Научная статья на тему 'Исследование свойств электрохромных пленок Ni(OH)2 на стекле с бислойным ITO-Ni покрытием'

Исследование свойств электрохромных пленок Ni(OH)2 на стекле с бислойным ITO-Ni покрытием Текст научной статьи по специальности «Физика»

CC BY
83
22
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ELECTROCHROMISM / ELECTRODEPOSITION / THIN FILMS / NI(OH)2 / NICKEL / INDIUM-TIN OXIDE / NICKEL HYDROXIDE / ЭЛЕКТРОХРОМИЗМ / ЭЛЕКТРООСАЖДЕНИЕ / ТОНКИЕ ПЛЕНКИ / НИКЕЛЬ / ИНДИЙ-ОЛОВЯННЫЙ ОКСИД / ГИДРОКСИД НИКЕЛЯ

Аннотация научной статьи по физике, автор научной работы — Kotok V., Kovalenko V.

Электрохромные покрытия были получены на стекле, покрытом оксидом индия-олово (ITO) и стекле с ITO и нанесенным на него тонким слоем металлического никеля. Никель на поверхность покрытия ITO наносили из раствора электрохимического никелирования. Режим нанесения металлического никеля на слой ITO был следующий катодная плотность тока 0,5 А/дм2, продолжительность нанесения 3 с. Такой режим был выбран в связи с тем, что при большей продолжительности нанесения и (или) плотности тока, получаемое покрытие из металлического никеля становилось непрозрачным. Две указанные основы использовали для нанесения катодным темплатным методом электрохромных пленок на основе Ni(OH)2. В результате было показано, что электрохромное покрытие, полученное на стекле с покрытием ITO-Ni, имеет лучшие удельные характеристики, чем стекло с ITO: большую глубину затмения, а также большие токи окисления-восстановления на циклической вольтамперограмме. При этом было показано, что пленка, которая имеет лучшие характеристики, наоборот имеет меньшую обратимость процесса затемнения-осветления. В связи с полученными результатами был предложен механизм, который объясняет роль промежуточного слоя металла. Он состоит в том, что нанесеный слой металлического никеля образует дополнительные электрические контакты между поверхностью субстрата и электрохромное пленкой. При этом слой никеля может помогать удерживать слой электрохромной пленки, а при нанесении положительно влияет на распределения тока. С другой стороны меньшая обратимость процесса затемнения-освещения пленки на стекле с покрытием ITO-Ni может быть объяснена постепенным окислением никеля в щелочной среде. Вместе с этим было показано, что нанесение металлического никеля приводит к некоторому уменьшению прозрачности подложки

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Investigation of the electrochromic properties of Ni(OH)2 films on glass with ITONi bilayer coating

Electrochromic films have been deposited onto glass coated with indium-tin oxide (ITO) and glass with ITO and a thin layer of metallic nickel deposited onto it. Nickel was deposited onto the surface of the ITO coating from nickel electroplating solution. The metallic nickel was deposited onto the surface of ITO at the following parameters cathodic current density 0.5 A/dn2, deposition time 3 s. Such deposition parameters were chosen, because at longer deposition time and (or) higher current density, the deposited layer of metallic nickel became opaque. The two substrates were then used in the deposition of Ni(OH)2 electrochromic films using the cathodic template synthesis method. As a result, it was revealed that the electrochromic film deposited onto glass with ITO-Ni coating possesses higher specific characteristics than that deposited on bare ITO-coated glass: higher coloration degree and higher oxidation-reduction currents on the cyclic voltamperogram. However, it was also revealed that the film possessing better characteristics, on the contrary, has lower reversibility of the coloration-bleaching process. Based on the obtained data, the mechanism that explains the role of the intermediate metal layer was proposed. The mechanism is that the deposited layer of metallic nickel forms additional contacts between the substrate surface and the electrochromic film. The nickel layer can also assist in securing the electrochromic film, and during film deposition has a positive effect on current distribution. On the other hand, the lower reversibility of the coloration-bleaching process of the film on ITO-Ni coating can be explained by gradual oxidation of metallic nickel in the basic medium. At the same time, it was revealed that deposition of metallic nickel leads to some decrease of the substrate transparency.

Текст научной работы на тему «Исследование свойств электрохромных пленок Ni(OH)2 на стекле с бислойным ITO-Ni покрытием»

-□ □-

Електрохромн покриття були отриман на склi, покритому оксидом тдт-олово (1Т0) i склi з 1Т0 i нанесеним на нього тонким шаром металевого тке-лю. Шкель на поверхню покриття 1Т0 наносили з розчину електрохiмiчного нкелювання. Режим нане-сення металевого ткелю на шар 1Т0 був наступ-ний - катодна густина струму 0,5 А/дм2, тривал^ть нанесення 3 с. Такий режим був обраний у зв'язку з тим, що при бшьшш тривалостi нанесення та (або) густин струму, отримуване покриття iз металевого ткелю ставало непрозорим. Двi зазначен осно-ви використовували для нанесення катодним темп-латним методом електрохромних плiвок на основi Ж(0Н)2. В результатi було показано, що електро-хромне покриття, отримане на склi з покриттям 1Т0-Ж, мае кращi питомi характеристики тж скло з 1Т0: бшьшу глибину затемнення, а також бiльшi струми окислення-видновлення на циклiчнiй вольтам-перограмi. При цьому було показано, що плiвка, яка мае найкращi характеристики, навпаки мае меншу обернетсть процесу затемнення-освтлення. У зв'язку з отриманими результатами був запропонований мехатзм, який пояснюе роль промiжного шару мета-лу. Вш полягае у тому, що нанесений шар металевого ткелю утворюе додатковi електричн контакти мiж поверхнею субстрату та електрохромною плiвкою. При цьому шар ткелю може допомагати утримувати шар електрохромног плiвки, а тд час нанесення позитивно впливае на розподшення струму. З шшог сто-рони, менша обернетсть процесу затемнення-освт-лення плiвки на склi з покриттям 1Т0-Ж може бути пояснена поступовим окисленням ткелю у лужному середовищi. Разом з цим було показано, що нанесення металевого ткелю призводить до деякого зменшення прозоростi тдкладки

Ключовi слова: електрохромiзм, електроосад-ження, тонк плiвки, Ж(0Н)2, ткель, тдш-олов'яний

оксид, гидроксид нкелю -□ □-

UDC 544.653.1

|doi: 10.15587/1729-4061.2018.133387|

INVESTIGATION OF THE ELECTROCHROMIC PROPERTIES OF NI(OH)2 FILMS ON GLASS WITH ITO-NI BILAYER COATING

V. Kotok

PhD, Associate Professor* Department of Processes, Apparatus and General Chemical Technology** Е-mail: valeriykotok@gmail.com V. Kovalenko PhD, Associate Professor* Department of Analytical Chemistry and Food Additives and Cosmetics** Е-mail: vadimchem@gmail.com *Department of Technologies of Inorganic Substances and Electrochemical Manufacturing Federal State Educational Institution of Higher Education "Vyatka State University" Moskovskaya str., 36, Kirov, Russian Federation, 610000 **Ukrainian State University of Chemical Technology Gagarina ave., 8, Dnipro, Ukraine, 49005

1. Introduction

In the 21st century, the city development is viewed through the design and creation of so-called "smart cities", in which the entire infrastructure is constituted by "smart devices" and "smart houses" connected to computer networks and Internet. The main purpose of "smart devices" is to optimize time for completion of various tasks, reduce resource consumption and increase comfort [1, 2]. One of such devices are smart windows. These devices employ various systems in order to alter their optical properties: color, opacity, reflectivity. The application range of "smart windows" is rather broad. Creation of suitable lighting, inclusion of elements that dynamically change color into the interior design, protection of museum showpieces from bright light, patient examination rooms in hospitals, improvement of drivers' safety - is far from complete list of application for "smart windows". Additionally, the "smart windows" can be used as information displays that show currency exchange rate,

prices, weather. The main advantage of using such devices indoors is lower power consumption for conditioning up to 49 %, decreased load on the power grid in peak hours up to 16 % and cost savings on light up to 51 % [3].

Electrochemical systems are viewed as possible candidates for active elements of the smart window responsible for the change of optical properties. The main advantage of these systems is that they don't require additional electric current to sustain colored (bleach) state. Usually, the electric current is only consumed when the electrode reaction occurs, which results in the colored material.

Nickel hydroxide is one of such materials that possess electrochromic properties and can find application in "smart windows". The advantages of this material are, on the one hand, good specific electrochromic characteristics and, on the other ease and multitude of film deposition techniques and also relatively low cost of the resulting film. It should be noted that the cost of 1 m2 of electrochromic film based on liquid crystals, on average, is about 200 USD, while the

lis

©

nickel-based electrochromic film would cost approximately 10 times cheaper.

The main problem of this material is low adhesion of Ni(OH)2 film to the transparent conductive substrate and gradual degradation of the film itself [4, 5].

The solution to this problem can be a search of new deposition methods or application of combined or modified materials based on Ni(OH)2 [6], and also modification of the material on which electrochrome is to be deposited.

2. Literature review and problem statement

Nickel hydroxide is a compound with a broad spectrum of applications. It is used for the creation of high-capacity accumulators [7, 8], in electrodes of asymmetric supercapacitors [9, 10], for the oxidation of some organic compounds [11, 12], and as a component of electrodes for water decomposition [13, 14].

Nickel hydroxide prepared in special conditions can be used as an electrochromic layer, which can reversibly change its optical characteristics between transparent and dark-brown color [15, 16] (1):

Ni(OH)2~NiOOH+H+.

(1)

Thin Ni(OH)2 films are transparent and NiOOH has dark-brown color.

Because one of the main problems of this material is low adhesion to the transparent conductive substrate, the continuous use of this material as an electrochrome is not possible. This leads to degradation of electrochromic properties of nickel hydroxide because of disruption of electrical contact between Ni(OH)2 and the transparent conductive substrate. The modern research papers on electrochromism of Ni(OH)2 are primarily focused on the creation of composite and modified materials [17, 18]. For instance, the authors of the paper [18] have demonstrated a method for preparing a composite electrochromic material, composed of reduced graphene oxide, metallic nickel particles and NiO. This composite possesses higher specific characteristics than the base material composed of NiO. The paper [19] describes the preparation of the electrochromic material with an inner layer of silver that acts as a conductor. This enables to exclude a separate conductive layer from the structure of the electrochromic element. Other authors [20] proposed a composite material composed of nanoparticles deposited onto ITO-coated glass. The composite particles contained the electrochromic material inside and were coated with indium oxide particles. In2O3 provided additional electric conductivity to the composite material, which had a positive effect on specific characteristics. An alternative approach to improve adhesion is the modification of the substrate onto which electrochrome is to be deposited. For instance, the paper [6] describes the electrochemical treatment of the transparent conductive substrate, in order to alter the morphology and wetting, which resulted in improvement of electrochemical properties of deposited Ni(OH)2.

The substrate onto which the electrochromic layer is deposited is usually a layer of transparent conductive metal oxides. The most commonly used types of the transparent conductive oxide layer are: ITO (indium-tin oxide) and FTO (fluorine-doped tin oxide) [21, 22]. The resistivity of these conductive substrates is significantly higher than that of metals.

The high resistivity of ITO (FTO and other transparent conductors) can negatively impact the distribution of the deposition process during electrochemical deposition of the film. The same reason can also impact electrochro-mic characteristics of nickel hydroxide films because the current density can vary significantly in different points of the electrode. On the other hand, the morphology of ITO [23, 24] and FTO [25, 26] films is rather flat on macroscale and microscale bumps are within one to tens of nanometers. The latter can be the reason for low adhesion of hydroxide films to the surface of transparent materials coated with ITO and FTO, and is related to the low real contact area of deposited Ni(OH)2 and the conductive substrate. Thus, in order to increase specific conductivity and develop the surface of ITO (FTO) coatings, it has been proposed to deposit a thin layer of nickel with satisfactory transparency. Considering that research of the published paper yielded no information regarding such substrate modification with the aim to improve the characteristics of electrochromic Ni(OH)2 films, it has been decided to conduct necessary experiments.

3. The aim and objectives of the study

The aim of the work was to study the properties of elec-trochromic Ni(OH)2 films on glass with bilayer ITO-Ni coating.

In the scope of the set aim, the following objectives were formulated:

- to deposit electrochromic films based on Ni(OH )2 onto glass with bilayer ITO-Ni coating;

- to evaluate the influence of morphology of ITO and bilayer ITO-Ni on the morphology of electrochromic films;

- to conduct a comparison of electrochromic and electrochemical properties of prepared samples.

4. Materials and methods

Materials used in the research.

The initial substrates were glass slides 20x20x1.1 mm coated with ITO (China), Fig. 1. Sheet resistance was 20 fl/sq.

Fig. 1. ITO-coated glass substrates

The substrates were coated with nickel electrochemically using dull nickel-plating electrolyte. Deposition conditions and electrolyte composition are listed in Table 1. The deposition was carried out in a cell with a large electrode spacing with a thick nickel foil used as the anode.

Deposition conditions and electrolyte composition for the deposition of the electrochromic film are listed in Table 2 [4-6, 15].

Table 1

Composition of dull nickel-plating electrolyte and deposition conditions

Electrolyte composition pH Electrolyte temperature, °C Cathodic current density, A/dm2 Deposition time, c

NiSO47H2O - 160 g/L NiCl2-2H2O - 40 g/L H3BO3 - 35 g/L Na2SO4-10H2O - 70 g/L 5.5 20 0.5 3

Table 2

Electrolyte composition and deposition conditions for electrochromic film

Electrolyte composition (cathodic chamber)* Electrolyte temperature, °C Cathodic current density, mA/cm2 Deposition time, min

NiNO3 - 1 M PVA - 50 g/L 30 0.625 8

Note: * - KNO3 1M solution was loaded into the anodic chamber

The deposition was conducted in a cell with 2 chambers - anodic and cathodic, separated with a low-permeability diaphragm. Nickel foil was used as the anode.

As a result, two electrochromic films were prepared: on glass coated with ITO and on glass with bilayer ITO-Ni coating. For convenience, the samples were labeled as listed in Table 3.

Table 3

Sample labeling

Sample description Ni(OH)2 deposited on glass coated with ITO Ni(OH)2 deposited on glass coated with ITO with electrochemically deposited Ni

Label ITO-NH ITO-Ni-NH

Fig. 2. Cell with the electrode for electrochemical and optical tests: 1 - Working electrode with the electrochromic film deposited onto ITO-coated glass; 2 — Frame made of transparent plastic; 3 — counter-electrode; I — source of white light (5,500 K); II — photoresistor. DC — source of stabilized voltage; ADC — analog-to-digital converter

5. 1. Morphology analysis of initial substrate and with deposited layer of metallic nickel

Based on preliminary tests, the following conditions for deposition of metallic nickel were chosen - cathodic current density 0.5 A/dm2, deposition time 3 s. The values of deposition parameters are minimal, because high current density and long deposition time result in complete coverage of ITO with a mirror-like opaque layer of metal - Fig. 3.

Fig. 3. Photograph of the substrate (ITO-coated glass) in the holder, after deposition at a cathodic current density of 2 A/dm2 for 20 seconds, till mirror-like shine (outlined in red)

Nickel was chosen as the substrate material because it would not poison the film even if oxidized during anodic polarization during coloration. Assuming uniform deposition, it is estimated that under given conditions, the thickness of nickel layer is about 5 nm (50 A).

Morphology analysis.

The morphology of PVA-Ni(OH)2 composite films was analyzed using scanning electron microscope (SEM) JEOL JSM-6510LV (Japan).

Evaluation of electrochromic and electrochemical properties of prepared samples.

The optical and electrochemical properties of the samples were evaluated by means of cyclic voltamper-ometry (CVA) with simultaneous recording of the coloration-bleaching process. The tests were conducted in a cell presented in Fig. 2. Ag/AgCl (KCl sat.) was used as a reference electrode. Nickel foil was used as a counter-electrode. For all measurements, 0.1 M KOH solution was used as an electrolyte. Optical characteristics were recorded using the analog-to-digital converter ADC E-154 (Russia), electrochemical characteristics measurement was conducted using the digital potentiostat galvanostat Ellins P-8 (Russia).

Cycling regime: potential window from +200 to +750 mV, scan rate 1mV/s, number of cycles - 5.

b

Fig. 4. SEM images of the ITO coating on glass: a — probe point № 1; b — probe point № 2 (magnification x20,000)

Morphology of the initial substrate and the substrate with the deposited nickel layer is shown in Fig. 4 and 5 respectively.

It should be noted that the relief of the ITO surface is un-pronounced and rather flat (Fig. 4), and the height of bumps varies from dozens to hundreds of nanometers.

At the same time, the surface of ITO coated with nickel (Fig. 5) shows a greater number of bumps. Clusters of nickel spheres can be observed, which don't cover the surface of ITO completely. Obviously, these clusters can act as conductive bridges between the substrate and the electrochro-mic layer during deposition of Ni(OH)2.

Fig. 5. SEM images of ITO with deposited nickel: a — magnification x20000, b — magnification xS^OOO, c— magnification x 1,000, d— magnification x200

After the substrate with bilayer ITO-Ni coating was prepared, the electrochromic films were prepared onto both samples. Thus, 2 films on glass with ITO and on glass with bilayer ITO-Ni coating were prepared. Sample morphology images are shown in Fig. 6.

Morphology analysis allows drawing a few important conclusions. Electrochromic films deposited onto the substrate without nickel show many regions where the film either had not formed or peeled off and remained in the deposition cell. The electrochromic film that remained on the surface has a weak contact with the substrate. On the contrary, the film deposited onto glass with bilayer ITO-Ni coating shows better coverage, uniformity and contact with the substrate.

5. 2. Results of electrochemical and optical test of electrochromic films

As a result of the experiments, two electrochromic films were prepared. The deposition conditions were the same for both films, with the exception of substrate differences. Both films were subjected to potentiodynamic cycling with simultaneous recording of optical characteristics. Cyclic voltamperograms of both films are shown in Fig. 7, optical characteristics are shown in Fig. 8.

200 300 400 500 600 700 800 E, mV a

i, A/dm2 0.200.15 0.10 0.05 0.00 -0.05 -0.10 -0.15

b

Fig. 6. SEM images of samples with deposited electrochromic films (magnification x200): a - ITO-NH; b - ITO-Ni-NH

200 300 400 500 600 700 800 E, mV b

Fig. 7. Cyclic voltamperograms of electrochromic films: a — ITO-NH; b — ITO-Ni-NH

Comparison of cyclic voltamperograms revealed significant differences in electrochemical behavior. Thus, current densities for the ITO-Ni-NH film are about 4 times higher than those for the ITO-NH sample. In addition, the shapes of cyclic curves are different: for the ITO-NH sample the reduction and oxidation peaks are sharper and located at potentials of +570 and 670 mV respectively. For the ITO-Ni-NH sample, reduction and oxidation peaks are not as sharp and are located at potentials of +520 and +720 mV respectively. The difference between the peaks for ITO-NH is 100 mV and for ITO-Ni-NH is 200 mV. It should be noted that for the sample deposited on bare ITO, the oxygen evolution is clearly observed at potentials above the oxidation peak (Fig. 7).

Fig. 8 shows dependencies of film transparency (T) on time (t) during potentiodynamic cycling. Comparison of

c

optical characteristics of both films allows concluding that the film deposited onto the hybrid ITO-metal substrate (ITO-Ni-NH sample) possesses better characteristics. Thus, the coloration degree (difference between the bleached and colored state) is higher for the ITO-Ni-NH sample. However, as expected, the presence of even a thin layer of metal impacts transparency. The impact on transparency could even be observed upon initial observation the substrate with a thin layer of nickel appeared somewhat darker than the initial glass with ITO. Because of that, the initial point of the curve for ITO-Ni-NH lies below 100 %, at about 78 % -Fig 8, b. Additionally, the ITO-Ni-NH film shows an optical characteristic that is closer to the rectangular shape, but also shows significant irreversibility during bleaching.

The film deposited on the ITO substrate (ITO-NH sample) shows a lower coloration depth, but also shows better reversibility to the initial (bleached) state.

b

Fig. 8. Dependencies of transparency (T) on time for electrochromic films: a - ITO-NH; b - ITO-Ni-NH

with nickel hydroxide. Thus, the approach of creating micro-bumps by depositing intermediate conductive and transparent films can be a solution to this problem. In addition, low conductivity of the substrate, onto which the film is to be electrochemically deposited, can lead to non-uniform film formation. In turn, this can also be a reason for poor adhesion of the resulting films.

It is interesting that in reality a "web" of nickel clusters had formed instead of a uniform film of metallic nickel. Obviously, this is related to the known mechanism of electrochemical deposition of metals. In summary, this mechanism is described as follows: at the start of the deposition process, isolated metal "seeds" form, which then sprout covering the whole surface without the deposit. The further process occurs through the frontal growth of the deposit [27]. The formed nickel cluster could actively affect the electrochrome deposition process and also the coloration-bleaching process via the formation of conductive bridges from the conductive substrate.

The obtained results support previously proposed assumptions. It has been revealed that the films deposited onto the ITO-metal substrate have demonstrated better optical characteristics. It was also revealed that the peak current values on the cyclic voltamperogram of the ITO-Ni-NH sample are higher, which means the capacities under the curves on the voltammogram are also higher. In turn, the capacities characterized the amount of electricity used in oxidation and reduction of the film deposited onto the hybrid ITO-metal substrate. Nevertheless, the distance between the peaks for the ITO-Ni-NH sample is larger than for the ITO-NH sample, which indicated higher irreversibility. This is likely related to high transitional resistances of ITO^Ni and Ni~Ni(OH)2.

An interesting fact is that, on the one hand, the characteristics of the ITO-Ni-NH sample are better than those of ITO-NH, but, on the other, the ITO-Ni-NH film shows higher irreversibility during bleaching. This fact probably indicates gradual destruction of conductive bridges, caused by oxidation of metallic nickel during anodic polarization in the basic medium.

Thus, it was found that modification of the substrate surface by deposition of a thin layer of nickel leads to a significant improvement of electrochromic and electrochemical properties of Ni(OH)2 films. Also, an assumption can be made that for further improvement of surface modification, it is necessary to use metals that are more stable to anodic polarization instead of nickel.

The average coloration degree for the ITO-NH sample is 8 %, while for the ITO-Ni-NH sample the averaged coloration degree is 50 %, which is more than 6 times greater than that of the sample deposited onto bare ITO. Regarding reversibility (bleaching), the ITO-NH sample demonstrated better characteristics, with loss of initial transparency after cycling of 3 %. For the ITO-Ni-NH sample, the same value is about 10 %, which is more than 3 times greater than for the ITO-NH sample.

6. Discussion of morphology, electrochemical and optical characteristics of electrochromic films

The surface of the ITO substrate, obviously doesn't contain significant surface bumps and forms a poor contact

7. Conclusions

1. As a result of analyzing deposition conditions for the deposition of a transparent metal layer onto ITO-coated glass from dull nickel plating electrolyte, the following optimal conditions were found - 0.5 A/dm2, 3 s.

2. The morphology of the substrates and Ni(OH)2 films deposited onto them have been studied. The analysis of SEM results has revealed that the deposited layer of metallic nickel was non-uniform and formed a "net" of spherical formations. The glass coated with ITO had a rather uniform surface with the bump height varying from dozens to hundreds of nanometers.

3. The comparison of characteristics of films deposited onto different substrates has revealed that surface modi-

a

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

fication of the ITO substrate by depositing a thin layer of nickel has a positive influence on electrochromic properties of films. The average coloration degree for the film deposited onto bilayer ITO-Ni coating was 50 %, which is more than

6 times higher than that of the sample deposited onto bare ITO. It was also revealed that even a thin layer of metallic nickel impacts the substrate transparency, which is a negative aspect of such approach.

References

1. Urban planning and building smart cities based on the Internet of Things using Big Data analytics / Rathore M. M., Ahmad A., Paul A., Rho S. // Computer Networks. 2016. Vol. 101. P. 63-80. doi: 10.1016/j.comnet.2015.12.023

2. A Review on Internet of Things Solutions for Intelligent Energy Control in Buildings for Smart City Applications / Khajenasiri I., Esteb-sari A., Verhelst M., Gielen G. // Energy Procedia. 2017. Vol. 111. P. 770-779. doi: 10.1016/j.egypro.2017.03.239

3. Smart Windows: Energy Efficiency with a View // NREL. URL: https://www.nrel.gov/news/features/2010/1555.html

4. Advanced electrochromic Ni(OH)2/PVA films formed by electrochemical template synthesis / Kotok V. A., Kovalenko V. L., Kova-lenko P. V., Solovov V. A., Deabate S., Mehdi A. et. al. // ARPN Journal of Engineering and Applied Sciences. 2017. Vol. 12, Issue 13. P. 3962-3977.

5. Kotok V., Kovalenko V. The electrochemical cathodic template synthesis of nickel hydroxide thin films for electrochromic devices: role of temperature // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 2, Issue 11 (86). P. 28-34. doi: 10.15587/17294061.2017.97371

6. Soft Electrochemical Etching of FTO-Coated Glass for Use in Ni(OH) 2 -Based Electrochromic Devices / Kotok V. A., Maly-shev V. V., Solovov V. A., Kovalenko V. L. // ECS Journal of Solid State Science and Technology. 2017. Vol. 6, Issue 12. P. P772-P777. doi: 10.1149/2.0071712jss

7. Dixit M. Zinc-Substituted a-Nickel Hydroxide as an Electrode Material for Alkaline Secondary Cells // Journal of The Electrochemical Society. 1999. Vol. 146, Issue 1. P. 79. doi: 10.1149/1.1391567

8. Kotok V., Kovalenko V., Malyshev V. Comparison of oxygen evolution parameters on different types of nickel hydroxide // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 5, Issue 12 (89). P. 12-19. doi: 10.15587/1729-4061.2017.109770

9. Nickel hydroxide obtained by high-temperature two-step synthesis as an effective material for supercapacitor applications / Kova-lenko V. L., Kotok V. A., Sykchin A. A., Mudryi I. A., Ananchenko B. A., Burkov A. A. et. al. // Journal of Solid State Electrochemistry. 2016. Vol. 21, Issue 3. P. 683-691. doi: 10.1007/s10008-016-3405-2

10. Definition of factors influencing on Ni(OH)2 electrochemical characteristics for supercapacitors / Kovalenko V., Kotok V., Bolotin O. // Eastern-European Journal of Enterprise Technologies. 2016. Vol. 5, Issue 6 (83). P. 17-22. doi: 10.15587/1729-4061.2016.79406

11. Amjad M. The Oxidation of Alcohols at a Nickel Anode in Alkaline t-Butanol/Water Mixtures // Journal of The Electrochemical Society. 1977. Vol. 124, Issue 2. P. 203. doi: 10.1149/1.2133266

12. Lyalin B. V., Petrosyan V. A. Oxidation of organic compounds on NiOOH electrode // Russian Journal of Electrochemistry. 2010. Vol. 46, Issue 11. P. 1199-1214. doi: 10.1134/s1023193510110017

13. Hydrotalcite-like Ni(OH)2 Nanosheets in Situ Grown on Nickel Foam for Overall Water Splitting / Rao Y., Wang Y., Ning H., Li P., Wu M. // ACS Applied Materials & Interfaces. 2016. Vol. 8, Issue 49. P. 33601-33607. doi: 10.1021/acsami.6b11023

14. One-pot hydrothermal fabrication of layered p-Ni(OH)2 /g-C 3 N 4 nanohybrids for enhanced photocatalytic water splitting / Yan J., Wu H., Chen H., Pang L., Zhang Y., Jiang R. et. al. // Applied Catalysis B: Environmental. 2016. Vol. 194. P. 74-83. doi: 10.1016/j.ap-catb.2016.04.048

15. Kotok V., Kovalenko V. Electrochromism of Ni(OH)2 films obtained by cathode template method with addition of Al, Zn, Co ions // Eastern-European Journal of Enterprise Technologies. 2017. Vol. 3, Issue 12 (87). P. 38-43. doi: 10.15587/1729-4061.2017.103010

16. Sonochemically synthesized Ni(OH)2 and Co(OH)2 nanoparticles and their application in electrochromic electrodes / Vidotti M., van Greco C., Ponzio E. A., Córdoba de Torresi S. I. // Electrochemistry Communications. 2006. Vol. 8, Issue 4. P. 554-560. doi: 10.1016/ j.elecom.2006.01.024

17. Electrochromic Properties of Ni/NiO/rGO Nanocomposite Films Prepared by a Facile Sol-Gel Technique / Jiang S., Yuan G., Hua C., Khan S., Wu Z., Liu Y. et. al. //Journal of The Electrochemical Society. 2017. Vol. 164, Issue 13. P. H896-H902. doi: 10.1149/2.1231713jes

18. Bifunctional 2D-on-2D MoO3 nanobelt/Ni(OH)2 nanosheets for supercapacitor-driven electrochromic energy storage / Zhu L., Nuo Peh C. K., Zhu T., Lim Y.-F., Ho G. W. // Journal of Materials Chemistry A. 2017. Vol. 5, Issue 18. P. 8343-8351. doi: 10.1039/c7ta01858d

19. Trifunctional NiO-Ag-NiO electrodes for ITO-free electrochromic supercapacitors / Dong W., Lv Y., Zhang N., Xiao L., Fan Y., Liu X. // Journal of Materials Chemistry C. 2017. Vol. 5, Issue 33. P. 8408-8414. doi: 10.1039/c7tc03120c

20. Lin S.-H., Chen F.-R., Kai J.-J. Electrochromic properties of nano-composite nickel oxide film // Applied Surface Science. 2008. Vol. 254, Issue 11. P. 3357-3363. doi: 10.1016/j.apsusc.2007.11.022

21. Transparent Conducting Oxides for Photovoltaics / Fortunato E., Ginley D., Hosono H., Paine D. C. // MRS Bulletin. 2007. Vol. 32, Issue 03. P. 242-247. doi: 10.1557/mrs2007.29

22. Degradation of transparent conductive oxides: Interfacial engineering and mechanistic insights / Mirletz H. M., Peterson K. A., Martin I. T., French R. H. // Solar Energy Materials and Solar Cells. 2015. Vol. 143. P. 529-538. doi: 10.1016/j.solmat.2015.07.030

23. Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature / Kurdesau F., Khripunov G., da Cunha A. F., Kaelin M., Tiwari A. N. // Journal of Non-Crystalline Solids. 2006. Vol. 352, Issue 9-20. P. 1466-1470. doi: 10.1016/ j.jnoncrysol.2005.11.088

24. Thirumoorthi M., Thomas Joseph Prakash J. Structure, optical and electrical properties of indium tin oxide ultra thin films prepared by jet nebulizer spray pyrolysis technique // Journal of Asian Ceramic Societies. 2016. Vol. 4, Issue 1. P. 124-132. doi: 10.1016/ j.jascer.2016.01.001

25. Opto-Electronic Properties of Fluorine Doped Tin Oxide Films Deposited by Nebulized Spray Pyrolysis Method / Jeyadheepa K., Karthick P., Vijayanara D., Suja S., Sridharan M. // Asian Journal of Applied Sciences. 2015. Vol. 8, Issue 4. P. 259-268. doi: 10.3923/ ajaps.2015.259.268

26. Highly transparent and conductive indium tin oxide thin films for solar cells grown by reactive thermal evaporation at low temperature / Du J., Chen X., Liu C., Ni J., Hou G., Zhao Y., Zhang X. // Applied Physics A. 2014. Vol. 117, Issue 2. P. 815-822. doi: 10.1007/ s00339-014-8436-x

27. A Review of Nanostructural Aspects of Metal Electrodeposition / Bicelli L. P., Bozzini B., Mele C., D'Urzo L. // Int. J. Electrochem. Sci. 2008. Vol. 3. P. 356-408.

Дослгджено процес первинног обробки вовни з метою видалення з нег Грунтових i гнойових забруд-нень, рослинних домшок i жиропоту. Первинна обробка вовни виконуе ключову роль в збереженн природних властивостей вовняного волокна i доз-воляе отримувати ятсну сировину для текстиль-ног nромисловостi. У процеы дослгджень було вста-новлено, що для ттенсифжаци процеыв первинног обробки вовни необхгдно використовувати акустичн коливання. Акустичн коливання дють на систему вовна-мийний розчин. Система вовна-мийний роз-чин знаходиться мiж решточними транспортерами. Транспортери утворюють рештку з металевих стрижтв. Для визначення параметрiв акустичног системи для первинног обробки вовни був проведений аналiз трьох задач. Задачi були пов'язат: з розсю-ванням акустичних коливань на металевш решт-щ, на шарi вовна-мийний розчин i об'еднання ршень двох задач в одне за допомогою методу матриць роз-сювання. Проведеш дослгдження дозволили визначи-ти параметри системи для первинног обробки вовни акустичними коливаннями, що дозволяе досягти бшьшог ефективностi в очищенн вовни в порiвнян-ш з ^нуючими аналогами. В результатi теоретич-них i експериментальних дослгджень було встанов-лено, що промивка вовни повинна здшснюватися при наступних параметрах акустичних коливань в мию-чому розчит: частота звукового поля 1,1±0,1 кГц; ттенсивтсть звуку 1,1±0,01 Вт/см2. При цьому товщина шару вовни на транспортерi 0,06±0,01 м; швидтсть руху транспортера 0,1 м/с; кшьтсть перетворювачiв на ванну 8±1 штук.

Застосування оптимальних параметрiв в проце-Ы безперервног промивки шерстяного волокна в водному розчин дозволяе отримати залишок жиру на шерстi в межах 1,5 % вiд кiлькостi жиру немитог вовни при ГОСТ Украгни до 2 %

Ключовi слова: первинна обробка вовни, параметри акустичних коливань, коефщент вiдбиття акустичног хвилi

-□ □-

UDC 577.3

|POI: 10.15587/1729-4061.2018.133710]

DETERMINIG THE PARAMETERS OF THE ACOUSTIC SYSTEM FOR THE PRIMARY TREATMENT OF WOOL

L. Mikhailova

PhD, Senior Lecturer* O. Kozak

PhD, Senior Lecturer* N. Kos u l i n a

Doctor of Technical Sciences, Professor, Head of Department** E-mail: kosnatgen@ukr.net P. Potapsky PhD, Senior Lecturer* A. Cheren kov Doctor of Technical Sciences, Professor** E-mail: aleksander.cherenkov@gmail.com *Department of Power Engineering and Electrical Engineering Systems in Agroindustrial Complex State Agrarian and Engineering University in Podilya Shevchenka str., 13, Kamianets-Podilskyi, Ukraine, 32300 **Department of Technotrance and Theoretical Electrical Engineering Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskih str., 44, Kharkiv, Ukraine, 61012

1. Introduction

The main type of wool used in the woolen industry is sheep wool. It is used to produce a wide range of wool products for consumer and industrial purposes. The quality and cost of products made from wool mainly depend on the

primary treatment of wool [1]. An analysis of the technological process and equipment used at factories during primary treatment of wool revealed their significant drawbacks: negative impact on the environment, energy-intensive production, materials consumption, large dimensions and mass, low quality of fibers [2]. Given this, there is a need to develop the

©

i Надоели баннеры? Вы всегда можете отключить рекламу.