Научная статья на тему 'Исследование эластических свойств легких в клинической практике'

Исследование эластических свойств легких в клинической практике Текст научной статьи по специальности «Клиническая медицина»

CC BY
2979
222
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ЭЛАСТИЧЕСКИЕ СВОЙСТВА ЛЕГКИХ / РАСТЯЖИМОСТЬ ЛЕГКИХ / РАБОТА ДЫХАНИЯ / ЭМФИЗЕМА ЛЕГКИХ / ФИБРОЗ ЛЕГКИХ / ELASTIC PROPERTIES OF LUNGS / LUNG COMPLIANCE / WORK OF BREATHING / PULMONARY EMPHYSEMA / PULMONARY FIBROSIS

Аннотация научной статьи по клинической медицине, автор научной работы — Каменева М.Ю.

В статье описан метод исследования эластических свойств легких с пищеводным зондом и представлены возможности его применения в клинической практике.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по клинической медицине , автор научной работы — Каменева М.Ю.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

The article deals with the method of assessment of elastic properties of lungs using esophageal probe. The role of elastic properties of lungs in clinical practice is discussed.

Текст научной работы на тему «Исследование эластических свойств легких в клинической практике»

Функциональные методы исследования

Исследование эластических свойств легких в клинической практике

М.Ю. Каменева

В статье описан метод исследования эластических свойств легких с пищеводным зондом и представлены возможности его применения в клинической практике.

Ключевые слова: эластические свойства легких, растяжимость легких, работа дыхания, эмфизема легких, фиброз легких.

Под эластическими (упругими) свойствами легких понимают их способность изменять объем в зависимости от приложенной силы. Являясь важнейшей характеристикой механики дыхания, податливость легких, т.е. их способность к растяжению, определяет величины статических легочных объемов и просвета дыхательных путей, особенно их периферических отделов. Кроме того, физическое свойство эластических структур - способность аккумулировать энергию при растяжении - позволяет здоровому человеку осуществлять спокойный выдох пассивно, без участия дыхательных мышц, минимизируя, таким образом, энергетическую стоимость дыхания.

Эластические свойства легких формируются за счет соединительнотканного каркаса, представленного эластическими, коллагеновыми и ретикулярными волокнами, сил поверхностного натяжения, кровенаполнения легочных сосудов и тонуса гладких мышц. Для изучения эластических свойств легких используют методику с пищеводным зондом. В клинической практике она не нашла широкого применения, что лишь отчасти связано с трудоемкостью и инвазивным характером исследования, а в большей степени обусловлено недостаточной осведомленностью специалистов о возможностях метода. Указанное исследование позволяет не только определить, каким образом изменяются упругие свойства легких - увеличиваются или, наоборот, снижаются, но и ответить на ряд важных для практикующего специалиста вопросов: поражение самих легких

Марина Юрьевна Каменева - докт. мед. наук, вед. науч. сотр. Научно-исследовательского центра ФГБОУ ВО "Первый Санкт-Петербургский государственный медицинский университет им. акад. И.П. Павлова" МЗ РФ. Контактная информация: kmju@mail.ru

(интерстициальное воспаление, фиброз, отек) или какие-то патологические изменения внелегочных структур (слабость дыхательных мышц, деформация грудной клетки) послужили причиной снижения легочных объемов? связана ли обструкция дыхательных путей с разрушением эластического каркаса легких - эмфиземой или обусловлена внутрибронхиальными причинами (отек, воспаление, спазм гладкой мускулатуры)? за счет чего изменяется работа дыхания?

Методологические аспекты проведения исследования

К показателям, характеризующим эластические свойства легких, относятся растяжимость легких (lung compliance, CL), их эластичность (lung elastance, EL) и работа дыхания (work of breathing, W). В основу метода положено измерение транспульмонального давления (Ртп) с помощью пищеводного зонда и специального блока, интегрированного, как правило, в бодиплетиз-мограф.

Способность легких к растяжению зависит от их эластического давления (elastic pressure of the lung, lung recoil pressure - Plel), величину которого определяют по разнице давлений, действующих на легкие изнутри (альвеолярное давление, PA) и снаружи (плевральное давление, Рпл):

Pl , = PA - P

el A п

Прямое измерение Рпл возможно только в условиях эксперимента, поскольку сопряжено с опасными и травматичными манипуляциями, поэтому в клинической практике вместо Рпл с помощью специального зонда определяют давление внутри пищевода (Р ). Пищеводный зонд пред-

ставляет собой жесткий полиэтиленовый катетер с внутренним диаметром 1-1,5 мм, на конце которого закреплен тонкостенный латексный баллон (рис. 1). В специальных исследованиях было установлено, что абсолютная величина Р

^ 7 пищ

несколько превышает Рпл, но при вертикальном положении тела колебания давления в латекс-ном баллоне, размещенном в нижней трети пищевода, практически равны изменениям Рпл [1].

Прямого измерения РА также не производят и при расчете Ртп его величину считают равной давлению в полости рта (Ррот) [2]:

P = P - Р .

тп рот пищ

Зонд в пищевод вводят через нижний носовой ход под местной анестезией - раствор анестетика закапывают в нижний носовой ход 3-4 раза с 15-минутными интервалами. Для фиксации зонда используют носовой зажим. Схематическое изображение правильного расположения пищеводного зонда представлено на рис. 2. Поскольку спазмы пищевода не позволяют выполнить корректные измерения, исследование проводят спустя 1,5-2 ч после легкой еды.

Сужение и деформация носовых ходов, склонность к носовым кровотечениям и повышенный рвотный рефлекс являются противопоказаниями к назначению исследования наряду с общими для всех легочных функциональных тестов противопоказаниями, такими как отсутствие контакта с пациентом, заболевания и состояния, не позволяющие пациенту выполнять необходимые дыхательные маневры, травмы и заболевания челюстно-лицевого аппарата, препятствующие правильному подсоединению загубника и носового зажима.

Во время измерения пациент дышит через пневмотахометр, что позволяет одновременно с изменениями Ртп регистрировать изменения объема легких (V). Запись отображается на экране монитора в координатах V-Pтп в виде замкнутых петель - кривых растяжимости. Кривые растяжимости, регистрируемые при спокойном или частом дыхании, имеют эллипсоидную форму (рис. 3а), а записанные при максимально глубоком и замедленном дыхании - Я-образную, что связано со снижением растяжимости в области предельных объемов (рис. 3б).

Одновременная запись изменений Ртп и V позволяет рассчитать Сь и обратную ей величину Еь [2, 3]:

~— Пневмотахометр — Пищеводный зонд

Легкие

Сердце

Пищеводный зонд Диафрагма

Рис. 2. Схематическое изображение правильного положения пищеводного зонда (в нижней трети пищевода) при измерении транспульмо-нального давления (VIASYS Healthcare Gmbh, Германия).

CL = AV/AP; El = 1/CL = AP/AV.

Следовательно, CL характеризует способность легких изменять объем в зависимости от приложенной силы, а El, наоборот, соответствует тому усилию, которое затрачивается дыхательными мышцами на расправление легких. Чем жестче легкое, что наблюдается, например, у больных идиопатическим легочным фиброзом, тем больше сил требуется на его растяжение - EL возрастает, а CL снижается, поскольку даже хорошая работа дыхательных мышц неспособна адекватно увеличить объем ригидного легкого. Противоположная картина наблюдается при эмфиземе легких, когда разрушение эластического каркаса делает легкие податливыми и даже небольшое усилие приводит к их быстрому расправлению на вдохе, за которым следует такое же скорое спадение их на выдохе - CL возрастает, а EL снижается.

Растяжимость, определяемую при спокойном или учащенном дыхании, принято называть динамической (dynamic compliance - Cldyn), а определяемую при глубоком и максимально замедленном дыхании - статической (static compliance - Clstat). Исследование эластических свойств легких требует создания статических

(а)

(б)

2,0

1,5

ч

* 1,0

Н и

о ч 0,5

о § 0

-0,5

-1,0

-2

-4

0,5 1,0 1,5

2,0

2,5

Транспульмональное давление, кПа

-2-101234 Транспульмональное давление, кПа

Рис. 3. Кривые растяжимости здорового человека: а - при спокойном дыхании; б - при замедленном дыхании с максимальной амплитудой изменения объема (от уровня общей емкости легких до уровня остаточного объема легких). Нулевая отметка на оси ординат соответствует уровню функциональной остаточной емкости легких.

условий, под которыми понимают отсутствие воздушного потока при полном расслаблении дыхательной мускулатуры. Поскольку в истинно статических условиях провести исследование у человека невозможно, на практике Сь измеряют в максимально приближенных к ним условиях, называемых квазистатическими. Для Съйуп такие условия возникают в момент смены фаз ды-

OEJI

Транспульмональное давление, кПа

Рис. 4. Схематическое изображение кривых растяжимости - динамической (1), квазистатической (2) и статической (3). Точками обозначены моменты измерения, соответствующие квазистатическим условиям: для кривой динамической растяжимости - моменты смены фаз дыхательного цикла; для кривой квазистатической растяжимости - моменты прерывания потока воздуха заслонкой. Пояснения в тексте. ЖЕЛ -жизненная емкость легких. Здесь и на рис. 5: ДО - дыхательный объем.

хательного цикла (рис. 4 (1)), а при измерении используют специальный прием: во время глубокого медленного выдоха с уровня общей емкости легких (ОЕЛ) до уровня остаточного объема легких (ООЛ) поток воздуха многократно прерывается при помощи заслонки (см. рис. 4 (2)). В момент срабатывания заслонки измеряют Ртп и по этим точкам строят кривую статической растяжимости (см. рис. 4 (3)). Определение растяжимости легких на выдохе связано с необходимостью нивелировать влияние сил поверхностного натяжения, действующих внутри альвеол.

Определяют Сь как по кривой динамической растяжимости, так и по кривой статической растяжимости. При расчете Съйуп изменение Ртп определяют при изменении объема на величину, равную дыхательному объему (рис. 5 (1)), а при расчете - при изменении объема на 0,5 л

от уровня функциональной остаточной емкости легких (ФОЕ) (см. рис. 5 (2)).

Помимо показателей растяжимости одномоментная регистрация изменений Ртп и V позволяет оценить энергетические затраты дыхательных мышц, связанные с вентиляцией, по выполненной ими работе (W):

W = P х V.

тп

Общая работа дыхания (total work of breathing, Wtot) состоит из эластической фракции (elastic work of breathing, Wel) - работы по преодолению эластических сил легких, грудной клетки и действующих внутри альвеол сил поверхностного натяжения, и неэластической (ре-зистивной) (resistive (viscous) work of breathing, W ) - работы по преодолению аэродинамиче-

ского сопротивления дыхательных путей (бронхиального сопротивления) и тканевого сопротивления [1, 3]. Определение работы дыхания проводят как в покое, так и при различных режимах увеличения вентиляции - физической нагрузке или произвольной гипервентиляции.

Оценка результатов исследования

Для интерпретации полученных данных трудно рекомендовать определенную систему должных величин, поскольку исследований эластических свойств легких у большого числа здоровых лиц обоего пола в широком возрастном диапазоне не проводилось. В практической работе используют референсные значения, которые заложены в программное обеспечение прибора и представляют собой совокупность данных из различных источников и исследований, проведенных по инициативе производителя оборудования [2, 4-6].

Диапазон нормальных значений CL довольно широкий - 100 ± 50% от должного значения, что связано с выраженной зависимостью тонуса гладких мышц и кровенаполнения легочных капилляров от состояния нервной системы и воздействия гуморальных факторов [3]. При анализе растяжимости используют также ее удельные, т.е. рассчитанные на единицу объема (ФОЕ или ОЕЛ), величины: специфическую динамическую (CLdyn/ФОЕ, &ауп/ОЕЛ) и специфическую статическую (Cl^/фОе, Cl^/ОЕЛ) растяжимость [2, 4]. Реже оценивают величины Ртп при различной воз-духонаполненности легких - на уровне 50, 60, 70, 80, 90 и 100% ОЕЛ (Ртп 100% ОЕЛ). Однако наиболее информативным считается индекс ретракции легких (coefficient of retraction, CR), рассчитываемый с учетом величин ОЕЛ и Ртп 100% ОЕЛ [7]:

CR = P

/ОЕЛ.

тп 100% ОЕЛ

Диапазон нормальных значений CR для мужчин и женщин одинаковый и составляет 0,30-0,60 кПа/л [8, 9].

Повышение массы интерстициальной ткани при диссеминированных заболеваниях легких, застойных явлениях в малом круге кровообращения приводит к снижению CL, а разрушение эластического каркаса легких при эмфиземе - к ее увеличению [3, 10, 11]. Изменение растяжимости может предшествовать появлению других функциональных признаков вентиляционных нарушений. В работе P.W. Boros et al. у больных с I—III стадией саркоидоза органов дыхания CL была снижена в 24,5% случаев, в то время как ОЕЛ оставалась в пределах физиологической нормы [12]. Изменение растяжимости не только

Транспульмональное давление, кПа

Рис. 5. Схематическое изображение измерения растяжимости: синим цветом обозначены данные, относящиеся к динамической растяжимости, красным - относящиеся к статической растяжимости. 1 - кривая динамической растяжимости: ДУ, - изменение объема и соот-

ауп

ветствующее ему изменение транспульмональ-ного давления (ДРтПйуп), необходимые для расчета Сьйуп; 2 - кривая статической растяжимости: ДУа4а4 - изменение объема и соответствующее ему изменение транспульмонального давления (ДРТп8Ш), необходимые для расчета СъяШ.

предшествовало появлению рестриктивных нарушений, но и выявлялось у больных с нормальной диффузионной способностью легких, т.е. было самым первым функциональным признаком поражения легких. Поскольку CR характеризует не растяжимость, а эластичность легких, то он изменяется противоположным Сь образом - повышается при интерстициальном отеке или фиброзе и снижается при эмфизематозной деструкции легких [7, 10, 13, 14]. Благодаря хорошей чувствительности и специфичности показатели легочной растяжимости и эластичности успешно применяются в торакальной хирургии для оценки результатов хирургической редукции объема легких, трансплантации легких [14-16].

Анализ кривых статической растяжимости позволяет наглядно продемонстрировать различие в податливости легочной паренхимы, когда одно и то же изменение Ртп, например равное 1 кПа, у больного с эмфиземой легких вызывает изменение объема легких (Ух), практически в 5 раз большее, чем у больного с легочным фиброзом (У2) (рис. 6).

Показатели работы дыхания информативны при диагностике обструктивных нарушений. У здорового человека при спокойном дыхании

Эмфизема легких

D

х

N К ь

О)

Ч В

CD

ю О

D

D С

А В Норма

В

Фиброз легких

А В

Обструкция дыхательных путей

Транспульмональное давление, кПа

Рис. 7. Схематическое изображение кривых динамической растяжимости при спокойном дыхании в норме, при фиброзе легких и обструкции дыхательных путей: AD/AB - динамическая растяжимость легких; ADC - эластическая фракция общей работы дыхания; синяя штриховка - неэластическая (резистивная) фракция общей работы дыхания на вдохе; красная штриховка - неэластическая (резистивная) фракция общей работы дыхания на выдохе, требующем активного участия дыхательных мышц.

большая часть работы дыхания («65-70%) связана с преодолением эластического сопротивления. Эта энергия накапливается в эластических структурах по мере их растяжения на вдохе и покрывает энерготраты спокойного выдоха. При заболеваниях, связанных с поражением ин-терстициальной ткани легких, увеличение Wtot происходит в основном за счет возрастания Wel (рис. 7) [10]. При обструктивной патологии основные энерготраты приходятся на преодоление возрастающего сопротивления дыхательных путей [16, 17]. Характерным признаком наличия обструкции дыхательных путей является не про-

сто увеличение W , а появление W при спо-

v res7 res L

койном выдохе, что свидетельствует о неспособности в условиях возросшего бронхиального сопротивления осуществить спокойный выдох без активной работы дыхательной мускулатуры (см. рис. 7). Следует отметить, что увеличение как W , так и W, можно отнести к самым ранним

res7 el L

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

функциональным признакам респираторных заболеваний. У здорового человека потребность в активной Wres на выдохе возникает только при значительной физической нагрузке [1].

Несмотря на инвазивный характер исследования эластических свойств легких, оно хорошо переносится больными. Метод обладает высокой информативностью, поскольку определяемые параметры непосредственно характеризуют свойства легочной паренхимы. Диагностированное повышение упругости легочной ткани (увеличение CR и уменьшение CL) позволяет связать снижение легочных объемов с патологией легких, исключив при этом внелегочные причины рестриктивных нарушений (слабость дыхательных мышц, ограничение подвижности грудной клетки и др.). Снижение эластичности легочной паренхимы специфично для эмфиземы легких и помогает выявлять бронхиальную обструкцию, связанную с экспираторным коллапсом дыхательных путей. Это имеет важное значение при диагностике поражения периферических отделов дыхательных путей и определении тактики ведения больных с бронхообструктивным синдромом. Показатели растяжимости и работы дыхания успешно применяются для оценки эффективности хирургического лечения эмфиземы легких. Особая ценность метода состоит в том, что изменения эластических свойств легких как в сторону увеличения, так и в сторону снижения могут быть самыми ранними признаками легочных заболеваний, появляющимися еще до того, как регистрируются отклонения параметров традиционных методов исследования механики дыхания - спирометрии и бодиплетизмографии. Исследование эластических свойств легких, особенно работы дыхания, информативно при детализации вентиляционных нарушений смешанного характера.

Список литературы

1. Кузнецова В.К., Любимов Г.А. Механика дыхания. В кн.: Физиология дыхания. Отв. ред. Бреслав И.С., Исаев Г.Г. СПб.: Наука 1994: 54-104.

2. Yernault J.C. Lung mechanics I: lung elasticity. Bull Eur Physiopathol Respir 1983; 19(Suppl. 5): 28-32.

3. Руководство по клинической физиологии дыхания. Под ред. Шика Л.Л., Канаева Н.Н. Л.: Медицина 1980; 376с.

4. Yernault J.C., Englert M. Static mechanical lung properties in young adults. Bull Physiopathol Respir (Nancy) 1974; 10(4): 435-450.

5. Galetke W., Feier C., Muth T., Ruehle K.H., Borsch-Galet-ke E., Randerath W. Reference values for dynamic and static pulmonary compliance in men. Respir Med 2007; 101(8): 1783-1789.

6. Zapletal A., Paul T., Samanek M. Pulmonary elasticity in children and adolescents. J Appl Physiol 1976; 40(6): 953-961.

7. Schlueter D.P., Immekus J., Stead W.W. Relationship between maximal inspiratory pressure and total lung capacity (coefficient of retraction) in normal subjects and in patients with emphysema, asthma, and diffuse pulmonary infiltration. Am Rev Respir Dis 1967; 96(4): 656-665.

8. Кузнецова В.К., Садовская М.П., Буланина Е.М. Хронический бронхит в свете функционально-диагностического исследования. В сб. науч. тр.: Современные проблемы клинической физиологии дыхания. Под ред. Клемента Р.Ф., Кузнецовой В.К. Л.: ВНИИ пульмонологии 1987: 71-88.

9. Каменева М.Ю. Исследование функции внешнего дыхания. В кн.: Интерстициальные заболевания легких. Руководство для врачей. Под ред. Ильковича М.М., Кокосова А.Н. СПб.: Нордмедиздат 2005: 50-58.

10. Клемент Р.Ф., Зильбер Н.А. Диагностика нарушений функции внешнего дыхания. В кн.: Диссеминированные процессы в легких. Под ред. Путова Н.В. М.: Медицина 1984: 53-66.

11. Гриппи М.А. Патофизиология легких. М.: Восточная книжная компания 1997; 344с.

12. Boros P.W., Enright P.L., Quanjer P.H., Borsboom G.L., We-solowski S.P., Hyatt R.E. Impaired lung compliance and DL, CO but no restrictive ventilatory defect in sarcoidosis. Eur Respir J 2010; 36(6): 1315-1322.

13. Кузнецова В.К., Любимов А.Г., Каменева М.Ю. Динамика сопротивления потоку воздуха в фазу его нарастания в процессе форсированного выдоха при различных нарушениях механики дыхания. Пульмонология 1995; 4: 36-41.

14. Norman M., Hillerdal G., Orre L., Jorfeldt L., Larsen F., Cederlund K., Zetterberg G., Unge G. Improved lung function and quality of life following increased elastic recoil after lung volume reduction surgery in emphysema. Respir Med 1998; 92(4): 653-658.

15. Sciurba F.S., Rogers R.M., Keenan R.J., Slivka W.A., Gorcsan J. 3rd, Ferson P.F., Holbert J.M., Brown M.L., Lan-dreneau R.J. Improvement in pulmonary function and elastic recoil after lung reduction surgery for diffuse emphysema. N Engl J Med 1996; 334: 1095-1099.

16. Scott J.P., Gillespie D.J., Peters S.G., Beck K.C., Midthun D.E., McDougall J.C., Daly R.C., McGregor C.G. Reduced work of breathing after single lung transplantation for emphysema. J Heart Lung Transplant 1995; 14(1 Pt. 1): 39-43.

17. Dellweg D., Haidl P., Siemon K., Appelhans P., Kohler D. Impact of breathing pattern on work of breathing in healthy subjects and patients with COPD. Respir Physiol Neurobiol 2008; 161(2): 197-200.

The Assessment of Elastic Properties of Lungs in Clinical Practice

M.Yu. Kameneva

The article deals with the method of assessment of elastic properties of lungs using esophageal probe. The role of elastic properties of lungs in clinical practice is discussed.

Key words: elastic properties of lungs, lung compliance, work of breathing, pulmonary emphysema, pulmonary fibrosis.

Монография издательства "Атмосфера'

ФУНКЦИОНАЛЬНАЯ

ДИАГНОСТИКА В ПУЛЬМОНОЛОГИИ

Функциональная диагностика в пульмонологии: Монография Под ред. З.Р. Айсанова, А.В. Черняка

(Серия монографий Российского респираторного общества; гл. ред. серии А.Г. Чучалин)

Монография фундаментальной серии Российского респираторного общества обобщает накопленный мировой и отечественный опыт по всему кругу проблем, связанных с функциональной диагностикой в пульмонологии. Излагаются физиологические основы каждого метода исследования легочной функции и особенности интерпретации результатов. Обобщен международный опыт использования и интерпретации различных методов функциональной диагностики легочных заболеваний, в том числе сравнительно мало применяемых в нашей стране, но крайне необходимых при диагностике функциональных тестов: измерение легочных объемов, оценка диффузионной способности легких и силы дыхательной мускулатуры, внелабораторные методы определения толерантности больных с бронхолегочной патологией к физической нагрузке и т.п. 184 с., ил., табл.

Для пульмонологов, терапевтов, врачей общей практики, семейных врачей, а также для специалистов по функциональной диагностике.

Эту и другие книги издательства "Атмосфера" вы можете купить на сайте http://atm-press.ru

или по телефону: (495) 730-63-51

i Надоели баннеры? Вы всегда можете отключить рекламу.