Научная статья на тему 'Исследование нового метода интенсификации процесса екстрагирования свекловичного жома'

Исследование нового метода интенсификации процесса екстрагирования свекловичного жома Текст научной статьи по специальности «Химические технологии»

CC BY
32
7
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ПЕКТіНВМіСНА СИРОВИНА / ПРОЦЕС КИСЛОТНОГО ЕКСТРАГУВАННЯ / ПЕКТИНОВі РЕЧОВИНИ / ПЕРЕМіШУВАЛЬНИЙ ЕЛЕМЕНТ / PECTIN-CONTAINING RAW MATERIAL / PROCESS OF ACIDICEXTRACTION / PECTIN SUBSTANCES / STIRRING ELEMENT

Аннотация научной статьи по химическим технологиям, автор научной работы — Deynichenko G., Guzenko V., Dmytrevskyi D., Chervonyi V., Kolisnichenko T.

Освещены результаты экспериментальных исследований процесса кислотного экстрагирования пектинсодержащего сырья (свекловичного жома) с применением новой модели перемешивающего элемента по сравнению с обычной решетчатой мешалкой. Разработана экспериментальная установка и методика обработки результатов исследования процесса экстрагирования пектиновых веществ из пектинсодержащего сырья (свекловичного жома) с применением нового комбинированного перемешивающего элемента. Построены математические модели в виде нелинейных регрессионных уравнений методом планирования многофакторного эксперимента с входными параметрами температуры, продолжительности и гидромодуля. При этом установлено, что основное влияние на изменение выходных параметров составляют входные переменные температуры и продолжительности процесса. Приведены графические зависимости количественных и качественных характеристик пектиновых экстрактов (концентрация пектиновых веществ, молекулярная масса, комплексои гелеобразующей способности) в зависимости от входных параметров температуры и продолжительности процесса экстрагирования пектиновых веществ. Анализ этих характеристик позволил установить рациональные входные параметры процесса экстрагирования пектиновых веществ. Рациональными рабочими параметрами процесса кислотного экстрагирования пектиновых веществ из свекловичного жома с применением нового метода интенсификации процесса являются: температура 60...70 °С, продолжительность 1...1,1 часа и гидромодуль 8...10. Данное исследование проведено с целью интенсификации извлечения пектиновых веществ из пектинвмиснои сырья, повышение технического уровня процесса экстрагирования и реализации разработанного метода в промышленных условиях. По результатам исследований была установлена целесообразность применения нового метода интенсификации. Дальнейшее внедрение этих результатов в пищевую и перерабатывающую промышленность позволяет наладить производство широкого ассортимента пектинопродуктив (экстракты, жидкие и сухие пектиновые концентраты)

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по химическим технологиям , автор научной работы — Deynichenko G., Guzenko V., Dmytrevskyi D., Chervonyi V., Kolisnichenko T.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Study of the new method to intensify the process of extraction of beet pulp

We report results of experimental research into the process of acidic extraction of pectin-containing raw material (beet pulp) using the new model of the stirring element compared with the conventional grid stirrer. We have designed the experimental installation and devised a procedure for processing the results of studying the extraction process of pectin substances from pectin-containing raw materials (beet pulp), using the new combined stirring element. Mathematical models were constructed in the form of nonlinear regression equations based on the multifactor experiment planning method that employed input parameters of temperature, duration, and hydromodule. It was established that the principal influence on a change in the output parameters is exerted by the input variables of temperature and duration of the process. We show graphical dependences for quantitative and qualitative characteristics of pectin extracts (pectic substances concentration, molecular weight, complexand gel-forming capability) depending on the input parameters of temperature and duration of the process for extraction of pectic substances. An analysis of these characteristics allowed us to determine the rational input parameters for the process of extraction of pectin substances. The rational working parameters of the process of acidic extraction of pectin substances from sugar beet pulp with the application of the new method for intensifying the process, are: temperature is 60...70 °C, duration is 1…1.1 hours, and hydromodule is 8...10. The purpose of this study was to intensify the extraction of pectic substances from pectin-containing raw materials, to improve technical level of the extraction process and to implement the developed method under industrial conditions. Based on the research results, the feasibility of the new method for intensification was established. Further implementation of these results in the food and processing industries would make it possible to produce a wide assortment of pectin-products (extracts, liquid and dry pectin concentrates).

Текст научной работы на тему «Исследование нового метода интенсификации процесса екстрагирования свекловичного жома»

Technology and equipment of food production

-□ □-

Висвхтлено експериментальн дослгдження процесу кислотного екстрагування пектинвмгс-ног сировини (бурякового жому) iз застосуван-ням новог модем перемшувального елементу порiвняно зi звичайною рештчастою мшал-кою. Розроблено експериментальну установку i методику обробки результатов дослъджен-ня процесу екстрагування пектинових речовин iз пектинвмкно'г сировини (бурякового жому) iз застосуванням нового комбтованого перемшувального елементу. Побудоват матема-тичт моделi у виглядi нелттних регресшних рiвнянь за методом планування багатофак-торного експерименту з вхгдними параметрами температури, тривалостъ та ггдромодуля. При цьому встановлено, що основний вплив на змшу вихiдних параметрiв становлять вхiд-т змтш температури та тривалостъ процесу.

Приведен графiчнi залежностъ кглькгсних та якгсних характеристик пектинових екстрак-тгв (концентрация пектинових речовин, моле-кулярна маса, комплексо- та драглеутворю-вальна здаттсть) в залежностъ вiд вхгдних параметрiв температури та тривалостъ процесу екстрагування пектинових речовин. Аналгз цих характеристик дозволив встановитирацю-нальш вхiднi параметри процесу екстрагування пектинових речовин. Рацюнальними робочими параметрами процесу кислотного екстрагування пектинових речовин з бурякового жому iз застосуванням нового методу ттенсифжацп процесу е температура 60...70 °С, тривалгсть -1...1,1 години та гидромодуль 8...10.

Дане дослгдження проведене з метою ттенсифжацп вилучення пектинових речовин з пек-тинвмкно'г сировини, тдвищення технчного рiвня процесу екстрагування та реалiзацiг роз-робленого методу в промислових умовах. За результатами дослгджень було встановлено дощльтсть застосування нового методу ттенсифжацп. Подальше впровадження цих результатов у харчову та переробну промисловкть дае змогу налагодження виробництва широкого асортименту пектинопродуктъв (екстракти, рiдкi та сухi пектиновi концентрати)

Ключовi слова: пекттвмкна сировина, про-цес кислотного екстрагування, пектиновiречо-

вини, перемшувальний елемент -□ □-

1. Introduction

Lack of dietary fiber in human nutrition has a negative impact on human health, reducing the resistance of his organism under unfavorable environmental impact. Dietary fibers are a complex of polysaccharides, cellulose, lignin and associated proteins that make up the cell walls of plants [1].

The use of secondary material resources has become at present one of the most important technical, resource-saving

UDC 544.725.7:637.247

|DOI: 10.15587/1729-4061.2018.140126|

STUDY OF THE NEW METHOD TO INTENSIFY THE PROCESS OF EXTRACTION OF BEET PULP

G. Deynichenko

Doctor of Technical Sciences, Professor, Head of Department* V. Guzenko PhD, Junior Researcher* E-mail: Peresada_7@mail.ru D. Dmytrevskyi PhD, Associate Professor* V. Chervonyi PhD, Associate Professor* T. Kolisnichenko PhD

Department of food technology Oles Honchar Dnipro National University Gagarina str., 72, Dnipro, Ukraine, 49010 O. Omelchenko PhD** O. Mel ni k PhD, Associate Professor** O. Simakova PhD, Associate Professor*** R. Nykyforov PhD, Associate Professor*** *Department of equipment for food and hospitality industry named after M. I. Belyaeva Kharkiv State University of Food Technology and Trade Klochkivska str., 333, Kharkov, Ukraine, 61051 **Department of general engineering disciplines and equipment**** ***Department of technology in a restaurant economy that hotel and restaurant business**** ****Donetsk National University of Economics and Trade named after Mikhailo Tugan-Baranovsky Tramvayna str., 16, Kryvyi Rih, Ukraine, 50005

and environmental problems around the world. In this case, large-ton waste generated during processing of various raw materials must be utilized first of all. A considerable amount of waste forms in the processing of agricultural raw materials of plant and animal origin, which require further disposal [2].

At the same time, food industry currently produces a wide variety of confectionery, bakery, meat, dairy and fish products, beverages, canned goods, in line with the trend aimed at enriching the diet of domestic population with bio-

© G. Deynichenko, V. Guzenko, D Dmytrevskyi, V. Chervonyi, T. Kolisnichenko, O. Omelchenko, O. Melnik, O. Simakova, R. Nykyforov, 2018

logically active additives (BAA). Using pectin extracts (PE) as BAA, pectic concentrates (PC) and powdered pectin makes it possible to obtain food products with the predetermined technological properties. This will contribute to the pectin prophylaxis of people [3, 4].

The food industry exploits the main properties of pectin substances - complex-and gel forming capabilities, which makes it possible to enrich foods with pectin products that have therapeutic and preventative value [5, 6].

At present, there exist a sufficient number of food production technologies that imply the addition of pectin products [7]. However, there are not enough data on the use of PC with high nutritional value in food production. Because these data are fragmented, that necessitated the purpose and relevance of present research whose results would help expand the range of therapeutic and preventive food products.

2. Literature review and problem statement

To obtain good quantitative and qualitative indicators of PE, we selected three types of raw materials for this study: beet pulp, apple pomace, and sunflower baskets. This is primarily due to the high levels of pectin content in these kinds of plant raw materials and to their high degree of esterifica-tion (indicator of pectin application in food industry) [8]. In addition, this relates to the presence of sugar plants, production lines for making juices, and sunflower processing plants. However, the focus of this research is beet pulp. In this case, we undertake a limited study into extraction process from a given raw material using organic acids [9].

Currently, there are many techniques for obtaining PE from any plant raw material [10, 11]. However, all these techniques have both advantages and disadvantages: the complexity of subsequent processing of raw materials, considerable consumption of reagent, complicated and expensive equipment design and its maintenance, low quantitative or qualitative indicators of pectin extracts, etc. The criterion of effectiveness of any technology should be its universality, sustainability, and low waste [12]. Therefore, the best solution is the development and implementation of combined techniques for different stages of the general production technology of pectin. Specifically, this applies to the analyzed process of beet pulp extraction.

At present, the efficient technique to extract pectin substances (PS) is the use of inorganic and organic acids (hydrochloric, nitric, acetic, lactic, citric acid, etc.) [13, 14]. Such a technique is one of the most promising for its further industrial implementation. However, that implies that the employed equipment should be resistant to corrosion (especially if the process occurs at a high temperature) [15].

The course of the process for extracting pectin-containing raw materials is a complicated one [16]. In this case, the choice of the technique for extraction might both simplify and complicate the further stages of pectin production (processes of concentration, purification, drying, etc.) [17]. These circumstances should be taken into consideration in the development of the new technologies for pectin extraction.

Currently, modern technologies for the extraction of PS from beet pulp face a number of issues relating both to increasing the amount of extracted PS and improving quality indicators of PE [18, 19]. This hampers the implementation of existing extraction methods into industrial production.

Therefore, there is a need to introduce new methods for the intensification of extraction process. In this case, it is important to study and determine the rational parameters and modes of this process: temperature, hydromodule, duration and so on.

3 The aim and objectives of the study

The aim of this work is to study the process of acidic extraction of pectin-containing raw materials using the new model of a stirring element to improve the qualitative and quantitative characteristics of pectin extracts.

To accomplish the aim, the following tasks have been set:

- to identify benefits of the extraction process of pectin-containing raw materials using methods of intensification;

- to define factors that affect the process of acidic extraction of pectin-containing raw materials using the new model of a stirring element;

- to determine, based on the research results, the rational parameters for acidic extraction of pectin-containing raw materials (beet pulp).

4. Materials and methods to study the acidic extraction of pectin-containing raw materials using the new stirrer

4. 1. Scheme of the experimental extraction installation and its working principle

We conducted our study on the choice of optimal parameters for carrying out the acidic extraction of pectin-containing raw materials at the research laboratory «Nanotech-nologies of food products» at Kharkiv State University of Food and Trade (Ukraine). In order to improve the process of acidic extraction of pectin-containing raw materials, we selected the process intensification method that allows the participation of hydromechanical processes.

One of the factors for the intensification of extraction of plant raw materials is the uniform distribution of the raw material's particles in terms of size. This determines the efficiency of process of the extraction of biologically active substances. And in a combination with the active circulation of an extractant, it quantitatively provides for the removal of one or another component [19].

The principle of operation of the experimental extraction installation, as well as modeling of extraction process of pectin substances, are described in detail in paper [20].

5. Results of studying the application of an agitation method in the process of acidic extraction of pectin substances

The dynamics of change in the concentration of PS in the process of extraction of beet pulp using a grid and combined stirring elements are shown in Fig. 1, 2. Dependences of qualitative characteristics of PE, obtained using the combined stirring element for fresh and dried raw materials, are shown in Fig. 3, 4.

The data in Fig. 1, 2 show that the dependences of change in the concentration of PS, molecular weight, complex-forming capability, on various technological factors in the process of extracting PS from different raw materials are non-linear in character.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Cps. % t-•

y •

r\J_

t-60"2, s

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 1. Dependence of change in the PS concentration on duration of extracting the fresh beet pulp at t = 65 °C, q= 10, using the following stirring elements: 1 — grid; 2 — combined

Fig. 4. Dependence of change in the PE complex-forming capability on temperature (t) and duration of the fresh raw materials extraction (x)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Cps, % V-•

V2_

t \j_

A y

y t-60"2, s

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Dependence of change in the PS concentration on duration of extracting the dried beet pulp at t= 65 °C, q= 10, using the following stirring elements: 1 — grid; 2 — combined

Fig. 3. Dependence of change in the PE molecular weight on temperature (t) and duration of the fresh raw materials extraction process (x)

Curves of change in the amount of PS in the extract, depending on parameters of duration of the process for PS extraction are similar in character both in the case of using a grid and combined stirring elements. Graphical dependence of influence of duration of the process of extraction of beet pulp on the concentration of PS shows that over (1.0...1.1)-602 s one observes the intense at first, and then the slow, growth of PS concentration in the extract. During further extraction, the concentration of PS in pectin extracts acquires the set value.

The application of the combined stirring element significantly increases the magnitude of PS concentration in the extract - by 21...33 % compared to that when using a grid stirring element.

The surface of molecular weight dependence on temperature and duration of the PS extraction process (Fig. 3) in the direction of an increase in temperature of the process for both types of beet raw materials is non-linear in character. Increasing the temperatures to 60...70 °C leads to an increase in the PS molecular weight up to a maximum of MW = 1.86-104 Da for fresh raw materials and MW= 1.86-104 Da for dry raw materials. At the subsequent rise in temperature to 80 °C one observes a sharp decrease in the PS molecular weight, which is probably a consequence of the reduced physical-mechanical properties of PS in the extract under high temperature values.

The value of the complex-forming capability of PS (Fig. 4) grows in proportion to an increase in temperature and duration of the PS extraction process. Thus, the maximum values for the complex-forming capability (CCmax = = 4.0...4.5 mg Pb2+/g for fresh raw materials and CCmax = = 2.5...2.6 mg Pb2+/g - for dry raw materials) are observed at a temperature of 70...75 °C and a process duration of (I.O... I.I) 602 s.

6. Discussion of results of studying the new method to combat a polarizing layer

The above data show that the extraction of PS from beet pulp in acidic environment is fairly complex in character. Such a character is revealed using a mathematical model that

represents the regression equations whose coefficients have been determined based on the realization of the full factorial experiment. Such an approach could be considered justified in this case by the ultimate goal of research: determining a change in the extraction process output characteristics depending on input parameters applying the new method of intensification [21-25].

The derived dependences of change in the PS concentration, molecular weight, complex- and gel-forming capabilities on various technological factors in the process of PS extraction from different raw materials are non-linear in character. In this case, an analysis of the derived dependences shows that the change in the PS concentration and in the PE qualitative indicators (molecular weight, complex- and gel-forming capabilities) in the extract is mainly influenced by the parameters of temperature and duration of the process, which is confirmed by studies conducted by other scientists in this field [26, 27].

The obtained high values for the PS concentration in the extract is substantiated by using the combined stirring element. Compared to using the grid stirring element, the PS concentration in the extract increases by 1.3...1.4 times for both dry and fresh beet pulp.

Comparative analysis of the estimated output qualitative and quantitative characteristics of the obtained PE demonstrated a rather high convergence between the calculated and experimental input parameters of the process for both types of raw materials.

Benefits of this research are in the fact that, by using the constructed mathematical model, we identified conditions for obtaining PE from the fresh and dry pectin-containing raw material (beet pulp). This made it possible to ensure high values of PS concentration in the extract, molecular weight, complex- and gel-forming capabilities, as well as the possible maximum value for the specified characteristics under optimal parameters.

Optimization results obtained using the mathematical model are given in Table 1.

The data provided show that those PE that were obtained from fresh raw materials have a larger molecular weight and high values of complex- and gel-forming capability than those PE that were extracted from dry raw materials.

Estimated values of the optimal parameters for obtaining PE based on physicochemical indicators

It should be noted, however, that extracting PS from fresh raw materials under the above-specified conditions did not make it possible to obtain high values for the gel-forming capability (GC). Indicator GCmax = 106 G, even though the concentration of PS in the extract using the combined stirring element was fairly high compared to using the grid element.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Based on the results of derived dependences (Fig. 4) and defined rational parameters of the beet pulp extraction process using the combined stirring element (regression equations (2) to (7)), it was found that the most acceptable technological modes for the process are:

- temperature of the process t=60...70 °C;

- duration of the process t = 1.0...1.1-602 s;

- hydromodule q=8...10.

A shortcoming of this study may be the complexity in varying the experiment parameters, as well as the use of a different type or variety of original raw material, at which resulting indicators can differ greatly from the estimated ones.

The results obtained could be used when studying other technological parameters during extraction of other types of pectin-containing raw materials, as well as to improve the hardware for production lines that process pectin-containing raw materials. The difficulty in the industrial application of research results is the need to use specialized equipment and special preparation of raw materials, specifically, dried raw material.

This study is continuation of research into improving the process of extracting pectin-containing raw materials, using the new methods for process intensification through the development of new types of stirring elements.

7. Conclusions

Table 1

Characteristic Y to be defined Optimization parameters

t, °C t -60-2, s q Y 1 max

Dry beet pulp

PS concentration, CPSL (%) 60 1 10 0.62

PS concentration, CPSC (%) 40 1 10 0.91

Molecular weight, MW (Da) 70 0.9 4 1.185-104

Complex-forming capability, CC (mg Pb2+/g) 60 1 5 2.591

Fresh beet pulp

PS concentration, CPSL (%) 60 1 10 0.87

PS concentration, CPSC (%) 50 1 10 1.165

Molecular weight, MW (Da) 65 1 6 1.519-104

Complex-forming capability, CC (mg Pb2+/g) 70 1 9 4.179

Gel-forming capability, GC (G) 70 0,6 9 101

1. We have conducted a study into improvement of the extraction process of pectin-containing raw materials using the new method of intensification. Technical solution to this method is to use a combined stirring element. The advantage of the latter implies improving the quantitative and qualitative characteristics of the extraction process of pectin-containing raw materials. This conclusion is based on the results of the full factorial experiment for the extraction process using the combined stirring element compared to the grid stirrer.

2. The derived graphical dependences on the influence of parameters of temperature,

duration and hydromodule of the extraction process on the degree of concentration of pectin substances in pectin extract are nonlinear in character. At the same time, the calculated coefficients of regression equations show that a substantial impact on molecular weight, complex- and gel-forming properties is exerted by the input parameters of temperature and duration of the process.

The result of the latter's growth is a substantial increase in the above-specified output quantitative and qualitative parameters of the process. In this case, the estimated and experimental data showed that increasing the process temperature above 65 °C is not

feasible because there is degradation of PS in a raw material. Increasing the values of the extraction process duration to exceed 1.1602 s does not lead to a significant improvement in the PE qualitative characteristics since the yield of PS acquires a constant value.

3. We have obtained results that made it possible to determine the rational parameters for the extraction process

from pectin-containing raw material (beet pulp) using the combined stirring element. These parameters are:

- temperature of the extraction process is 60...70 °C;

- duration of extraction of pectin substances is about (1.0...1.1)-602 s;

- hydromodule for the ratio of pectin-containing raw material to extractant is 8.10.

References

1. Perceived access to fruits and vegetables associated with increased consumption / Caldwell E. M., Miller Kobayashi M., DuBow W., Wytinck S. // Public Health Nutrition. 2008. Vol. 12, Issue 10. P. 1743. doi: https://doi.org/10.1017/s1368980008004308

2. Berk Z. Food process Engineering and Technology. Elsevier, 2009. 624 p. doi: https://doi.org/10.1016/b978-0-12-373660-4.x0001-4

3. Extraction of pectic polysaccharides from sugar beet cell walls / Marry M., McCann M. C., Kolpak F., White A. R., Stacey N. J., Roberts K. // Journal of the Science of Food and Agriculture. 2000. Vol. 80, Issue 1. P. 17-28. doi: https://doi.org/10.1002/(sici)1097-0010(20000101)80:1<17::aid-jsfa491>3.3.co;2-w

4. Modifying additives in jelly products: monograph / Pertsevoy F., Savgira Yu., Foschchan A., Ukrainets A., Tishenko L., Garn-carek B., Miskiewicz T.; F. Pertsevoy (Ed.). Kyiv: NUFT, 2005. 260 p.

5. Niture Plant pectin: a potential source for cancer suppression // American Journal of Pharmacology and Toxicology. 2013. Vol. 8, Issue 1. P. 9-19. doi: https://doi.org/10.3844/ajptsp.2013.9.19

6. Liu Utilization of Pectin Extracted Sugar Beet Pulp for Composite Application // Journal of Biobased Materials and Bioenergy. 2012. Vol. 6, Issue 2. doi: https://doi.org/10.1166/jbmb.2012.1206

7. Pectin-Derived Oligosaccharides from Sugar Beet Pulp by Hydrothermal Processing / Yanez R. et. al. // Journal of Pharmacognosy

& Natural Products. 2009. Vol. 2. P. 7-12.

8. Concha J., Weinstein C., Zuniga M. E. Production of pectic extracts from sugar beet pulp with antiproliferative activity on a breast cancer cell line // Frontiers of Chemical Science and Engineering. 2013. Vol. 7, Issue 4. P. 482-489. doi: https://doi.org/10.1007/ s11705-013-1342-5

9. Yapo B. M. Pectic substances: From simple pectic polysaccharides to complex pectins - A new hypothetical model // Carbohydrate Polymers. 2011. Vol. 89, Issue 2. P. 373-385. doi: https://doi.org/10.1016/j.carbpol.2011.05.065

10. Panchami P. S., Gunasekaran S. Extraction and Characterization of Pectin from Fruit Waste // International Journal of Current Microbiology and Applied Sciences. 2017. Vol. 6, Issue 8. P. 943-948. doi: https://doi.org/10.20546/ijcmas.2017.608.116

11. Sposob polucheniya pektina i pishchevyh volokon s ispol'zovaniem elektrohimicheski aktivirovannoy vody / Golybin V. A., Mat-vienko N. A., Fedoruk V. A., Murach D. S. // Vestnik VGUIT. 2015. Issue 3. P. 161-165.

12. A new view of pectin structure revealed by acid hydrolysis and atomic force microscopy / Round A. N., Rigby N. M., MacDougall A. J., Morris V. J. // Carbohydrate Research. 2010. Vol. 354, Issue 4. P. 487-497. doi: https://doi.org/10.1016/j.carres.2009.12.019

13. Liew S. Q., Chin N. L., Yusof Y. A. Extraction and Characterization of Pectin from Passion Fruit Peels // Agriculture and Agricultural Science Procedia. 2014. Vol. 2. P. 231-236. doi: https://doi.org/10.1016/j.aaspro.2014.11.033

14. A new approach for pectin extraction: Electromagnetic induction heating / Zouambia Y., Youcef Ettoumi K., Krea M., Moulai-Mostefa N. // Arabian Journal of Chemistry. 2017. Vol. 10, Issue 4. P. 480-487. doi: https://doi.org/10.1016/j.arabjc.2014.11.011

15. Development of equipment for the research quantitative and qualitative characteristics of pectin concentrates / Deynichenko G. V., Afukova N. A., Maznyak Z. A., Guzenko V. V. // Technology audit and production reserves. 2014. Vol. 3, Issue 5 (17). P. 11-14. doi: https://doi.org/10.15587/2312-8372.2014.25353

16. Harholt J., Suttangkakul A., Vibe Scheller H. Biosynthesis of Pectin // Plant Physiology. 2010. Vol. 153, Issue 2. P. 384-395. doi: https://doi.org/10.1104/pp.110.156588

17. Kyselov D. O., Hrynyk I. V. Adaptatsiya parametriv ekstraktsiyi pektynu z yabluchnoi syrovyny z vykorystanniam burshtynovoi kysloty // Naukovyi visnyk NUBIP Ukrainy. Seriya: Biolohiya, biotekhnolohiya, ekolohiya. 2017. Issue 269. P. 208-214.

18. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction / Kaya M., Sousa A. G., Crepeau M.-J., Siarensen S. O., Ralet M.-C. // Annals of Botany. 2014. Vol. 114, Issue 6. P. 1319-1326. doi: https://doi.org/10.1093/aob/mcu150

19. Chen H., Fu X., Luo Z. Properties and extraction of pectin-enriched materials from sugar beet pulp by ultrasonic-assisted treatment combined with subcritical water // Food Chemistry. 2015. Vol. 168. P. 302-310. doi: https://doi.org/10.1016/jfoodchem.2014.07.078

20. Investigation of the application of a new method of extraction intensification of pectin substances from a beet pulp / Deynichen-ko G., Guzenko V., Dmytrevskyi D., Chervonyi V., Kolisnichenko T., Omelchenko A. et. al. // EUREKA: Physics and Engineering. 2018. Issue 4. P. 21-28. doi: http://dx.doi.org/10.21303/2461-4262.2018.00685

21. Ostapchuk M. V., Stankevych H. M. Matematychne modeliuvannia na EOM. Odessa: Druk, 2006. 313 p.

22. Effects of Different Cooking Methods on Nutritional and Physicochemical Characteristics of Selected Vegetables / Miglio C., Chiavaro E., Visconti A., Fogliano V., Pellegrini N. // Journal of Agricultural and Food Chemistry. 2008. Vol. 56, Issue 1. P. 139-147. doi: https://doi.org/10.1021/jf072304b

23. Handbook of hydrocolloids / G. O. Phillips, P. A. Williams (Eds.). New York: Woodhead Publishing Limited, 2009. 948 p.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774

24. Global Structure of Microwave-Assisted Flash-Extracted Sugar Beet Pectin / Fishman M. L., Chau H. K., Cooke P. H., Hotch-kiss Jr. A. T. //Journal of Agricultural and Food Chemistry. 2008. Vol. 56, Issue 4. P. 1471-1478. doi: https://doi.org/10.1021/jf072600o

25. Pectin, a versatile polysaccharide present in plant cell walls / Voragen A. G. J., Coenen G.-J., Verhoef R. P., Schols H. A. // Structural Chemistry. 2009. Vol. 20, Issue 2. P. 263-275. doi: https://doi.org/10.1007/s11224-009-9442-z

26. Kurita O., Fujiwara T., Yamazaki E. Characterization of the pectin extracted from citrus peel in the presence of citric acid // Carbohydrate Polymers. 2008. Vol. 74, Issue 3. P. 725-730. doi: https://doi.org/10.1016/j.carbpol.2008.04.033

27. Ultrasound-assisted extraction of pectins from grape pomace using citric acid: A response surface methodology approach / Min-jares-Fuentes R., Femenia A., Garau M. C., Meza-Velézquez J. A., Simal S., Rossellô C. // Carbohydrate Polymers. 2014. Vol. 106. P. 179-189. doi: https://doi.org/10.1016/jj.carbpol.2014.02.013

-□ □-

Дослгджено дю препаратiв антимжробног дп -Байкал ЕМ-1, 0,5 %-ний розчин лимонног, 0,2 %-ний бензойног, 0,05 %-ний сорбтовог кислот, 0,5:0,5 % розчин втамШв С та Р (аскорутин) - на збереже-тсть та ятсть капусти брокопъ. Встановлено, що препарати антимжробног дп сприяють подовжен-ню строку збер^ання капусти броколi на 5-20 дiб залежно вiд гiбриду. Обробка препаратами зменшуе втрати за добу у 1,2-3,0рази, забезпечуе вихгд твар-ног продукцп 76,8-86,2 %.

Обробка капусти броколi препаратами антимi-кробног дп, особливо аскорутином, забезпечують вмкт сухог речовини в 1,1-2,6 рази бЫьше, тж у конт-ролi, сприяе зниженню ттенсивностъ витрачання сухихрозчиннихречовин та вхтамту С. У ктщ зберi-гання вмкт загального цукру та дисахаридiв на рiвнi з контрольним варiантом, або перевищуе його вмгст вгдповгдно в 1,2 та 1,5-2,0рази. Ыльше у варiантах з кислотами та аскорутином. Вм^т моносахари-дiв збер^аеться на початковому рiвнi. Втрати маси зарахунок випаровування води бшьше в 1,3-1,8рази.

Байкал ЕМ-1 та аскорутин краще, тж тшъ препарати стримують ттенсивтсть розвитку хворо-ботворних мiкроорганiзмiв на 10-15 дiб. Аскорутин забезпечуе за тривалого зберйання меншi на 0,8-2,2 % втрати маси вiд хвороб та фiзiологiчних розладiв i на 4,1-7,6 % бЫьший вихiд товарног продукцп. Ыльш активно пригшчуе розвиток хвороботворних мжро-органiзмiв на капуста броколi аскорутин, лимонна, сорбтова та бензойна кислоти. Проте, вiд фiзiоло-гiчнихрозладiв пгд час збер^ання препарати не захи-щають плоди. Спотб оброблення капусти броколi препаратами антимжробног дп перед зберйанням дозволяе використання антисептитв - Байкал ЕМ-1, 0,5 %-ний розчин лимонног, 0,2 %-ний бензойног, 0,05 %-ний сорбтовог кислот, 0,5:0,5 % розчин вхта-мШв С та Р (аскорутин) - для тслязбиральног обробки овочевог сировини. У розробщ нових, низько-витратних, екологiчно чистих i доступних техноло-гт це е важливим прийомом

Ключовi слова: ятсть капусти броколi, антисептики, строк збер^ання, компоненти хiмiчного скала-

ду, збережетсть -□ □-

UDC 35.356:631.563

|DOI: 10.15587/1729-4061.2018.140064]

RESEARCH INTO PRESERVATION OF BROCCOLI DEPENDING ON THE TREATMENT WITH ANTIMICROBIC PREPARATIONS BEFORE STORAGE

L. Pusi k

Doctor of Agricultural Sciences, Professor Department of technologies of processing of food production named after T. P. Yevsiukova**

V. Pusik

Doctor of Agricultural Sciences, Professor* N. Lyubymova Doctor of of Technical Sciences, Professor* Е-mail: nina.lioubimova@gmail.com V. Bondarenko PhD*** L. Gaevaya Teacher***

*Department of Agrotechnology and Ecology** **Kharkiv Petro Vasylenko National Technical University of Agriculture Alchevskykh str., 44, Kharkiv, Ukraine, 61000 ***Department of fruit and vegetable and storage Kharkiv National Agrarian University named after V. V. Dokuchayev township Dokuchaevsky, Kharkiv district, Kharkiv region, Ukraine, 62483

1. Introduction reasons are a large natural loss of weight and the loss due

to diseases and physiological disorders. In addition, vege-Fresh vegetables have a limited storage period even un- tables lose freshness and consistency. They also lose content der conditions of optimum temperature and humidity. The of components of their chemical composition. Fresh fruits

© L. Pusik, V. Pusik, N. Lyubymova, V. Boridareriko, L. Gaevaya, 2018

i Надоели баннеры? Вы всегда можете отключить рекламу.