Научная статья на тему 'ИССЛЕДОВАНИЕ ПРОЧНОСТИ ОПАЛУБКИ С ПРИМЕНЕНИЕМ ПОДВЕСНОЙ СИСТЕМЫ ДЛЯ ПЛИТНО-СВАЙНОЙ КОНСТРУКЦИИ'

ИССЛЕДОВАНИЕ ПРОЧНОСТИ ОПАЛУБКИ С ПРИМЕНЕНИЕМ ПОДВЕСНОЙ СИСТЕМЫ ДЛЯ ПЛИТНО-СВАЙНОЙ КОНСТРУКЦИИ Текст научной статьи по специальности «Строительство и архитектура»

CC BY
3
1
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
конечный элемент / анализ / опалубка / finite element / analysis / formwork

Аннотация научной статьи по строительству и архитектуре, автор научной работы —

Платная дорога Семаранг – Демак была запроектирована с учетом подробных процедур, имея целью решение проблем хаотичной дорожной сети, увеличения интенсивности движения, дорожных заторов, просадок грунта и приливных водных потоков. Он имеет платные въезды в подрайоны Семаранг, Генук и Саюнг и заканчивается в городе Демак. Его цель — минимизировать дорожные пробки, обеспечить доступ к туристическим городам и служить приливно-отливным барьером для морской набережной. Правильная конструкция системы опирания опалубки имеет решающее значение для обеспечения безопасного строительства основной конструкции. Для конструкции «плита-на-сваях» с использованием системы подвесных опалубок используются уникальный дисковый замок и стальные трубчатые леса. Такой подход позволяет получить конструктивно прочную и надежную систему, не подверженную скручиванию, обеспечивающую быстрый монтаж и демонтаж, значительно повышая эффективность строительства. Система использовалась в рамках проекта платной дороги Семаранг – Демак, ее эффективность оценивалась с помощью программного обеспечения для анализа методом конечных элементов. Программное обеспечение обеспечивает безопасность и удобство анализа конструкций с учетом номинальной прочности каждого стального профиля и действующих внутренних сил. Все компоненты безопасны, поскольку их фактическое отклонение находится в пределах максимального предела.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

STRENGTH ANALYSIS OF FORMWORK USING FALSEWORK FLYING SYSTEM ON SLAB-ON PILE STRUCTURE

The Semarang-Demak Toll Road was planned with detailed procedures to address disorganized road networks, increased traffic volumes, congestion, land subsidence, and tidal floods. It has toll entrances in Semarang, Genuk, and Sayung sub-districts and ends in Demak City. Its purpose is to minimize traffic jams, provide access to tourist cities, and serve as a tidal barrier sea embankment. The formwork support system's proper design is crucial to ensure the safe construction of the main structure. A unique disk lock and steel tubular scaffold are utilized for a slab-on-pile structure employing a flying falsework system. This approach results in a structurally sound and secure construction that is not susceptible to twisting, providing quick erection and disassembly, significantly improving construction efficiency. The system was employed in a portion of the Semarang-Demak toll road project, and its efficacy was evaluated using finite element analysis software. The software provides security and convenience in analyzing structures, paying attention to the nominal strength of each steel profile and the internal forces at work. All components are safe as their actual deflection falls within the maximum limit.

Текст научной работы на тему «ИССЛЕДОВАНИЕ ПРОЧНОСТИ ОПАЛУБКИ С ПРИМЕНЕНИЕМ ПОДВЕСНОЙ СИСТЕМЫ ДЛЯ ПЛИТНО-СВАЙНОЙ КОНСТРУКЦИИ»

International Journal for Computational Civil and Structural Engineering, 19(4) 208-221(2023)

DOI:10.22337/2587-9618-2023-19-4-208-221

STRENGTH ANALYSIS OF FORMWORK USING FALSEWORK FLYING SYSTEM ON SLAB-ON PILE STRUCTURE

Fendi Hary Yanto

Disaster Research Center, Sebelas Maret University, Jebres, Surakarta, INDONESIA Faculty of Vocational School Sebelas Maret University, Surakarta, INDONESIA

Abstract: The Semarang-Demak Toll Road was planned with detailed procedures to address disorganized road networks, increased traffic volumes, congestion, land subsidence, and tidal floods. It has toll entrances in Semarang, Genuk, and Sayung sub-districts and ends in Demak City. Its purpose is to minimize traffic jams, provide access to tourist cities, and serve as a tidal barrier sea embankment. The formwork support system's proper design is crucial to ensure the safe construction of the main structure. A unique disk lock and steel tubular scaffold are utilized for a slab-on-pile structure employing a flying falsework system. This approach results in a structurally sound and secure construction that is not susceptible to twisting, providing quick erection and disassembly, significantly improving construction efficiency. The system was employed in a portion of the Semarang-Demak toll road project, and its efficacy was evaluated using finite element analysis software. The software provides security and convenience in analyzing structures, paying attention to the nominal strength of each steel profile and the internal forces at work. All components are safe as their actual deflection falls within the maximum limit.

Keywords: finite element, analysis, formwork

ИССЛЕДОВАНИЕ ПРОЧНОСТИ ОПАЛУБКИ С ПРИМЕНЕНИЕМ ПОДВЕСНОЙ СИСТЕМЫ ДЛЯ ПЛИТНО-СВАЙНОЙ КОНСТРУКЦИИ

Фенди Гарри Янто

Центр исследования катастроф, Университет Себелас Марет, Джебрес, Суракарта, Индонезия

Аннотация: Платная дорога Семаранг - Демак была запроектирована с учетом подробных процедур, имея целью решение проблем хаотичной дорожной сети, увеличения интенсивности движения, дорожных заторов, просадок грунта и приливных водных потоков. Он имеет платные въезды в подрайоны Семаранг, Генук и Саюнг и заканчивается в городе Демак. Его цель — минимизировать дорожные пробки, обеспечить доступ к туристическим городам и служить приливно-отливным барьером для морской набережной. Правильная конструкция системы опирания опалубки имеет решающее значение для обеспечения безопасного строительства основной конструкции. Для конструкции «плита-на-сваях» с использованием системы подвесных опалубок используются уникальный дисковый замок и стальные трубчатые леса. Такой подход позволяет получить конструктивно прочную и надежную систему, не подверженную скручиванию, обеспечивающую быстрый монтаж и демонтаж, значительно повышая эффективность строительства. Система использовалась в рамках проекта платной дороги Семаранг - Демак, ее эффективность оценивалась с помощью программного обеспечения для анализа методом конечных элементов. Программное обеспечение обеспечивает безопасность и удобство анализа конструкций с учетом номинальной прочности каждого стального профиля и действующих внутренних сил. Все компоненты безопасны, поскольку их фактическое отклонение находится в пределах максимального предела.

Ключевые слова: конечный элемент, анализ, опалубка

INTRODUCTION

The development of toll roads in Indonesia has experienced significant progress and quality

improvement [1]. The construction of toll roads itself is a form of effort by the government to help the Indonesian people carry out activities that require the mobilization of goods or

services, in economic or economic terms, well and short.

Semarang is the capital of Central Java, with high economic growth. This growth can be seen in new industrial buildings, residential areas, and the expansion of city areas. This development also results in problems such as disorganized road networks and increasing traffic volumes, which cause congestion. Changes in land use result in the absorption area being reduced, causing land subsidence and tidal floods [2].

It was planned to build a toll road under detailed and thorough planning procedures, namely the Semarang-Demak Toll Road, which is integrated with the Semarang City Sea Embankment. With this plan, it is hoped to overcome the congestion problem due to the increase in vehicle volume on the Semarang-Demak highway and the sea embankment, which is expected to overcome tidal floods in the Semarang coastal area [3]. The Semarang-Demak Toll Road Project, which stretches from West to East, is part of the Toll Road system connecting the city of Semarang and the city of Demak. This toll road has a length of 27 km, which is divided into two packages. Package 1 is planned to start from Semarang to Sayung, which has a length of 10.69 km. Package 2 is planned to start from Sayung to Demak, which has a length of 16.31 km. The toll entrance is located in the Semarang, Genuk, and Sayung sub-districts, which end in Demak City [4].

The function of the Semarang-Demak toll road is to minimize traffic jams on the Semarang-Demak-Surabaya north coast route and also to get to tourist cities in Demak, namely the Kadilangu/Sunan Kalijaga Tomb and the Great Mosque of Demak, as well as to overcome existing tidal floods along the north coast as a tidal barrier sea embankment [5].

PROJECT CONDITIONS

The condition in the area Project Development Road Toll Semarang Demak STA 10+394 up to STA 27+000, Which length is around 16.31 km, dominated by rice fields and swamps. Land base from project This Also has characteristics that are very soft to a depth of about 30 m below the existing surface. Due to the depth of the soil, the heap's limitation is from the H-Critical factor. An Embankment with PVD Preloading soil improvement treatment cannot accommodate a finish grade that is too high. Thus, a Slab-on Pile structure is needed to meet the need for road Finish Grade [6].

A slab on a pile is a slab structure that stretches between piles. This structure is suitable for roads with high Finish Grade designs and cannot accommodated by heap land customary. Structure This consists of Pile, Pile Heads, and Decks Slabs.

The following is a typical slab-on-pile design and work map:

&pui p4f control) ptn dirndar n

Figure 1. Slab On Pile Structure

Figure 2. Scope of workfor Slab On Pile

FLYING FALSEWORK SYSTEM FORMWORK

Shoring System (Scaffolding)

In making a building element using reinforced concrete as the primary material, a mold is needed so that the reinforced concrete takes the same shape desired element. The mold in question is formwork [7]. Slabs on roads, toll roads, or bridges usually use formwork supported by scaffolding because this work is done at a height. Scaffolding will withhold heavy Alone from formwork, And concrete bony ones that will cast.

The shoring system is a slab formwork system that uses a series of scaffolding, which is used to support the deck slab formwork [8] when casting concrete. The scaffolding needed to support the formwork is usually quite a lot. Apart from that, the support of this scaffolding is the subgrade.

Flying Falsework System

Based on geotechnical investigations in the Semarang-Demak 2 STA 10+690 - 27+000. The soil conditions are in the dominant line of

clay soil, so the soil's carrying capacity is relatively low. In making formwork supported by scaffolding, it is necessary to prepare firm scaffolding ground to accommodate the load from the formwork and concrete, which will set a land base [9]. It needs time A relatively long. Apart from that, much scaffolding material is needed to make formwork matter. It usually Can overcome with processing slab per segment, so there is work on dismantling and re-installing scaffolding and formwork. However, the problem is that disassembly and installation take a long time. Therefore PT. PP made an innovation, namely Flying Falsework (Formwork Flying).

Flying Falsework is formwork for slab casting. This formwork uses steel material, which is arranged in such a way. This formwork hangs between the pile heads. Load from casting and weight from formwork will detained by the pile head. So that place Which needed will less And need setup land base For tool heavy Which Also.

The following is a 3D design of formwork [10] with a flying falsework system :

Figure 3. Flying Fa

Advantages of Flying System Formwork Falsework

In making a slab, scaffolding is needed to support the formwork from the slab ( shoring method ), which rests on the subgrade. The subgrade soil in constructing the Semarang Demak toll road has characteristics that are not strong enough to be used as a footing. Therefore, slab formwork using a flying falsework system is used. The following are the advantages of the flying falsework formwork system in terms of cost, quality, and time [11]. Flying Falsework Formwork System has advantages in terms of cost, namely that it is expensive at the start but cheap during implementation [12]. Due to high costs, elicitation material steel For structure flying falsework. However, because the structure slab on the pile Is very long, so far, 9.56 km, the use of costs will be more efficient when compared to using scaffolding.

The use of the shoring method requires a firm base soil. In case subsidence occurs, land consequence burden from implementation work deck slabs, so results from the deck slab will be deflection. So the quality provided could be better [13].

Concrete deck slabs on flying falsework structures will have minimal deflection if using a flying falsework system because the support is

•work 3D Rendering

directly dependent on the pile head. Therefore, the work will be more precise with maximum results.

Using flying falsework formwork has the advantage that the formwork series can reach 35 spans on a slab or pile. Compared to the shoring method, which can only have a maximum of one formwork span due to the large amount of scaffolding required for one span [14]. So, the time used for slab casting will be faster than the shoring method. The proper design of the formwork support system is paramount to ensure the safe construction of the main structure. A unique disk lock and steel tubular scaffold are utilized for a slab-on-pile structure utilizing a flying falsework system to establish a stable connection between members in multiple directions. This approach results in a structurally sound and secure construction that is not susceptible to twisting. Furthermore, the formwork support system provides quick erection and disassembly, significantly improving construction efficiency. Given these benefits, this system is widely employed in formwork support. The formwork support system was leveraged in a portion of the Semarang-Demak toll road project, and its efficacy was evaluated using finite element analysis [15] software SAP2000.

MATERIAL & MODEL Material

The materials used for flying falsework work are as follows: Steel Grade A36

Material Properties of Steel Grade A 36 are as follows:

E = 200000MPa Fy = 240MPa Fu =400MPa

The steel used for flying falsework formwork

has the following dimensions:

a. WF 300.150.6,5.9 Double

The WF 300.150.6,5.9 Double steel profile is

used as a support that depends on the PT Bar.

Fisure 4. WF300.150.6.5.9Double

b. WF 150.75.5.7

WF 150.75.5.7 steel profile directly supports 6mm plates for slab formwork.

Fisure 5. WF 150.75.5.7 (before installation)

c. HB 350.350.12.19

HB 350.350.12.19 Steel Profile is used as a longitudinal connector placed on a WF 300.150.6,5.9 Double support.

Fisure 7. HB 350.350.12.19

d. 6 mm plate and UNP 80

Steel plates are used to support the slab to be

cast directly, with a plate steel thickness of 6mm

And supported with a configuration.

UNP 80 steel to increase the stiffness of the

steel plate. This steel plate has an area per

segment of3.5mx 1.5 m.

Figure 8. 6mm Steel Plate

e. Jack U Head

The U Head Jack is used to adjust the slope and elevation of the steel plate. So, the slab shape can be adjusted using the U-Head Jack.

| h I ■

Figure 11. Sparing Pipe

Figure 9. U Head Jack 50mm

PT BARGrade 830/1030

Material Properties ofPT BAR Grade 830/1030

are as follows:

E = 200000MPa

Fy =830MPa

Fu = 1030MPa

PT Bar D32 is used as a support hung on the pile head. Thisjack is inserted into the pile head via a sparing pipe and then locked on the pile head.

Figure 12. PT Bar Washing at Pile Head

Modeling Material SAP 2000 Software

The following is the material modeling of the FalseWork Flying Formwork: a. Steel Grade A36

O f.trt»».*! Prejmty tt*§

»nfl 0+iMy Cator

arm*_

UMtfylSnw IU1II

UMvUCtCMtctj, c

Q iwttn Tifetf.-»««»« Pmpttfy Cwptny

[ OK I I Cwt I

Figure 10. PTBar D32

Figure 13 A36 Steel Modeling

b. PT BAR

c. WF 300.150.6,5.9 Double

■MmOlinM» I

Fisure 15. Modelins HB 350.350.12.19 b. HB 350.350.12.19 Double

} f P } * t> R ■ ^ «

Fisure 16. Modeling HB 350.350.12.19 Double

I PMIÍ B * 9

Πt

x

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

a

Fisure 17. Modelins WF300.150.6,5.9Double d. WF 150.75.5.7

Fisure 14. PTBAR 830/1030 Steel Modeling

Section Modeling Properties

The following is the modeling of the steel

structure used in the formwork:

a. HB 350.350.12.19

□ LWiifcPlKigeSiClKHl

0iA4tt44ftt <13] T»1fc*twi*i (Ö)

tin

Ml*} wfflh 113») dl (Kb i

Figure 18. WF Modeling 150.75.5.7 e. UNP 80

0 Ch*md Section

MB) CMHfeSiflgtWijflt <G I FtejewtAm («0 Acemctntu it*)

E

is

i ho* SAW talar Oft« nAna*M

« I Cw«<

Fisure 19. UNP 80 Modeling

i. PT BAR 32

f. UNP 80 Double

0 Derfile Owm Section

OK I CmoK

Figure 20. Modeling UNP 80 Double g. Jack U Head 50 mmm

BcircKsewn

jO

Fisure 21. 50 mm U Head Jack Modeling h. Steel Plate 6 mmm

□ feciiSttftriQit* X

O ' '

O 5W-TT*» QjWt.Thii

O" 0«

Os

S* T»ft DfCtWiffl PteeeflM

1 OK | CiXH

Figure 22. Modeling of 6 mm steelplate Volume 19, Issue 4, 2023

□ octeScaion

[ OK } OfXM

Figure 23. Modeling PTBAR 32 mm

Load Pattern and Load Combination a. Input Load Patterns

In the SAP2000 program, several load patterns are included in the table below:

Tablel. Definition ofload pattern^

Load Pattern Definition

D.L Dead load that has been modeled in SAP2000 (ex: IWF Beam, Steel Plate)

SIDL Additional dead load (example: Fresh concrete, Reinforcing Steel)

LL Living Expenses (ex: Worker Expenses)

□ "! mad >«mi

iianrur. MMp U^ÇKT MiUÉM . > -l'y

* vro 1 -y v

IX L 5Q. Bw M 1 t la

«

Figure 24. Define loadpattern b. Input Load Combination

On modeling structure slats system flying falsework used Loading combinations are as follows :

1. 1.4D

2. 1.2D + 1.6LL

This combination is based on SNI 1727:2020 concerning Minimum Loads on Buildings[16]. The following is the load combination input in the SAP2000 program: a. 1.4D

Q toad Combination Data X

lUitf-Getfe-ttrf: M D

tfodfySflowHote»

Oeate Nonlnaar Load Cm frem Ls*J Corroo

Oethfl ConfctnOW if Load Case Rmuís Lo*dCa»«Ni/ne Lead Cm« Typ«

CtAD V Untar Stake

uodc Soie Facte*

I OK I Cane«)

Figure 25. 1.4 D combination

b. 1.2D+ 1.6 LL

Q load Combination Data

Lud CoffltattUOA Nimc

Create Nortear Load Caae tro« Load Con*»

c. Envelopes

The envelope is used to find the most significant force on each element in SAP2000 based on the load combination that has been entered.

0 Load Combination Data X

Load Combination Nam«

Lead CoffiOratcm Tyt>e

Cao vert to Usar Load Combo

(MKtiananM)

UodrfyiSfiow PiotM

Defne Combnaton of Load Cue RnOi Load CaM Heme Load Case Typ«

UD-1.6L v Contwibon 1.

1.4 D 1,

Figure 27. Envelope combination

The formwork frame is modeled according to the approved shop drawing. Modeled from PT Bar Hanger, WF 300 Hanger Beam Double, Beam Transverse HB 350,350, Beam Elongated WF 300 double, Beam support WF 150.75 to Jack U Head and Floor Plate steel. The UNP frame modeling is more superficial than that in the shop drawing because the UNP function in this modeling only distributes the construction load to the mainframes. The modeling is made into 5 Slab on Pile spans (5 x 7m) to represent the analysis of internal forces in the middle and edge spans. Modeling formwork flying falsework need to give a linear link on a number of the meeting point between the rods so that the load distribution works correctly and as expected. Below is the linear link modeling and formwork structure modeling with the entire flying falsework system in the SAP 2000 program :

Figure 26. Combination 1.2 D + 1.6LL

FM»* fir uw, Am m S«H imt»

ftspul» ■ tMwi Tha Ltftg* ti ■ LM SP*« fmnr i DM «rTiatiMt'UM MM s«Mtt

09

rflmt 0i<

Oi

O si

O № O ®

cwu

Figure 28. Linear link modeling

Loading

Load, Which happens in structure formwork systems flying falsework, consists of additional dead loads from fresh concrete and loads from workers and tools. The value of the imported load can be seen from the calculation below.

a. Dead Load

q SIDL = Thick x y concrete = 0.35 x 2690 = 941.5fcg/m 2

b. Life

qLL = 250 kg/m 2 The load above is input to the steel plate as a load evenly distributed over the area.

Figure 29. Overall modeling

I

Ei

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

it ija i*1 ■ i ii__

Figure 30. Loading are

RESULTS AND DISCUSSION

The analysis provides security and convenience output from modeling with SAP 2000 software.

a. Security Controls Structure

The structure modeled in SAP2000 software is analyzed by paying attention to the nominal strength of each steel profile with the internal forces that will work. If the ratio between these two things is below the value 1, the structure is strong enough to withstand the working load. In the results of the analysis Figure 31, it can be seen that all profiles have a capacity ratio below 1. Therefore, the structure is safe and robust enough to withstand the existing load.

b. Deflection Control Structur

The deflection limits that pertain to steel structures utilized in building construction are in

accordance with SNI 1729:2020 [16].As per the prevailing standards of the industry, the deflection limit that applies to standard beam components is set at L/240 (see Table 2). The software SAP 2000 provides both security and convenience in analyzing structures. Analyzing the structure modeled in SAP2000 software involves paying attention to the nominal strength of each steel profile and the internal forces at work. If the capacity ratio of a profile is below 1, it means the structure is strong enough to withstand the existing load. Figure 31 shows the capacity ratio of each profile, and it is evident that all profiles have a capacity ratio below 1, meaning the structure is safe and robust.

Table 2. Deflection limit controls

No Structural Components Location L (mm) Max Deflection (mm) Actual deflection (mm) Status

1 Longitudinal Beam Middle of Span 3000 (edge) 12.5 8.73 (edge) Safe

2 Longitudinal Beam Span Edge 7000 (mid) 3000 (edge) 29.1 12.5 5.6 (mid) 7.8 (edge) Safe

3 Transverse Beam Middle of Span 3500 14.5 2.8 Safe

4 Transverse Beam Span Edge 3500 14.5 8.6 Safe

i

I

ni

]

Figure 31. Structure capacity ratio

CONCLUSION

The software for analyzing structures with the SAP 2000 is an excellent tool that provides security and convenience. To ensure proper analysis of the structure modeled in SAP2000 software, it is essential to consider the nominal strength of each steel profile and the internal forces at work. If the capacity ratio of a profile is less than 1, it indicates that the structure can withstand the existing load. Fortunately, all profiles have a capacity ratio below 1, meaning the structure is safe and robust. As per SNI 1729:2020 Steel Structure Planning for Buildings, for regular beam structural components, the deflection limit is L/240. This limit controls different structural components, including longitudinal beams, transverse beams, and their locations, maximum deflection, actual deflection, and status. Fortunately, all components are safe, as their actual deflection falls within the maximum limit. This implies that the structure is strong, and all its components can withstand all the internal and external forces.

REFERENCES

1. L.B. Sihombing, "A new financial model of toll road infrastructure," 2014 Int. Symp. Bus. ..., vol. i, 2014.

2. Z. Mahroini, "Local Government Managament And Local Communty Mitigation Of Tidal Flooding In Sayung Sub-District Demak Regency, Central Java Province, Indonesia," Jul. 2021.

3. R. Mudiyono and G. Asfari, "Kajian Pengaruh Pembangunan Jalan Tol Semarang - Demak Terhadap Kinerja Jalan Raya Kaligawe," J. Planol., vol. 18, p. 132, Apr. 2021, doi: 10.30659/jpsa.v18i1.13316.

4. U. Sari, S. P. Wardani, A. Muntohar, W. Partono, and K. Sadono, "Consolidation settlement prediction and monitoring of toll road embankment at STA 23+650 Semarang-Demak Toll Road section," E3S

Web Conf., vol. 429, Sep. 2023, doi: 10.1051/e3sconf/202342904026.

5. E. Biruiii and W. Kurniawati, "Tingkat Kesiapan Masyarakat Kecamatan Sayung Terhadap Rencana Pengintegrasian Pembangunan Tanggul Laut Dengan Jalan Tol Semarang-Demak," Tek. PWK (Perencanaan Wil. Kota), vol. 10, pp. 117— 126, May 2021, doi: 10.14710/tpwk.2021.30798.

6. I. Aini, E. Maulana, and H.T. Santoso, "Evaluasi Metode Perbaikan Tanah Lunak dengan Preloading Kombinasi PVD-PHD pada Proyek Pembangunan Jalan Tol Semarang-Demak Paket II," Bentang J. Teor. dan Terap. Bid. Rekayasa Sipil, vol. 11, pp. 21—36, Jan. 2023, doi: 10.33558/bentang.v11i1.4622.

7. H. Jin and P. Goodrum, "Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects," Algorithms, vol. 16, p. 348, Jul. 2023, doi: 10.3390/a16070348.

8. D. Kot, "Study Of Samples Of Permanent Post-Tension Reinforced Concrete Formwork Slabs For Bridges Deck," Automob. ROADS ROAD Constr, pp. 174— 183, Jun. 2022, doi: 10.33744/0365-81712022-111-174-183.

9. T. Siwowski, Bridge Engineering -Selectedlssues. 2018.

10. M. Szöstak and M. Napiörkowski, "Formwork designing in BIM technology," vol. 94, pp. 39—41, Feb. 2023, doi: 10.5604/01.3001.0016.2696.

11. R. Kotwal, N. Pawar, R. Funde, M. Chidre, and V. Bhusare, "Modified Formwork System for Slab Element," Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, pp. 210—212, May 2022, doi: 10.22214/ijraset.2022.42098.

12. S. Muhammad, Building Formwork. 2020. doi: 10.13140/RG.2.2.29749.29923.

13. J. Andre, R. Besle, and A. Baptista, "Risk Analysis of Bridge Falsework Structures," 2017, pp. 409—426. doi: 10.1007/978-3319-47886-9 28.

14. A. Elsayed, M. Darwish, and K. Nassar,

"Design and Constructability of Novel Extendable Arched Steel Truss Falsework," J. Constr. Eng. Manag., vol. 147, Dec. 2020, doi: 10.1061/(ASCE)C0.1943-7862.0001989.

15. M. Abbu, D. Talib Hashim, H.M.A. Albegmprli, and ahmed S.Naje, "Fe Modelling For Capacities Of Headed Stud Shear Connectors In Composite Steel Beams With Slabs Concrete," Int. J. Comput. Civ. Struct. Eng., vol. 19, no. 3 SE-MaTepnajiti Btmycica, pp. 83-91, Sep. 2023, doi: 10.22337/2587-9618-2023-19-383-91.

16. J. Aloysius, J. Sumito, D. Prayogo, and H. Santoso, "Optimization of concentrically braced steel frame structures based on SNI 1726:2019, SNI 1727:2020, SNI 1729:2020, and AISC 341-16," IOP Conf. Ser. Earth Environ. Sci., vol. 907, p. 12010, Nov. 2021, doi: 10.1088/17551315/907/1/012010.

СПИСОК ЛИТЕРАТУРЫ

1. L.B. Sihombing, "A new financial model of toll road infrastructure," 2014 Int. Symp. Bus. ..., vol. i, 2014.

2. Z. Mahroini, "Local Government Managament And Local Communty Mitigation Of Tidal Flooding In Sayung Sub-District Demak Regency, Central Java

-Province, Indonesia," Jul. 2021.-

3. R. Mudiyono and G. Asfari, "Kajian Pengaruh Pembangunan Jalan Tol Semarang - Demak Terhadap Kinerja Jalan Raya Kaligawe," J. Planol., vol. 18, p. 132, Apr. 2021, doi: 10.30659/jpsa.v18i1.13316.

4. U. Sari, S. P. Wardani, A. Muntohar, W. Partono, and K. Sadono, "Consolidation settlement prediction and monitoring of toll road embankment at STA 23+650 Semarang-Demak Toll Road section," E3S Web Conf, vol. 429, Sep. 2023, doi: 10.1051/e3sconf/202342904026.

5. E. Biruni and W. Kurniawati, "Tingkat Kesiapan Masyarakat Kecamatan Sayung Terhadap Rencana Pengintegrasian Pembangunan Tanggul Laut Dengan Jalan Tol Semarang-Demak," Tek. PWK (Perencanaan Wil. Kota), vol. 10, pp. 117126, May 2021, doi: 10.14710/tpwk.2021.30798.

6. I. Aini, E. Maulana, and H.T. Santoso, "Evaluasi Metode Perbaikan Tanah Lunak dengan Preloading Kombinasi PVD-PHD pada Proyek Pembangunan Jalan Tol Semarang-Demak Paket II," Bentang J. Teor. dan Terap. Bid. Rekayasa Sipil, vol. 11, pp. 21-36, Jan. 2023, doi: 10.33558/bentang.v11i1.4622.

7. H. Jin and P. Goodrum, "Integrated Decision Support Framework of Optimal Scaffolding System for Construction Projects," Algorithms, vol. 16, p. 348, Jul. 2023, doi: 10.3390/a16070348.

8. D. Kot, "Study Of Samples Of Permanent Post-Tension Reinforced Concrete Formwork Slabs For Bridges Deck," Automob. ROADS ROAD Constr., pp. 174183, Jun. 2022, doi: 10.33744/0365-81712022-111-174-183.

9. T. Siwowski, Bridge Engineering -Selectedlssues. 2018.

10. M. Szöstak and M. Napiörkowski, "Formwork designing in BIM technology," vol. 94, pp. 39-41, Feb. 2023, doi: 10.5604/01.3001.0016.2696.

11. R. Kotwal, N. Pawar, R. Funde, M.

-Chidre,—and—¥,—Bhusare,—"Modified

Formwork System for Slab Element," Int. J. Res. Appl. Sci. Eng. Technol., vol. 10, pp. 210-212, May 2022, doi: 10.22214/ijraset.2022.42098.

12. S. Muhammad, Building Formwork. 2020. doi: 10.13140/RG.2.2.29749.29923.

13. J. Andre, R. Besle, and A. Baptista, "Risk Analysis of Bridge Falsework Structures," 2017, pp. 409-426. doi: 10.1007/978-3-319-47886-9_28.

14. A. Elsayed, M. Darwish, and K. Nassar, "Design and Constructability of Novel

Extendable Arched Steel Truss Falsework," J. Constr. Eng. Manag., vol. 147, Dec. 2020, doi: 10.1061/(ASCE)C0.1943-7862.0001989. 15. M. Abbu, D. Talib Hashim, H.M.A. Albegmprli, and ahmed S.Naje, "Fe Modelling For Capacities Of Headed Stud Shear Connectors In Composite Steel Beams With Slabs Concrete," Int. J. Comput. Civ. Struct. Eng., vol. 19, no. 3 SE-MaTepnajiti Btmycica, pp. 83-91, Sep.

2023, doi: 10.22337/2587-9618-2023-19-383-91.

16. J. Aloysius, J. Sumito, D. Prayogo, and H. Santoso, "Optimization of concentrically braced steel frame structures based on SNI 1726:2019, SNI 1727:2020, SNI 1729:2020, and AISC 341-16," IOP Conf. Ser. Earth Environ. Sci., vol. 907, p. 12010, Nov. 2021, doi: 10.1088/17551315/907/1/012010.

Fendi Hary Yanto, Disaster Research Center, Sebelas Maret University, Jebres, Surakarta, 57126, Indonesia. Faculty of Vocational School Sebelas Maret University, Jalan Kolonel Sutarto Nomor 150K, Jebres, Surakarta City, Central Java 57126, Indonesia. fendi@staff.uns.ac.id

Фенди Гарри Янто, Центр исследования катастроф, Университет Себелас Марет, Джебрес, Суракарта, 57126, Индонезия, fendi@staff.uns.ac.id

i Надоели баннеры? Вы всегда можете отключить рекламу.