V. P. Klimentyev, A. B. Sergienko Saint Petersburg Electrotechnical University "LETI"
Channel Estimation in Uplink SCMA System
The effect of channel estimation error on bit error probability of uncoded and coded sparse code multiple access (SCMA) system in uplink channel with block fading is considered. SCMA is a variety of non-orthogonal multiple access based on code division. The variance of channel estimation error is investigated for channel estimation based on non-orthogonal pilot signals. The results obtained by computer simulation show that required accuracy of the channel estimation depends on the code block length. These results are compared with Cramer-Rao bound.
Mobile communications, non-orthogonal multiple access, sparse code multiple access, channel estimation, turbo code, pilot signals
Статья поступила в редакцию 21 марта 2016 г.
УДК 537.86.029
М. И. Мартынов, Ан. А. Никитин, А. Б. Устинов Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В. И. Ульянова (Ленина)
Исследование СВЧ-свойств активной колебательной системы на основе ферритовой линии задержки1
Теоретически описан комплексный коэффициент передачи активной колебательной системы на основе ферритовой линии задержки. Экспериментально получены передаточные характеристики и проведено сравнение с теоретическими результатами. Рассмотрено влияние параметров линии задержки на передаточные характеристики активной колебательной системы. Показано, что резонансные частоты, определяющие положение полос пропускания, зависят от толщины ферритовой пленки и расстояния между спин-волновыми антеннами. Эти зависимости дают возможность реконфигурации передаточной характеристики, что вместе с магнитным управлением обеспечивает гибкость применения на СВЧ.
Активная колебательная система, спиновая волна, феррит
За последние двадцать лет резко возрос интерес к исследованию активных кольцевых систем [1], [2]. В настоящее время указанные системы используются для изучения таких физических явлений, как солитоны, хаос и модуляционная неустойчивость, а также для формирования различных сигналов и их обработки [3].
Управляемые СВЧ кольцевые колебательные системы или резонаторы могут быть построены на основе ферритовых линий задержки, таких как эпитаксиальные пленки железоиттриевого граната (ЖИГ). Отличительными свойствами этих устройств являются низкие потери на распространение спиновых волн и возможность широкополосной магнитной перестройки передаточных характеристик. Рабочие характеристики активных кольцевых систем на пленках ЖИГ определяются свойствами рабочих волн, а именно их дисперсией. Указанная особенность позволяет
применять пленки ЖИГ в миниатюрных СВЧ-устройствах. В частности, такими устройствами могут быть узкополосные и согласованные фильтры [4]—[6], генераторы гармонических и хаотических сигналов на основе активных кольцевых резонаторов (АКР) [7]-[10]. Однако СВЧ-свойства АКР, в частности влияние различных параметров спин-волновой линии задержки (СВЛЗ), остаются малоизученными. В связи с этим настоящая статья посвящена теоретическому и экспериментальному изучению СВЧ-свойств АКР на пленках ЖИГ.
Схема типичного АКР представлена на рис. 1, а. СВЛЗ 1, аттенюатор 3 и СВЧ-усилитель 2 образуют замкнутый контур. СВЛЗ служит для задержки СВЧ-сигнала. Широкополосный СВЧ-уси-литель используется для усиления сигнала и компенсации потерь, вносимых линией задержки, а переменный аттенюатор обеспечивает контроль и управление коэффициентом усиления СВЧ-сиг-
Работа выполнена при поддержке гранта Российского научного фонда (№ 14-12-01296). © Мартынов М. И., Никитин А. А., Устинов А. Б., 2016
А
L /А /
/ / / / / /
/ / / / / / /
/ / * -►
2я/d 4я/d 6я/ d k
Рис. 1
нала. Сигнал вводится через направленный от-ветвитель 4 и выводится через направленный от-ветвитель 5. Коэффициент усиления G является частотно-независимым.
Рассмотрим формирование коэффициента передачи АКР (рис. 1, б). Особенностью амплитудно-частотной характеристики (АЧХ) является многополосность. Резонансные волновые числа k (/res) = 2nn/d (n - номер циркулирующей моды; d - длина линии задержки) определяют резонансные частоты через закон дисперсии рабочих волн в линии задержки. Фазовый набег циркулирующего СВЧ-сигнала на этих частотах кратен 2л. Отметим, что время задержки СВЧ-сигнала в электронных цепях пренебрежимо мало по сравнению с временем задержки в линии задержки.
Рассмотрим входной монохроматический сигнал
A¡n (ш) = Aq exp (irat).
Если указанный сигнал циркулирует по кольцу, на выходе АКР возникает суперпозиция бесконечного количества циркулирующих и затухающих волн:
out
ы=
= A
^ (exp{-/[к(ю)-/а(ю)md + mg] m=1 _
x exp (/ю t),
где а(ю) - декремент затухания; g - коэффици-ент усиления усилителя.
Комплексный коэффициент передачи активного колебательного контура можно найти как отношение комплексных амплитуд на входе и выходе из кольца:
H(ю) = Aout (юУAin (ю) = yjHP (ю) exp[/ф(ю)],
где
( ) 1 exp[g-а(сОd]
Hp (,fflj =--Г-----=-Г-----т
2 cosh[g-а(ю)d]-cos[к(ю)d]
- коэффициент передачи по мощности;
ф(ю) = arctg<
sin [k (ю) d ]
exp [ -a^ d ] -cos [k (ю) d ] R = 0, 1, 2, ...
> + R%,
- фазочастотная характеристика АКР [11].
Волновые числа рабочих волн рассчитываются по дисперсионному уравнению. Для поверхностных спиновых волн, рассмотренных в настоящей статье, закон дисперсии имеет вид [12] ^ (ю) =
= _ьЬ -41У-юя(°я )]| |), (1)
I ®м /
где ®Н = ЫЦоНо; ®М = ИЦ0М0, причем = = 1.76 • 1011 рад/(с • Тл) - гиромагнитное отношение; цо = 4^ • 10-7 Гн/м - проницаемость вакуума; Но - внешнее магнитное поле; М0 - намагниченность насыщения; Ь - толщина пленки ЖИГ
Пространственный декремент затухания для поверхностных спиновых волн определяется следующим образом:
И юДНЬ"1
ac
(ш ) =
{[я + юм/2]2 -ю}
где ДН - полуширина ферромагнитного резонанса.
Для экспериментального исследования использовался макет АКР, основными элементами которого являлись СВЧ-усилитель, СВЛЗ и переменный аттенюатор для управления коэффициентом усиления в кольце.
СВЛЗ была изготовлена из монокристаллической пленки ЖИГ на подложке гадолиний-галлие-вого граната. Для изготовления СВЛЗ использовались пленки ЖИГ шириной 2 мм, длинной 40 мм с намагниченностями насыщения 1750, 1660 и 1780 Гс и толщинами 5.7, 9.64, и 13.6 мкм соответственно.
S
21
б
а
Две короткозамкнутые микрополосковые антенны шириной 50 мкм и длиной 2 мм использовались для возбуждения спиновых волн в линии задержки и вывода колебаний с нее. В эксперименте исследовалось влияние расстояния между микропо-лосковыми антеннами ё на коэффициент передачи АКР. Измерения проводились при расстояниях между спин-волновыми антеннами 3, 6 и 9 мм. Линия задержки располагалась на антеннах так, чтобы пленка ЖИГ находилась в контакте с ними.
СВЛЗ размещались между полюсами постоянного магнита с напряженностью магнитного поля Но = 1226 Э. Поле прикладывалось параллельно плоскости пленки ЖИГ и перпендикулярно направлению распространения спиновой волны. Указанная ориентация пленки относительно магнитного поля обеспечивает возбуждение поверхностных спиновых волн в линии задержки.
Принцип действия АКР основан на суперпозиции бегущих волн в кольце. СВЧ-сигнал вводится с помощью направленного ответвителя и циркулирует в кольце. Затухание сигнала Л в ферри-товой линии задержки компенсируется СВЧ-усилителем. Общий коэффициент усиления кольца О контролируется переменным аттенюатором. АКР может использоваться как пассивный фильтр при О > Л или как генератор сигнала при О < Л. Значение коэффициента усиления О, при котором достигается порог автогенерации АКР, может быть использовано в качестве нулевой реперной точки.
На рис. 2 представлено сравнение экспериментальной передаточной характеристики (сплошная линия), измеренной при О = -1.5 дБ, Ь = 9.64 мкм и ё = 6 мм, и теоретически рассчитанной зависимости коэффициента передачи от частоты (пунктриная линия). Четко выраженные пики (полосы пропускания) соответствуют резонансным частотам. Из рис. 2 видно, что результаты численного расчета с высокой точностью совпадают с экспериментальной характеристикой.
-20
-40-
-60
Ъъ дБ
/, ГГц
Рис. 2
Из приведенного ранее теоретического рассмотрения следует, что форма передаточной характеристики определяется фазовым набегом сигнала в кольце ф = к(га) ё, который связан с временем задержки т = ёф/ёга. В дальнейшем будем использовать время задержки для описания свойств АКР. Этот параметр СВЛЗ определяется двумя факторами: расстоянием между микрополосковыми антеннами (эффективной длиной линии задержки) ё и толщиной пленки ЖИГ Ь.
На рис. 3 приведены передаточные характеристики активной колебательной системы для различных расстояний между микрополосковыми антеннами. Как видно, форма передаточной характеристики (расстояние между резонансными пиками Д/ и их положение /г) меняется в зависимости от расстояния между микрополосковыми антеннами ё. Увеличение этого расстояния приводит к сближению соседних резонансных пиков, что показано на рис. 4, где линиями представлены теоретические
-30Г
-50-
5.45 1
5.5 Г
5.55 Т
/, ГГц
^21, дБ
-30
-50-
^21, дБ
-30 -50
^21, дБ
Д/, МГц 10
5.55 /, ГГц
5.55 /, ГГц
ё = 9 мм
Рис. 3
ё = 3 мм
6-
5.35
5.45
Рис. 4
5.55
/, ГГц 39
2
-25 -40
-55
5.2 5.3 5.4 5.5 5.6 5.7 /, ГГц
-1-1-л-1-1-
^21' дБ
-25 -40
-55
S21' дБ
-25 -40
L = 13.6 мкм
Q -ю-
5.2 5.3 5.4 5.5 5.6 5.7 /, ГГц -1-1-1-1-1-
L = 9.64 мкм
[JuUi... .
5.2 5.3 5.4 5.5 5.6 5.7 /, ГГц
-55
S21' дБ
А/, МГц
"I-1-1-1-Г
L = 5.7 мкм
.JI.UI.II
Рис. 5
= 13.6 мкм
5.25 5.38
5.51 Рис. 6
5.64
5.77 /, ГГц
зависимости, полученные на основе (1), а маркерами даны результаты экспериментальных измерений. Эта особенность позволяет управлять формой АЧХ, что обеспечивает плавную реконфигурацию передаточных характеристик.
Вторым фактором, определяющим положение резонансных частот, как следует из (1), является толщина пленки ЖИГ. Проведено исследование влияния толщины пленки феррита Ь на передаточные характеристики. На рис. 5 представлены передаточные характеристики для пленок толщиной 5.7, 9.64, и 13.6 мкм при фиксированном расстоянии ё = 6 мм. Различия в положении начала полосы пропускания объясняются различной намагниченностью насыщения 1750, 1660 и 1780 Гс соответственно. Как видно, резонансные частоты сближаются с уменьшением толщины, что также обусловлено увеличением времени задержки. Теоретические зависимости Д/ от частоты, рассчитанные по (1), показаны на рис. 6 сплошными ли-
0 -
2i 15 10 ->
L = 13.6 мкм
V
9.64
-я
5.7
5 6 Рис. 7
d, мм
ниями, экспериментальные зависимости отмечены маркерами.
Таким образом, из рис. 3-6 следует, что АКР обладают конструктивной гибкостью, что позволяет создавать фильтры с необходимой формой АЧХ. Дополнительным преимуществом исследуемых систем является возможность широкополосной перестройки передаточных характеристик. Так, согласно закону дисперсии спиновых волн увеличение напряженности магнитного поля на 1 кЭ приводит к сдвигу резонансной частоты на 2.8 ГГц.
Добротность одиночного резонансного пика определяется коэффициентом усиления в кольце и достигает максимальных значений при G = 0. С другой стороны, добротность зависит от времени задержки, увеличение которого стабилизирует резонансную частоту. Увеличение расстояния между микрополосковыми антеннами d и уменьшение толщины пленки феррита L вносят одинаковый вклад в значение времени задержки. Однако вследствие большей плотности мощности в тонких пленках возрастает влияние нелинейных явлений, что приводит к снижению добротности. Экспериментальные зависимости добротности от расстояния между антеннами при различных толщинах пленок для наиболее выраженных резонансных пиков показаны на рис. 7. Максимальная добротность была измерена на пленке толщиной 13.6 мкм при расстоянии между микрополосковыми антеннами 9 мм и достигала 25 000. Полученное значение ограничено нелинейными явлениями в СВЛЗ.
Таким образом, в настоящей статье приведен анализ комплексного коэффициента передачи для активной колебательной системы на основе фер-ритовой линии задержки. Показано, что результаты расчета соответствуют экспериментально измеренным характеристикам. Рассмотрено влияние параметров линии задержки на вид передаточной характеристики активного кольца. Рассчитана добротность для экспериментальных АЧХ.
5
СПИСОК ЛИТЕРАТУРЫ
1. Kivshar Yu., Agraval G. Optical Solitons: from Fibers to Photonic Crystals. Amsterdam: Academic Press, 2005. 540 p.
2. Wu M. Nonlinear Spin Waves in Magnetic Film Feedback Rings // Solid State Physics. 2011. Vol. 62. P. 163-224.
3. Self-Generation of Chaotic Dissipative Soliton Trains in Active Ring Resonator With 1-D Magnonic Crystal / S. V. Grishin, Y. P. Sharaevskii, S. A. Nikitov, E. N. Be-ginin, S. E. Sheshukova // IEEE Trans. on Magnetics. 2011. Vol. 47, iss. 10. P. 3716-3719.
4. Active Narrowband Magnetostatic Wave Filter / V. E. Demidov, B. A. Kalinikos, N. G. Kovshikov, P. Edenho-fer // Electron. Lett. 1999. Vol. 35, iss. 21. P. 1856-1857.
5. Ustinov A. B., Srinivasan G., Kalinikos B. A. High-Q Active Ring Microwave Resonators based on Ferrite-Fer-roelectric Layered Structures // Appl. Phys. Lett. 2008. Vol. 92, iss. 19. P. 193512(1-3).
6. Optimum Filtration of Microwave Signals by a Multiband Spin-Wave Ring Resonator / A. A. Porokhnyuk, A. B. Ustinov, N. G. Kovshikov, B. A. Kalinikos // Tech. Phys. Lett. 2009. Vol. 35, iss. 9. P. 843-846.
M. I. Martynov, An. A. Nikitin, A. B. Ustinov Saint Petersburg Electrotechnical University "LETI"
7. Demidov V. E., Kovshikov N. G. Some Special Features of the Transition to Chaos in the Self-Modulation of Surface Spin-Waves // J. of Experim. and Theor. Phys. Lett. 1997. Vol. 66, iss. 4. P. 261-265.
8. Scott M. M., Kalinikos B. A., Patton C. E. Self-Generation of Bright Microwave Magnetic Envelope Soliton Trains in Ferrite Films Through Frequency Filtering // Appl. Phys. Lett. 2001. Vol. 78, iss. 7. P. 970-972.
9. Self-Generation of Dissipative Solitons in Mag-nonic Quasicrystal Active Ring Resonator / S. V. Grishin, E. N. Beginin, M. A. Morozova, Yu. P. Sharaevskii, S. A. Nikitov // J. of Appl. Phys. 2014. Vol. 115, iss. 5. P. 053908.
10. Kondrashov A. V., Ustinov A. B., Kalinikos B. A. Controlled Chaotic Microwave Generation Under Conditions of Four-Wave Parametric Interaction of Surface Spin Waves // Tech. Phys. Lett. 2010. Vol. 36, iss. 3. P. 224-227.
11. Theoretical Investigation of the Resonance Properties of an Active Ring Made of a Ferrite-Ferroelectric Layered Structure / A. A. Nikitin, A. B. Ustinov, A. A. Semenov, B. A. Kalinikos // J. of Tech. Phys. 2012. Vol. 82, iss. 7. P. 98-101.
12. Stancil D. D., Prabhakar A. Spin Waves: Theory and Applications. Springer: Heidelberg, 2009. 348 p.
Investigation of the Active Oscillation System Microwave Properties Based on a Ferrite Time Delay Line
The complex transmission coefficient of the active ring resonators based on the spin-wave delay lines was investigated both theoretically and experimentally. Influence of the parameters of the delay line on the transmission coefficients was studied and analyzed. It was shown that the resonant frequencies that define the passbands of the ring resonator depend on the ferrite film thickness and the distance between spin-wave antennae. These dependences give possibility to reconfigure the transmission coefficient that in combination with magnetic tuning provide flexibility for microwave applications.
Active oscillation system, spin wave, ferrite film
Статья поступила в редакцию 29 марта 2016 г.