Научная статья на тему 'Исследование методом компьютерного моделирования формирования избыточного свободного объема в тройных стыках границ наклона в никеле при кристаллизации'

Исследование методом компьютерного моделирования формирования избыточного свободного объема в тройных стыках границ наклона в никеле при кристаллизации Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
120
33
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
МОЛЕКУЛЯРНАЯ ДИНАМИКА / ТРОЙНОЙ СТЫК / ГРАНИЦА ЗЕРЕН / ГРАНИЦА НАКЛОНА / КРИСТАЛЛИЗАЦИЯ / ДИСЛОКАЦИЯ / СВОБОДНЫЙ ОБЪЕМ / MOLECULAR DYNAMICS / TRIPLE JUNCTION / GRAIN BOUNDARY / TILT BOUNDARY / CRYSTALLIZATION / DISLOCATION / FREE VOLUME

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Новоселова Дарья Викторовна, Полетаев Геннадий Михайлович, Кайгородова Валентина Михайловна, Медведева Екатерина Сергеевна, Старостенков Михаил Дмитриевич

В работе проведен расчет избыточного свободного объема, образуемого в тройных стыках границ зерен в процессе кристаллизации в результате «запирания» плотности жидкой фазы при встрече трех фронтов кристаллизации. Показано, что концентрация условных вакансий (т. е. доля недостающих атомов по сравнению с равновесными тройными стыками) может достигать в области стыка 2 %. С помощью метода молекулярной динамики проведено исследование формирования свободного объема при кристаллизации в области тройных стыков малои большеугловых границ наклона <111> и <100>. Показано, что основная доля свободного объема при кристаллизации скапливается в области границ зерен и тройных стыков.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по наукам о Земле и смежным экологическим наукам , автор научной работы — Новоселова Дарья Викторовна, Полетаев Геннадий Михайлович, Кайгородова Валентина Михайловна, Медведева Екатерина Сергеевна, Старостенков Михаил Дмитриевич

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The study of formation of excess free volume in the triple junctions of tilt boundaries in nickel at crystallization by the method of molecular dynamics

In the work it the excess free volume, forming in the triple junctions of grain boundaries during crystallization process in the result of “locking” of the liquid phase density at a meeting of the three crystallization fronts was calculated. It is shown that the concentration of conditional vacancies (i.e. the proportion of missing atoms in comparison with the equilibrium triple junctions) can reach 2 % in the junction area. The study of the formation during crystallization of free volume in the triple junctions of <111> and <100> low and high angle tilt boundaries was held using the method of molecular dynamics. It is shown that the main share of the free volume during crystallization accumulates in the grain boundaries and the triple junctions.

Текст научной работы на тему «Исследование методом компьютерного моделирования формирования избыточного свободного объема в тройных стыках границ наклона в никеле при кристаллизации»

УДК 538.911

DOI: 10.20310/1810-0198-2016-21-3-1191-1194

ИССЛЕДОВАНИЕ МЕТОДОМ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ ФОРМИРОВАНИЯ ИЗБЫТОЧНОГО СВОБОДНОГО ОБЪЕМА В ТРОЙНЫХ СТЫКАХ ГРАНИЦ НАКЛОНА В НИКЕЛЕ ПРИ КРИСТАЛЛИЗАЦИИ

© Д.В. Новоселова, Г.М. Полетаев, В.М. Кайгородова, Е.С. Медведева, М.Д. Старостенков

Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Российская Федерация,

e-mail: [email protected]

В работе проведен расчет избыточного свободного объема, образуемого в тройных стыках границ зерен в процессе кристаллизации в результате «запирания» плотности жидкой фазы при встрече трех фронтов кристаллизации. Показано, что концентрация условных вакансий (т. е. доля недостающих атомов по сравнению с равновесными тройными стыками) может достигать в области стыка 2 %. С помощью метода молекулярной динамики проведено исследование формирования свободного объема при кристаллизации в области тройных стыков мало- и большеугловых границ наклона <111> и <100>. Показано, что основная доля свободного объема при кристаллизации скапливается в области границ зерен и тройных стыков.

Ключевые слова: молекулярная динамика; тройной стык; граница зерен; граница наклона; кристаллизация; дислокация; свободный объем.

Тройной стык зерен представляет собой линейный дефект, вдоль которого сопрягаются три различно ориентированных зерна (три зернограничных поверхности) [1-2]. Согласно многочисленным экспериментальным данным, диффузия в области тройного стыка протекает более интенсивно, чем вдоль границ зерен, а сам тройной стык зачастую характеризуется относительно более «рыхлой» структурой (даже с включениями аморфной фазы) с более высоким содержанием свободного объема по сравнению с образующими этот стык границами зерен [3]. В работах [4-5] с помощью компьютерного моделирования мы проанализировали различные причины формирования свободного объема в тройных стыках и пришли к выводу, что избыточный свободный объем образуется в стыках преимущественно в процессе кристаллизации в результате «запирания» плотности жидкой фазы при встрече трех фронтов кристаллизации и, как следствие, концентрирования избыточного свободного объема в тройном стыке после затвердевания. Накопление вектора Бюргерса при зернограничном проскальзывании и образование в стыке дислокационного или дисклинационного комплекса нами представляется второстепенной причиной.

Настоящая работа посвящена исследованию с помощью метода молекулярной динамики особенностей образования свободного объема в тройных стыках границ наклона <111> и <100> в № при кристаллизации. Решались вопросы, касающиеся доли свободного объема, «запираемого» при кристаллизации, отличия формирования свободного объема в стыках мало- и боль-шеугловых границ, границ наклона <111> и <100>.

Моделирование проводилось с использованием метода молекулярной динамики. Рассматривались тройные стыки границ наклона с осями разориентации <111> и <100>. Тройной стык создавался в центре рас-

четного блока путем сопряжения трех зерен, разориен-тированных относительно друг друга с помощью поворота вокруг оси параллельной линии тройного стыка. Углы между границами в стыке задавались 120°. Пример расчетного блока радиусом 60 А изображен на рис. 1. На границы расчетного блока вдоль оси наклона всех зерен, т. е. вдоль линии тройного стыка, налагались периодические граничные условия (имитировалось бесконечное повторение цилиндрического расчетного блока вдоль оси X). На боковую поверхность цилиндра были наложены жесткие условия, - атомы вблизи боковой поверхности в процессе компьютерного эксперимента оставались неподвижными.

Взаимодействия атомов никеля друг с другом описывались многочастичным потенциалом Клери-Розато [6]. Шаг интегрирования по времени в методе молекулярной динамики был равен 5 фс. Температура в модели задавалась через начальные скорости атомов согласно распределению Максвелла.

Моделирование кристаллизации проводилось следующим образом. Расчетный блок нагревался до температуры, значительно превышающей температуру плавления (3000 К). После того как моделируемый поликристалл становился жидким, включался термостат и проводилось выдерживание при постоянной температуре ниже температуры плавления. Жесткие границы (т. е. жестко закрепленные атомы на боковой поверхности цилиндрического расчетного блока) имитировали в данном случае фронты кристаллизации от трех центров кристаллизации (кристаллических кластеров - зародышей твердой фазы).

Важным обстоятельством при встрече трех фронтов кристаллизации (от трех центров кристаллизации) является «запирание» плотности в области тройного стыка -плотность оставшейся в области стыка жидкой фазы,

Рис. 1. Пример цилиндрического расчетного блока, содержащего тройной стык границ наклона <100>, радиусом 60 А. Атомы, окрашенные в темно-серый цвет, в процессе компьютерного эксперимента оставались неподвижными (жесткие граничные условия). Вдоль оси Z - периодические граничные условия. Границы зерен обозначены белыми пунктирными линиями

которая еще не успела кристаллизоваться, ниже, чем плотность кристаллической фазы. Этот недостаток атомов для формирования «идеального» тройного стыка приводит к появлению избыточного свободного объема, который концентрируется в процессе кристаллизации преимущественно в тройном стыке.

В работе был проведен расчет избыточного свободного объема, «запираемого» в стыках при кристаллизации. Согласно полученным данным, концентрация условных вакансий (т. е. доля недостающих атомов по сравнению с равновесными тройными стыками) может достигать в области стыка 2 %. В дальнейших исследованиях из расчетных блоков, содержащих 30000 атомов, удалялось 300 атомов. Моделирование кристаллизации проводилось при температуре термостата 800 К.

На рис. 2 изображены примеры распределения свободного объема в области тройного стыка границ наклона <111> и <100>, полученных в результате кристаллизации при температуре 800 К при введении в стартовый расчетный блок 300 условных вакансий. Визуализация свободного объема осуществлялась путем расчета среднего расстояния от каждого атома до ближайших атомов. Если среднее расстояние незначительно отличалось от расстояния, соответствующего идеальному кристаллу, атом не изображался. В противном случае атом закрашивался в тот или иной оттенок серого цвета.

Разница формирования областей с избыточным свободным объемом в случаях тройных стыков мало- и большеугловых границ очевидна. Свободный объем в случае малоугловых границ скапливается в области ядер дислокаций, причем, чем ближе дислокация к месту стыка границ, тем больше она содержит избыточного свободного объема. В случае стыка большугловых границ значительная доля свободного объема распределяется в границах зерен (рис. 2б). По мере приближения к месту стыка границ величина свободного объема увеличивается. Такой тройной стык, очевидно, будет иметь высокую диффузионную проницаемость в связи с относительно рыхлой структурой.

а)

б)

Рис. 2. Распределение свободного объема в области тройного стыка границ наклона: а) <100> с углами разориентации 6°, 6°, 12°; б) <111> с углами разориентации 15°, 15°, 30°. Атомы окрашены в различные оттенки серого цвета в зависимости от свободного объема вблизи них. Кристаллизация моделировалась при температуре термостата 800 К. Из стартового расчетного блока был удален 1 % атомов

Несмотря на одинаковое количество введенного свободного объема в расчетные блоки со стыками границ <111> и <100>, визуализатор свободного объема демонстрировал, что в случае стыка границ <111> свободного объема больше. По всей видимости, это особенности распределения свободного объема в рассматриваемых границах: в частности, в границах наклона <100> чаще образуются тетраэдры дефектов упаковки.

Таким образом, с помощью метода молекулярной динамики в настоящей работе показано, что в случае стыка малоугловых границ свободный объем скапливается вблизи ядер зернограничных дислокаций, причем, чем ближе дислокация к месту стыка границ, тем больше она содержит избыточного свободного объема. Для стыка большеуловых границ характерно более равномерное распределение свободного объема. Во всех случаях основная доля свободного объема при кристаллизации скапливается в области границ зерен и тройных стыков.

СПИСОК ЛИТЕРАТУРЫ

1. Полетаев Г.М., Дмитриенко Д.В., Старостенков М.Д. Атомная структура тройных стыков границ наклона в никеле // Фундаментальные проблемы современного материаловедения. 2012. Т. 9. № 3. C. 344-348.

2. Полетаев Г.М., Дмитриенко Д.В., Дябденков В.В., Микрюков В.Р., Старостенков М.Д. Молекулярно-динамическое исследование диффузионной проницаемости тройных стыков границ наклона и границ смешанного типа в никеле // ФТТ. 2013. Т. 55. № 9. C. 1804-1808.

3. Rodriguez P., Sundararaman D., Divakar R., Raghunathan V.S. Structure of grain boundaries in nanocrystalline and quasicrystalline materials // Chemistry for Sustainable Development. 2000. V. 8. P. 69-72.

4. Полетаев Г.М., Новоселова Д.В., Старостенков М.Д., Мартынова Е.В., Кайгородова В.М. Исследование условий формирования напряженных тройных стыков границ зерен в никеле // Фундаментальные проблемы современного материаловедения. 2014. Т. 11. № 4. С. 495-500.

5. Poletaev G.M., Novoselova D. V., Kaygorodova V.M. The causes of formation of the triple junctions of grain boundaries containing excess free volume in fcc metals at crystallization // Solid State Phenomena. 2016. V. 249. P. 3-8.

6. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys // Physical Review B. 1993. V. 48. № 1. P. 22-33.

БЛАГОДАРНОСТИ: Исследование выполнено в рамках научного проекта № 166 программы Министерства образования и науки РФ «Формирование государственных заданий высшим учебным заведениям в части проведения научно-исследовательских работ» и при финансовой поддержке гранта РФФИ № 16-48-190182 р_а.

Поступила в редакцию 10 апреля 2016 г.

UDC 538.911

DOI: 10.20310/1810-0198-2016-21-3-1191-1194

THE STUDY OF FORMATION OF EXCESS FREE VOLUME IN THE TRIPLE JUNCTIONS OF TILT BOUNDARIES IN NICKEL AT CRYSTALLIZATION BY THE METHOD OF MOLECULAR DYNAMICS

© D.V. Novoselova, G.M. Poletaev, V.M. Kaygorodova, E.S. Medvedeva, M.D. Starostenkov

Altai State Technical University, Barnaul, Russian Federation, e-mail: [email protected]

In the work it the excess free volume, forming in the triple junctions of grain boundaries during crystallization process in the result of "locking" of the liquid phase density at a meeting of the three crystallization fronts was calculated. It is shown that the concentration of conditional vacancies (i.e. the proportion of missing atoms in comparison with the equilibrium triple junctions) can reach 2 % in the junction area. The study of the formation during crystallization of free volume in the triple junctions of <111> and <100> low and high angle tilt boundaries was held using the method of molecular dynamics. It is shown that the main share of the free volume during crystallization accumulates in the grain boundaries and the triple junctions. Key words: molecular dynamics; triple junction; grain boundary; tilt boundary; crystallization; dislocation; free volume.

REFERENCES

1. Poletaev G.M., Dmitrienko D.V., Starostenkov M.D. Atomnaya struktura troynykh stykov granits naklona v nikele. Fundamental'nye problemy sovremennogo materialovedeniya — Basic Problems of Material Science, 2012, vol. 9, no. 3, pp. 344-348.

2. Poletaev G.M., Dmitrienko D.V., Dyabdenkov V.V., Mikryukov V.R., Starostenkov M.D. Molekulyarno-dinamicheskoe issledovanie difiuzionnoy pronitsaemosti troynykh stykov granits naklona i granits smeshannogo tipa v nikele. Fizika tverdogo tela - Physics of the Solid State, 2013, vol. 55, no. 9, pp. 1804-1808.

3. Rodriguez P., Sundararaman D., Divakar R., Raghunathan V.S. Structure of grain boundaries in nanocrystalline and quasicrystalline materials. Chemistry for Sustainable Development, 2000, vol. 8, pp. 69-72.

4. Poletaev G.M., Novoselova D.V., Starostenkov M.D., Martynova E.V., Kaygorodova V.M. Issledovanie usloviy formirovaniya na-pryazhennykh troynykh stykov granits zeren v nikele. Basic Problems of Material Science, 2014, vol. 11, no. 4, pp. 495-500.

5. Poletaev G.M., Novoselova D.V., Kaygorodova V.M. The causes of formation of the triple junctions of grain boundaries containing excess free volume in fcc metals at crystallization. Solid State Phenomena, 2016, vol. 249, pp. 3-8.

6. Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys. Physical Review B., 1993, vol. 48, no. 1, pp. 22-33.

GRATITUDE: The research is fulfilled within the framework of scientific project no. 166 program of Ministry of Education and Science of Russian Federation "Formation of state assigns by higher educational institutes in carrying out research works" and under financial support of grant of Russian Fund of Fundamental research no. 16-48-190182 p_a.

Received 10 April 2016

Новоселова Дарья Викторовна, Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Российская Федерация, кандидат физико-математических наук, докторант, e-mail: [email protected]

Novoselova Darya Viktorovna, Altai State Technical University, Barnaul, Russian Federation, Candidate of Physics and Mathematics, Candidate for Doctoral Degree, e-mail: [email protected]

Полетаев Геннадий Михайлович, Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Российская Федерация, доктор физико-математических наук, профессор, зав. кафедрой высшей математики и математического моделирования, e-mail: [email protected]

Poletaev Gennadiy Mikhaylovich, Altai State Technical University, Barnaul, Russian Federation, Doctor of Physics and Mathematics, Professor, Head of High Mathematics and Mathematics Modeling Department, e-mail: [email protected]

Кайгородова Валентина Михайловна, Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Российская Федерация, доцент кафедры высшей математики и математического моделирования, e-mail: [email protected]

Kaygorodova Valentina Mikhaylovna, Altai State Technical University, Barnaul, Russian Federation, Associate Professor of High Mathematics and Mathematics Modeling Department, e-mail: [email protected]

Медведева Екатерина Сергеевна, Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Российская Федерация, ассистент кафедры высшей математики и математического моделирования, e-mail: [email protected]

Medvedeva Ekaterina Sergeevna, Altai State Technical University, Barnaul, Russian Federation, Assistant of High Mathematics and Mathematics Modeling Department, e-mail: [email protected]

Старостенков Михаил Дмитриевич, Алтайский государственный технический университет им. И.И. Ползунова, г. Барнаул, Российская Федерация, доктор физико-математических наук, профессор, зав. кафедрой физики, e-mail: [email protected]

Starostenkov Mikhail Dmitrievich, Altai State Technical University, Barnaul, Russian Federation, Doctor of Physics and Mathematics, Professor, Head of Physics Department, e-mail: [email protected]

i Надоели баннеры? Вы всегда можете отключить рекламу.