and Flammenheim H. J. Differential Scanning Calorimetry. Springer, 2003. 298 p.

Asia. Journal of Biosystems Engineering, 2015. 40 (4). 345358 p.

5. Baranov I. V., Aye T. Predicting of the thermo-physical properties of avocados during freezing, Problems of development of the agro-industrial complex of the region. 2018. No 4 (36). p. 170-174. (in Russian)

6. Filippov V. I., Stepanov A. V. Rational determination accuracy of the foodstuffs thermal and physical characteristics in the calculation of cold treatment, Scientific journal NRU ITMO. Series «Processes and Food Production Equipment». 2015. No. 2, 126-132 p. (in Russian)

7. Baranov I. V. Theory, methods and means of a comprehensive study of thermophysical properties in the heating-cooling mode: Dis.doct. tech. sciences. SPb: SPbGUNiPT, 2007. (in Russian)

8. Tambulatova E. V. A comprehensive study of the moisture and moisture properties of moisture-containing materials at temperatures of -60. 80 °C: Dis. cand. tech. sciences. SPb: SPbGUNiPT, 2010. (in Russian)

9. Serpil Sahin and Servet Gulum Sumnu. Physical Properties of Foods, New York, 2006. pp. 118-166.

10. Kharitonova E. P. Basics of differential scanning calorimetry, Department of Physics of Polymers and Crystals. Moscow. 2010. 17 p. (in Russian)

11. Katoshkina S. D. Methods and means of measurement, testing and control, Modern methods for the study of functional materials. Moscow, 2011. 151 p. (in Russian)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

12. Emelina A. L. Differential Scanning Calorimetry. Moscow, 2009. 42 p. (in Russian)

13. Yang W., Sokhansanj S., Tang J. And Winter P. Determination of Thermal Conductivity. Specific Heat and Thermal Diffusivity of Borage Seeds. Biosystems Engineering. 2002. 82 (2). 169176 p.

14. Rosario Espinoza-Guevara, Jose Caro-Corrales, Cesar Ordorica-Falomir, Jose Zazueta-Morales, Misael Vega-Garcia and Kevin Cronin. Thermophysical Properties of Pulp and Rind of Papaya Cv. Maradol. International Journal of Food Properties. 2010. 13:1, 65-74.

15. Soraya Saenmuang, Arpassorn Sirijariyawat, and Nattapol Aunsri. The Effect of Moisture Content, Temperature and Variety on Specific Heat of Edible-Wild Mushrooms: Model Construction and Analysis. Engineering Letters. 2017. vol. 25, no.4, pp. 446-454.

16. Fedorov A. V., Baranov I. V., Tambulatova E. V., Volkov S. M., Prokhorova L. T., Krylov V. A., Investigating the temperature dependence of refned sunflower oil specifc heat capacity on its composition by the method of differential scanning calorimetry, Journal of IAR № 1, 2019, 52-63 с. (in Russian)

17. Kallaev S. N, Mitarov S. N., Omarov Z. M., Gadzhiev G. G, Reznichenko L. A. Heat capacity of multiferroics based on BiFeO3. Journal of experimental and theoretical physics. 2014. vol. 145, No. 2, 320-324 p. (in Russian)

18. Smirnova N. N., Markin A. V., Precision calorimetric measurements: apparatus, techniques. 2006. (in Russian)

19. Differential scanning calorimeter of a heat flux DSC 204 F1 Phoenix®. Manual. 2006. 71 p. (in Russian)

20. Differential scanning calorimetry: Method, technique, application. DSC 204 Phoenix F1, Netzsch-Gerätebau GmbH, Germany. 2012. 24 p.

21. Höhne G. W. H., Hemminger G. F. and Flammenheim H. J. Differential Scanning Calorimetry. Springer, 2003. 298 p.

22. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Handbook Refrigeration (SI). 2018. pp: 304-395.

23. Yunus A. Cengel and Afshin J. Ghajar, Heat and mass transfer: fundamentals & applications, 5th edition. New York. 2015. pp. 917-1208.

24. R. Paul Singh, Dennis R. Heldman. Introduction to Food Engineering, 4th Edition. Amsterdam, Elsevier. 2009. pp. 257262.

25. Lewis M. J. Physical properties of foods and food processing systems. Cambridge. 1987. pp. 220-245.

сведения об авторах

Ай Тун

Аспирант факультета низкотемпературной энергетики Университета ИТМО, 191002, Санкт-Петербург, ул. Ломоносова, 9, ayetunitmo@gmail.com

Баранов Игорь Владимирович

Д.т. н., профессор, директор мегафакультета биотехнологий низкотемпературных систем Университета ИТМО, 191002, Санкт-Петербург, ул. Ломоносова, 9, ivbaranov@corp.ifmo.ru

Крылов Василий Александрович

Инженер 2 кат., межфакультетская лаборатория «Трансляционные технологии в образовании» Университета ИТМО, 191002, Санкт-Петербург, ул. Ломоносова, 9, vakrylov@corp.ifmo.ru

Тамбулатова Екатерина Викторовна

К.т. н., заместитель директора мегафакультета биотехнологий низкотемпературных систем Университета ИТМО, 191002, Санкт-Петербург, ул. Ломоносова, 9, evtambulatova@corp.ifmo.ru

Никитин Андрей Алексеевич

К.т. н., доцент факультета низкотемпературной энергетики Университета ИТМО, 191002, Санкт-Петербург, ул. Ломоносова, 9, andyquest@mail.ru

22. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. ASHRAE Handbook Refrigeration (SI). 2018. pp: 304-395.

23. Yunus A. Cengel and Afshin J. Ghajar, Heat and mass transfer: fundamentals & applications, 5th edition. New York. 2015. pp. 917-1208.

24. R. Paul Singh, Dennis R. Heldman. Introduction to Food Engineering, 4th Edition. Amsterdam, Elsevier. 2009. pp. 257262.

25. Lewis M. J. Physical properties of foods and food processing systems. Cambridge. 1987. pp. 220-245.

Information about authors

Aye Tun

Postgraduate Student of Faculty of Cryogenic Engineering of ITMO University, 191002, Russia, St. Petersburg, Lomonosov str., 9, ayetunitmo@gmail.com

Baranov Igor V.

D. Sc., Professor, Director of School of Biotechnology and Cryogenic Systems of ITMO University, 191002, Russia, St. Petersburg, Lomonosov str., 9, ivbaranov@corp.ifmo.ru

Krylov Vasily A.

Engineer of Interfaculty laboratory «Translational technologies in education» of ITMO University, 191002, Russia, St. Petersburg, Lomonosov str., 9, vakrylov@corp.ifmo.ru

Tambulatova Ekaterina V.

Ph.D., Associate Director of School of Biotechnology and Cryogenic Systems of ITMO University, 191002, Russia, St. Petersburg, Lomonosov str., 9, evtambulatova@corp.ifmo.ru

Nikitin Andrey A.

Ph.D., Associate professor of Faculty of Cryogenic Engineering of ITMO University, 191002, Russia, St. Petersburg, Lomonosov str., 9, andyquest@mail.ru

О Перечне рецензируемых научных изданий

В соответствии с приказом Минобрнауки России от 25 июля 2014 г., 1 декабря 2015 г. сформирован Перечень рецензируемых научных изданий, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученой степени кандидата наук, на соискание ученой степени доктора наук.

Вестник Международной академии холода включен в Перечень рецензируемых научных изданий (по состоянию на 24.03.2020 г.) под № 375.

Подробная информация о группах научных специальностей / научным специальностям и соответствующим им отраслям науки, по которым журнал включен в Перечень, на сайте ВАК в разделе «Документы»

https://vakmmobmauki.gov.ru/documeMs#tab=Jab:edШons~

i Надоели баннеры? Вы всегда можете отключить рекламу.