3.Кочетов О.С. Динамические характеристики виброзащитной системы человека-оператора. Интернетжурнал "Технологии техносферной безопасности" (http://ipb.mos.ru/ttb). Выпуск № 4 (50), 2013 г.

© О.С.Кочетов, 2015

УДК 677:628.517.2

Кочетов Олег Савельевич, д.т.н., профессор, Московский государственный университет приборостроения и информатики, e-mail: o kochetov@mail.ru

ИСПЫТАНИЯ АКУСТИЧЕСКИХ ФОРСУНОК

Аннотация

Работа посвящена вопросам интенсификации технологических процессов в химической промышленности, связанных с тепло- и массообменом (сушка, абсорбция, экстракция и другие), в которых для диспергирования используются форсунки для высокодисперсных распылов со средним диаметром капель менее 30...40 мкм.

Ключевые слова

Интенсификация, технологический процесс, химическая промышленность, форсунка, высокодисперсный распыл.

Одним из прогрессивных способов распыливания является акустическое и вихревое распыливание [2,c.21; 3,c.12; 4,c.20; 5,c.12, 6,c.12; 7,c.18]. В акустических форсунках (с газоструйным излучателем) генерация звуковых колебаний возникает при обтекании камеры резонатора сверхзвуковым потоком.

Ниже приводятся результаты экспериментального исследования акустической форсунки со стержневым излучателем. Схема форсунки показана на рис. 1 (диаметр сопла d_c =13 мм, диаметр стержня $d_{c\tau}$ =10 мм; диаметр резонатора d_p =13 мм, глубина резонатора h=4 мм; расстояние сопло – резонатор равно b=4 мм). Производительность форсунки по расходу жидкости изменяли от 42 до 600 кг/ч. Давление жидкости изменяли в зависимости от производительности форсунки в узких пределах – от 0,02 до 0,3 МПа.

Акустические параметры излучателя форсунки регулировали в следующих пределах: частота от 5,7 до 23 кГц, уровень звукового давления от 150 до 166 дБ и акустическая мощность от 31,0 до 448,0 Вт.

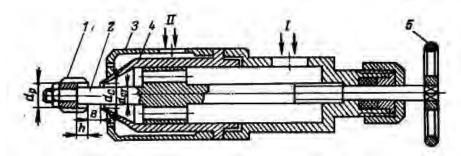


Рисунок 1 – Схема опытной акустической форсунки: 1 – резонатор; 2 – стержень; 3 – втулка; 4 – сопло; 5 – маховик. I – воздух; II – жидкость.

На рис.2а показана зависимость медианного диаметра капель $d_{\rm M}$ от производительности форсунки и давления сжатого воздуха. Из рисунка следует, что при постоянной производительности форсунки повышение давления воздуха приводит к уменьшению медианного диаметра, что можно объяснить увеличением удельного расхода энергоносителя и ростом акустической энергии, создаваемой излучателем. На рис.2б представлена зависимость медианного диаметра капель от соотношения расходов воздуха $G_{\rm B}$ и жидкости $G_{\rm W}$. Как видно из рисунка, при уменьшении соотношения $G_{\rm B}/G_{\rm W}$ средний размер капель возрастает;

увеличение удельного расхода примерно в 3 раза (с 0.20 до 0.55 кг/кг) приводит к незначительному уменьшению размера капель (на $10 \div 20$ мкм).

При постоянной производительности форсунки качество распыливания зависит от акустической мощности, создаваемой излучателем форсунки (см. рис.2в), при этом повышение мощности W_{θ} приводит к более качественному распыливанию жидкости. Повышение давления воздуха при постоянных размерах излучателя ведет к росту излучаемой мощности акустических колебаний, а следовательно, и к росту к. п. д. излучателя.

Опыты показали, что изменением расстояния сопло — резонатор можно регулировать угол распыливания в широком диапазоне — от 20 до 160° . На угол раскрытия факела оказывает влияние расход жидкости, а при работе излучателей с отношением диаметра сопла к диаметру резонатора больше единицы $(d_c/d_p > 1)$ можно получить большую акустическую мощность путем снижения частоты акустических колебаний при постоянных расходах газа, т.е. при разработке форсунок со стержневыми излучателями следует применять резонаторы, у которых отношение d_c/d_p изменяется от 1 до 1,15.

Анализируя результаты приведенных исследований можно сделать вывод о том, что при постоянной производительности форсунки качество распыливания зависит от акустической мощности, создаваемой резонансным излучателем форсунки, которое приводит к более качественному распыливанию жидкости, повышая тем самым эффективность применения акустических форсунок [1,c.129; 8,c.35; 9,c.23; 10,c.46].

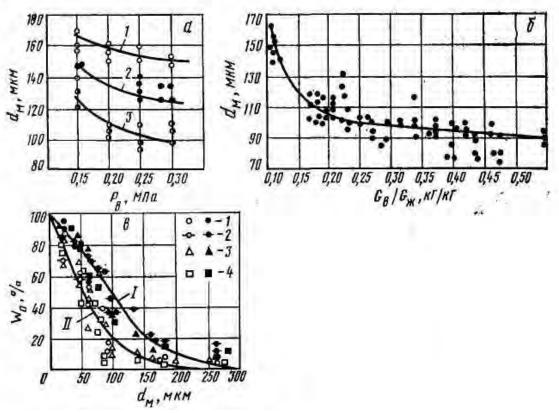


Рисунок 2 — Изменение медианного диаметра капель $d_{\rm M}$ в опытах: a — зависимость $d_{\rm M}$ от производительности форсунки и давления воздуха; $1-G_{\rm W}=660$ л/ч; 2-330 л/ч; 3-250 л/ч; 6-3 ависимость $d_{\rm M}$ от $G_{\rm B}/G_{\rm W}$; a — зависимость $d_{\rm M}$ от акустической мощности: $1-P_{\rm B}-0.15$ МПа; 2-0.20; 3-0.25; 4-0.30; 1-2 диаметр резонатора $d_{\rm P}=15$ мм, a = a

Список использованной литературы:

- 1. Кочетов О.С., Сажин Б.С. Снижение шума и вибраций в производстве: Теория, расчет, технические решения. М., 2001.–319 с.
- 2. Кочетов О.С., Стареева М.О. Форсунка для распыления жидкости // Патент РФ на изобретение № 2465065. Опубликовано 27.10.2012. Бюллетень изобретений № 30.
- 3. Кочетов О.С., Стареева М.О. Вихревая форсунка // Патент РФ на изобретение № 2465066. Опубликовано 27.10.2012. Бюллетень изобретений № 30.

- 4. Кочетов О.С., Стареева М.О. Акустический распылитель Кочетова // Патент РФ на изобретение № 2465516. Опубликовано 27.10.2012. Бюллетень № 30.
- 5.Кочетов О.С., Стареева М.О.Распылитель акустический//Патент РФ на изобретение №2465517.Опубликовано 27.10.2012.Бюллетень изобретений № 30.
- 6.Кочетов О.С., Стареева М.О. Распылитель дисковый//Патент РФ на изобретение №2460589. Опубликовано 10.09.2012. Бюллетень изобретений № 25.
- 7. Кочетов О.С., Стареева М.О. Форсунка Кочетова для распыливания жидкостей // Патент РФ на изобретение № 2461427. Опубликовано 20.09.2012. Бюллетень изобретений № 26.
- 8. Кочетов О.С. Расчет акустических форсунок для распыливания жидкостей и суспензий// Актуальные проблемы современной науки: сборник статей Международной научно-практической конференции (15 сентября 2014 г., г.Уфа). Уфа: Аэтерна, 2014.–56 с. С. 33-37.
- 9. Кочетов О.С.Исследования форсунок для распыливания жидкостей и суспензий//Научный взгляд на современное общество: сборник статей Международной научно-практической конференции (28 сентября 2014 г., г.Уфа). Уфа: РИО МЦИИ ОМЕГА САЙНС, 2014.–205с. С. 21-24.
- 10. Кочетов О.С. Исследования акустических характеристик аэродинамических глушителей шума // Международный научно-исследовательский журнал = Research Journal of International Studies. 2014. № 7-1 (26). С. 45–48.

© О.С.Кочетов, 2015

УДК 629.33.017

Маркин Александр Вячеславович

студент ВолгГТУ

г. Волгоград, РФ, E-mail: wazaaaap@mail.ru

Бойченко Алексей Александрович

студент ВолгГТУ

г. Волгоград, РФ, E-mail: boychenko.a.a@yandex.ru

ВЛИЯНИЕ РАБОЧЕГО ПРОЦЕССА АБС НА ХАРАКТЕР ИЗНАШИВАНИЯ ПАР ТРЕНИЯ ТОРМОЗОВ АВТОМОБИЛЯ

Аннотация

В статье дано подробное обоснование необходимости изучения рабочего процесса затормаживания колес автомобиля при наличии в тормозном приводе АБС.

Ключевые слова

Легковой автомобиль, тормозная система, АБС, фреттинг-коррозия

Статистика дорожно-транспортных происшествий (ДТП) свидетельствует о том, что наибольшее количество ДТП по причине технических неисправностей автомобиля приходится на тормозное управление. Поэтому контролю за техническим состоянием тормозного управления должно уделяться повышенное внимание. В настоящее время все большее распространение получила установка антиблокировочных систем (АБС) гидротормозов автомобилей. По данным заводов-производителей автомобильной техники до 90% всех сходящих с конвейера автомобилей оснащены АБС.

В отличие от традиционного способа торможения юзом при затормаживании колеса автомобиля с АБС в тормозном приводе основная часть кинетической энергии гасится в парах трения тормозных механизмов, что способствует их интенсивному нагреву. Ниже оценим возможную степень влияния этого процесса на эффективность функционирования тормозов.

В процессе трения на фактических пятнах касания тормозного диска с тормозными колодками образуются фрикционные связи, каждая из которых при работе АБС может существовать в течение очень малого промежутка времени и исчезает с нарушением контакта в данном месте на фазе растормаживания.