Научная статья на тему 'INVESTIGATION OF THE COMPONENT COMPOSITION OF THE OXIDATIVE THERMAL DEGRADATION PRODUCTS OF FUEL PELLETS FROM THE HERACLEUM SOSNOWSKYI MANDEN BIOMASS BY CHROMATOGRAPHY-MASS-SPECTROMETRY'

INVESTIGATION OF THE COMPONENT COMPOSITION OF THE OXIDATIVE THERMAL DEGRADATION PRODUCTS OF FUEL PELLETS FROM THE HERACLEUM SOSNOWSKYI MANDEN BIOMASS BY CHROMATOGRAPHY-MASS-SPECTROMETRY Текст научной статьи по специальности «Промышленные биотехнологии»

CC BY
39
24
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
HERACLEUM SOSNOWSKYI MANDEN BIOMASS / FUEL PELLETS / OXIDATIVE THERMAL DEGRADATION / CHROMATOGRAPHY-MASS-SPECTROMETRY / RETENTION TIME / COMPONENT COMPOSITION OF THE OXIDATIVE THERMAL DEGRADATION PRODUCTS

Аннотация научной статьи по промышленным биотехнологиям, автор научной работы — Polina Irina N., Mironov Mikhail V., Belyy Vladimir A., Brovarova Olga V.

The component composition of oxidative thermal degradation products of Heracleum sosnowskyi Manden biomass was studied by chromatography-mass-spectrometry. The hogweed Sosnovskyi biomass was collected on the territory of the village of Vylgort in the Komi Republic, dried to an atmospheric-dry state, crushed to dm < 0.25 mm and pressed with a force of 10 kN. Fuel pellets were burned in the special device. The products of oxidative thermal degradation were captured and analyzed on a gas-liquid chromatography with a mass-selective detector. As a result of mass spectrums analysis, 39 low-molecular-weight products with a retention time of 6 to 79 min and a percentage content of 0.4 to 12% were identified from 47 captured compounds. Qualitative and quantitative analysis of the component composition of the degradation products showed that their formation is directly related to the component composition of the biomass and is determined by the content of cellulose, hemicellulose and lignin. Analysis of data on retention time of the degradation products showed that cellulose and hemicellulose of the biomass sample are degraded priority, while lignin is thermally more stable due to its aromatic nature. Analysis of data on products of oxidative thermal degradation showed that in mass terms, polysaccharides and lignin are formed as a percentage 45 and 49 respectively, while the composition of the products of destruction of polysaccharides is more diverse (23 and 16 names). It is shown that the list of products of oxidative thermal degradation of the Heracleum sosnowskyi Manden biomass is comparable to the products of thermal decomposition of lignocellulosic materials of other botanical origin. The results of the presented study can be used in the calculation of processes and installations for burning fuel pellets from the biomass of the Heracleum sosnowskyi Manden or a combined composition fuel pellets. As well as the results can be used to assess the complex environmental impact of the technology of the energy use of the biomass of the hogweed Sosnowskyi on the atmospheric air.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «INVESTIGATION OF THE COMPONENT COMPOSITION OF THE OXIDATIVE THERMAL DEGRADATION PRODUCTS OF FUEL PELLETS FROM THE HERACLEUM SOSNOWSKYI MANDEN BIOMASS BY CHROMATOGRAPHY-MASS-SPECTROMETRY»

DOI: 10.6060/ivkkt.20226505.6462

УДК: 54.06

ИССЛЕДОВАНИЕ КОМПОНЕНТНОГО СОСТАВА ПРОДУКТОВ ОКИСЛИТЕЛЬНОЙ ТЕРМОДЕСТРУКЦИИ ТОПЛИВНЫХ ГРАНУЛ ИЗ БИОМАССЫ HERACLEUM SOSNOWSKYI MANDEN МЕТОДОМ ХРОМАТО-МАСС-СПЕКТРОМЕТРИИ

И.Н. Полина, М.В. Миронов, В.А. Белый, О.В. Броварова

Ирина Николаевна Полина (ORCID 0000-0003-4176-1204)*, Михаил Валериевич Миронов (ORCID 00000002-1623-3875)

Кафедра Транспортно-технологические машины и оборудование, Сыктывкарский лесной институт (филиал) Санкт-Петербургского государственного лесотехнического университета им. С.М. Кирова, ул. Ленина, 39, Сыктывкар, Российская Федерация, 167000 E-mail: polina_in@bk.ru*; monolignol@mail.ru

Владимир Александрович Белый (ORCID 0000-0001-5410-9587)

Лаборатория физико-химических методов исследования, Институт химии Коми научного центра УрО РАН, ул. Первомайская, 48, Сыктывкар, Российская Федерация, 167000 E-mail: skeyling@yandex.ru

Ольга Владиславовна Броварова (ORCID 0000-0003-2225-4389)

Отдел сельскохозяйственной геномики, Институт агробиотехнологий им. А.В. Журавского Коми научного центра УрО РАН, ул. Ручейная, 27, Сыктывкар, Российская Федерация, 167000 E-mail: olbrov@mail.ru

Проведено исследование компонентного состава продуктов окислительной термодеструкции топливных гранул из биомассы Heracleum sosnowskyi Manden методом хро-мато-масс-спектрометрии. Биомасса борщевика Сосновского была собрана на территории села Выльгортреспублики Коми, высушена до атмосферно-сухого состояния, измельчена до dm < 0,25 мм и запрессована с усилием 10 кН. Топливные гранулы были сожжены в установке, продукты окислительной термодеструкции уловлены и проанализированы на газо-жидкостном хроматографе с масс-селективным детектором. В результате анализа масс-спектров из 47уловленных соединений было идентифицировано 39 низкомолекулярных продуктов со временем удерживания от 6 до 79 мин и процентным содержанием от 0,4 до 12%. Качественный и количественный анализ компонентного состава продуктов деструкции показал, что их образование напрямую связано с компонентным составом биомассы и определяется содержанием и строением целлюлозы, гемицеллюлоз и лигнина. Анализ зависимости соединение - время удерживания показал, что в первую очередь деструкции подвергаются целлюлоза и гемицеллюлозы образца биомассы, а лигнин вследствие ароматической природы является термически более стабильным. Анализ зависимости компонент биомассы - продукты окислительной термодеструкции показал, что в массовом отношении полисахариды и лигнин образуют примерно одинаковое количество продуктов (45 и 49% соответственно) при этом состав продуктов деструкции полисахаридов разнообразнее (23 и 16 наименований соответственно). Показано, что перечень продуктов окислительной термодеструкции биомассы Heracleum sosnowskyi Manden сопоставим с продуктами термического разложения лигноцеллюлозных материалов другого ботанического происхождения. Результаты представленного исследования могут быть использованы при расчетах процессов и установок для сжигания топливных гранул из биомассы Heracleum sosnowskyi Manden или комбинированного состава, а также оценки комплексного экологического влияния технологии энергетического использования биомассы борщевика Сосновского на атмосферный воздух.

Ключевые слова: биомасса Heracleum sosnowskyi Manden, топливные гранулы, окислительная термодеструкция, хромато-масс-спектрометрия, время удерживания, компонентный состав продуктов деструкции

INVESTIGATION OF THE COMPONENT COMPOSITION OF THE OXIDATIVE THERMAL DEGRADATION PRODUCTS OF FUEL PELLETS FROM THE HERACLEUM SOSNOWSKYI MANDEN BIOMASS BY CHROMATOGRAPHY-MASS-SPECTROMETRY

I.N. Polina, M.V. Mironov, V.A. Belyy, O.V. Brovarova

Irina N. Polina (ORCID 0000-0003-4176-1204)*, Mikhail V. Mironov (ORCID 0000-0002-1623-3875)

Department of Transport-Technological Machines and Equipment, Syktyvkar Forest Institute (branch) of the St. Petersburg State Forest Engineering University named after S.M. Kirov, Lenin st., 39, Syktyvkar, 167000, Russia E-mail: polina_in@bk.ru*, monolignol@mail.ru

Vladimir A. Belyy (ORCID 0000-0001-5410-9587)

Laboratory of Physical and Chemical Research Methods, Institute of Chemistry of Komi Scientific Center of Ural Branch of the RAS, Pervomaiskaya st., 48, Syktyvkar, 167000, Russia E-mail: skeyling@yandex.ru

Olga V. Brovarova (ORCID 0000-0003-2225-4389)

Department of Agricultural Genomics, Institute of Agricultural Biotechnology named after A.V. Zhuravsky Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, Rucheynaya st., 27, Syktyvkar, 167000, Russia E-mail: olbrov@mail.ru

The component composition of oxidative thermal degradation products of Heracleum sos-nowskyi Manden biomass was studied by chromatography-mass-spectrometry. The hogweed Sos-novskyi biomass was collected on the territory of the village of Vylgort in the Komi Republic, dried to an atmospheric-dry state, crushed to dm < 0.25 mm and pressed with a force of 10 kN. Fuel pellets were burned in the special device. The products of oxidative thermal degradation were captured and analyzed on a gas-liquid chromatography with a mass-selective detector. As a result of mass spectrums analysis, 39 low-molecular-weight products with a retention time of 6 to 79 min and a percentage content of 0.4 to 12% were identified from 47 captured compounds. Qualitative and quantitative analysis of the component composition of the degradation products showed that their formation is directly related to the component composition of the biomass and is determined by the content of cellulose, hemicellulose and lignin. Analysis of data on retention time of the degradation products showed that cellulose and hemicellulose of the biomass sample are degraded priority, while lignin is thermally more stable due to its aromatic nature. Analysis of data on products of oxidative thermal degradation showed that in mass terms, polysaccharides and lignin are formed as a percentage 45 and 49 respectively, while the composition of the products of destruction of polysaccharides is more diverse (23 and 16 names). It is shown that the list ofproducts of oxidative thermal degradation of the Heracleum sosnowskyi Manden biomass is comparable to the products of thermal decomposition of lignocellulosic materials of other botanical origin. The results of the presented study can be used in the calculation ofprocesses and installations for burning fuel pellets from the biomass of the Heracleum sosnowskyi Manden or a combined composition fuel pellets. As well as the results can be used to assess the complex environmental impact of the technology of the energy use of the biomass of the hogweed Sosnowskyi on the atmospheric air.

Key words: Heracleum sosnowskyi Manden biomass, fuel pellets, oxidative thermal degradation, chromatography-mass-spectrometry, retention time, component composition of the oxidative thermal degradation products

Для цитирования:

Полина И.Н., Миронов М.В., Белый В.А., Броварова О.В. Исследование компонентного состава продуктов окислительной термодеструкции топливных гранул из биомассы Heracleum sosnowskyi Manden методом хромато-масс-спектрометрии. Изв. вузов. Химия и хим. технология. 2022. Т. 65. Вып. 5. С. 68-76

For citation:

Polina I.N., Mironov M.V., Belyy V.A., Brovarova O.V. Investigation of the component composition of the oxidative thermal degradation products of fuel pellets fromthe Heracleum sosnowskyi Manden biomass by chromatography-mass-spec-trometry. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2022. V. 65. N 5. P. 68-76

INTRODUCTION

From the standpoint of the priority of high environmental and economic efficiency, plant raw materials have established themselves as an efficient energy fuel. Pellets and briquettes have strongly entered into use, and become an integral part of the fuel and energy complex. Thus, the environmental problems of the woodworking and agricultural industries are successfully solved by recycling the resulting waste. Despite the universality of the technology of energy use of plant raw materials and its renewable nature, the lack of data on the adverse effects of combustion products on atmospheric air limits the possible use of Sos-novsky hogweed [1]. Thus, the study of the composition and amount of products of the oxidative thermal destruction of the biomass fuel of the Sosnovskyi hogweed is actual.

OBJECT AND METHODS

Fuel pellets from shredded biomass of Sos-novskyi hogweed, dried to an atmospheric dry state, dm < 0.25 mm, pressed with a force of 10 kN, were combustion in installation for the experiment consisting of an electric tube furnace (quartz tube diameter 10 mm, heating rate 20 °C per minute for 30 min up to 600 °C -minimum combustion temperature) and cryo-trap (methanol, chemically pure, 2 ml, temperature -25 °C). The products of oxidative thermal destruction were analyzed on a gas-liquid chromatography with a mass-selective detector GCMS-QP2010 ULTRA, Shimadzu. Conditions: carrier gas - helium, flow rate - 1.1 ml / min, temperature gradient from 60 to 200 °C for 5 min, capillary column - DB-5ms, Agilent (d = 0.25 mm, 60 m,

0.25 ^m), maximum detector sensitivity - El, SCAN: 1 pg OFN m/z 272 S/N > 1500. The components were identified automatically by analogy with the known mass spectra of the samples stored in the NIST 08 databases. The biomass of Heracleum sosnowskyi Manden, in addition to biopolymers - cellulose - 44% and lignin - 21-23 %, contains polysaccharides, proteins, tannins (tannins), essential oils, glutamine, carotene, vitamins C and E, folic acid, galactan, araban, furano-coumarins, macro- and microelements [2-6].

Pectin polysaccharides ~ 17%, of which 12.5% extracted by ammonium oxalate contain 83% gly-curonic acids (up to 85% galacturonic acid), 4.7% galactose, 2.6% arabinose, 3.7% rhamnose, 0.6% xylose, 2.6% glucose, 0.5% mannose, as well as arabinogalac-tan proteins ~ 2% in the pectin-protein complex [7, 8], 4% furanocoumarins (xanthotoxin - 1.15%, bergapten -1.04%, umbelliferone - 0.83%, angelicin - 0.63%, sphondin - 0.35) [9], essential oils of most cow hog-weeds are represented mainly by monoterpenes, ses-quiterpenes and esters.In Sosnovsky hogweed, their number is up to 1%, the main components are p-cymol -0.48%, terpinolene - 0.17%, limonene - 0.14%, and y-terpinene 0.082. In all species, by the end of the growing season, the content of esters increases and the amount of monoterpenes decreases [10].

RESULT AND DISCUSSION

Low molecular weight products mixture composition of oxidative thermal destruction and their percentage were estimated by the retention time and the peak area on the ion chromatogram (Table 1, 2).

Table 1

Retention time of the oxidative thermal degradation products of Heracleum Sosnowskyi Manden biomass Таблица 1. Время удерживания компонентов смеси продуктов окислительной термодеструкции биомассы

Compound Molecular Formula Structural formula Retention time, min,

1 2 3 4

glycerin С3Н8О3 «Х- 5.94

1 -acetoxy-2-butanone С6Н10О3 6.63

furfural С5Н4О2 7.73

1,3-diethoxy-2-propanol С7Н16О3 HjC CII, О СИ; СИ СИ, О СИ,-СИ; 8.22

furancarbaldehyde -3 (furfural isomer) С5Н4О2 8.33

2-hydroxymethylfuran С5Н6О2 Озъ 8.94

1 2 3 4

xylol C8H10 9.60

2-cyclopentene-1,4-dione C5H4O2 10.11

styrene C8H8 O-™ 10.42

2-methyl-cyclopentene-2-one-1 C6H8O 11.03

2-acetylfuran C6H602 11.19

y-crotonolactone C4H402 (¡X0 11.28

not identified - 11.44

cyclopentanedione -1,2 C5H602 11.67

5 -methylfurfural C6H602 13.64

3 -methyl -cyclopentene -2 -one-1 C6H8O o0CH3 13.78

phenol C6H6O CXoh 14.34

3-hydroxydihydro-2(3H) -furanone C4H603 t}- 14.81

2-hydroxy-3 -methyl-2-cyclo-pentene-1-one C6H802 17.02

o-cresol C7H80 18.60

m-cresol C7H80 ¿L 19.84

guaiacol C7H802 20.93

pentanal C5H100 21.11

tetrahydropyran-2-methanol C6H1202 CX.™ 27.13

4-methylguayacol C8H1002 27.68

2-methylpropyl ether of 2-methylpropanoic acid C8H1602 27.79

1,4:3,6-dianhydro-a-D-glucopyranose C6H804 28.60

not identified - - 29.83

not identified - - 31.50

1 2 3 4

2,3-dihydroxy-1-methoxybenzene С7Н8О3 32.13

hydroquinone С6ШО2 HO^/ yOH 32.70

4-vinylguayacol С9Н10О2 35.69

syringol С8Н10О3 38.09

vanillin С8Н8О3 X^fo-CH, 41.13

1,2,4-trimethoxybenzene С9Н12О3 Jotb* 44.17

isoevgenol С10Н12О2 "CCr^ 44.35

levoglucosan С6Н10О5 »0° ш ° 45.52

not identified - - 49.04

not identified - - 49.30

3,5-dimethoxyacetophenone С10Н12О3 51.30

not identified - - 53.52

not identified - - 56.30

lilac aldehyde С9Н10О4 56.70

6-methoxyevgenol С11Н14О3 59.00

acetosyringol С10Н12О4 НзСО'^^^^ОСНз 60.76

not identified - - 62.79

y-stearolactone С18Н34О2 78.91

A total of 47 compounds were caught, of which 39 were identified. All compounds are degradation products of cellulose, hemicelluloses, and lignin. Analysis of the compound - retention time dependence showed that hemicelluloses and cellulose undergo destruction first of all, while lignin is thermally more stable due to its aromatic nature. The thermal stability of cellulose depends on the degree of crystallinity and the content of low molecular weight polysaccharides and lignin. The higher the degree of crystallinity, the lower

the degree of delignification and the content of poly-saccharides, the higher the thermal stability of the sample [11-13]. The degree of crystallinity of cellulose from the biomass of Heracleum sosnowskyi Manden averages 70 ± 2% [3], a typical value for cellulose samples of various botanical origin is 50-80% [14-16].

The chemical nature of the components of the biomass of Heracleum sosnowskyi Manden certainly predetermines the component composition of the products of oxidative thermal destruction (Table 2).

45% of all captured compounds are formed due to the destruction of hemicelluloses and cellulose, forming the largest amount of furancarbaldehyde-3, 2-methylpropyl ester of 2-methylpropanoic acid, y-crotonolactone, 2-hydroxymethylfuran, pentanal and levoglucosan, etc. The component composition of the destruction products is comparable with the literature data for polysaccharides [17-19].

49% are lignin degradation products, most of which are syringol, guaiacol, 3,5-dimethoxyacetophe-

Table 2

Component composition of the oxidative thermal degradation products of Heracleum sosnowskyi Manden biomass Таблица 2. Компонентный состав смеси продуктов окислительной термодеструкции биомассы борщевика

Сосновского

none and 4-vinyl guaiacol, etc.The component composition of the destruction products of this part of the biomass is comparable with the literature data for lignins of various origins [ 18-22]. The reliability of the identification results is also indicated by the ratio of the main monomeric structural units of lignin G:S:H = 45.2:45.0:9.8, calculated on the basis of Table 2, which correlates with the data [4], confirmed, among other things, by other methods.

Original compound COMPOUND QUANTITY, % X, %

i 2 3 4

furans

furancarbaldehyde -3 (furfural isomer) 6.37

2-hydroxymethylfuran 4.24

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

3-hydroxydihydro-2(3H) - furanone i.iG 13.14

2-acetylfuran G.58

5 -methylfurfural G.46

furfural G.39

lactones

y-crotonolactone 4.38 6.35

y-stearolactone 1.97

ketones

cyclopentanedione-1,2 G.8G

2-cyclopentene-l ,4-dione G.53 2.34

3 -methylcyclopentene-2-one-l G.52

2-methylcyclopentene-2-one-1 G.49

cellulose, hemicelluloses aldehydes

pentanal 3.43 3.43

esters

2-methylpropyl ether of 2-methylpropanoic acid 4.94

i -acetoxy-2-butanone 2.44 9.21

tetrahydropyran-2-methanol 1.83

alcohols

1,3-diethoxy-2-propanol 2.39 3.65

glycerin 1.26

enols

2-hydroxy-3-methyl-2-cyclopentene-1-one 1.73 1.73

carbohydrates

levoglucosan 3.iG 4.16

1,4:3,6-dianhydro-a-D-glucopyranose i.G6

hydrocarbons

styrene G.67 1.29

xylol G.62

I 45.3G

G-unit

guaiacol 7.3G

lignin 4-vinylguayacol 4.95 18.49

isoevgenol 2.4G

vanillin 1.58

Продолжение таблицы

1 2 3 4

4-methylguayacol 1.28

2,3-dihydroxy-1-methoxybenzene 0.98

S-unit

syringol 11.98

6-methoxyevgenol 2.92 18.39

acetosyringol 1.92

lilac aldehyde 1.57

lignin Н-unit

phenol 1.36

m-cresol 1.11 4.00

hydroquinone 1.02

o-cresol 0.51

other

3, 5 -dimethoxyacetophenone 5.87 8.12

1,2,4-trimethoxybenzene 2.25

I 49.00

I 94.30

CONCLUSIONS

The qualitative and quantitative composition of the products of the oxidative thermal destruction of the biomass of Heracleum sosnowskyi Manden was determined by the method of gas chromatography-mass spectrometry.

Identified 39 (94.30%) low molecular weight components, which are products of the destruction of hemicelluloses, cellulose and lignin.

The largest number of identified compounds: furancarbaldehyde-3 (6.37%), 2-methylpropyl ester of 2-methylpropanoic acid (4.94%), y-crotonolactone (4.38), 2-hydroxymethylfuran (4.24%), pentanal (3.43) and levoglucosan (3.10%), syringol (11.98%), guaiacol (7.30%), 3,5-dimethoxyacetophenone (5.87%) and 4-vinyl guaiacol (4.95 %).

It was shown that hemicelluloses and cellulose undergo destruction first of all, while lignin is thermally more stable.

ЛИТЕРАТУРА

1. Полина И.Н., Миронов М.В., Белый В.А. Термогравиметрическое и кинетическое исследование топливных гранул из биомассы Heracleum Sosnowskyi Manden. Изв. вузов. Химия и хим. технология. 2021. Т. 64. Вып. 4. С. 15-20. DOI: 10.6060/ivkkt.20216404.63 3 8.

2. Возняковский A.n., Карманов A.n., Неверовская A-Ю., Возняковский A.A., Кочева Л.С., Кидалов С.В. Биомасса борщевика Сосновского как сырье для получения 2D углеродных наноструктур. Химия растит. сырья. 2020. № 3. С. 83-92. DOI: 10.14258/jcprm.2020047739.

3. Захаров A.r., Воронова M-И., Суров O.B., Рублева Н.В., Лебедева E.O. Характеристика целлюлозы и нано-кристаллической целлюлозы, полученных из лигно-цел-

The component composition of the products of oxidative thermal destruction directly depends on the component composition of the biomass and is determined by the content and structure of cellulose, hemi-celluloses and lignin.

ACKNOWLEDGMENTS

The researches were carried out using the equipment of the Center for Collective Use "Khimiya" of Institute of Chemistry, Komi Science Center.

Исследования проводились на оборудовании ЦКП «Химия» Института химии Коми НЦ.

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

The authors declare the absence a conflict of interest warranting disclosure in this article.

REFERENCES

1. Polina I.N., Mironov M.V., Belyy V.A. Thermogravimetric and kinetic study of fuel pellets from biomass of Heracleum Sosnowskyi Manden. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2021. V. 64. N 4. P. 15-20. DOI: 10.6060/ivkkt.20216404.6338.

2. Voznyakovskiy A.P., Karmanov A.P., Neverovskaya A.Yu., Voznyakovskiy A.A., Kocheva L.S., Kidalov S.V. Biomass of Sosnowskyi's hogweed as raw material for 2d the carbonic nanostructures obtaining. Khim. Rastit. Syr'ya. 2020. N 3. P. 83-92 (in Russian). DOI: 10.14258/jcprm.2020047739.

3. Zaharov A.G., Voronova M.M., Surov O.V., Rubleva N.V., Lebedeva E.O. Characterization of cellulose and nanocrystalline cellulose produced from lignocellulose mass of Heracléum sosnowskyi. Fizika Volokn. Mater.: Strukt.,

люлозной массы борщевика Сосновского. Физика во-локн. Матер.: структ., св-ва, наукоем. Технологии и материалы. 2020. № 1. С. 177-181. DOI: 10.47367/2413-6514_2020_1_177.

4. Karmanov A.P., Kocheva L.S., Belyy V.A. Topological structure and antioxidant properties of macromolecules of lignin of hogweed Heracleum sosnowskyi Manden. Polymer. 2020. V. 202. P. 122756. DOI: 10.1016/j.polymer.2020.122756.

5. Черняк Д.М., Юрлова Л.Ю., Зориков П.С. Содержание витаминов в борщевиках и действие водных извлечений на организм лабораторных животных. Естеств. и техн. науки. 2010. № 5 (48). С. 186-189.

6. Иванова Т.А., Матвеева Т.Н., Чантурия В.А., Иванова Е.Н. Особенности состава многокомпонентных экстрактов борщевика и его влияние на флотационные свойства золотосодержащих сульфидов. Физ.-техн. Пробл. разраб. Полез. ископ. 2015. № 4. С. 151-157. DOI: 10.1134/S1062739115040190.

7. Шахматов Е.Г., Михайлова Е.А., Макарова Е.Н. Структурно-химическая характеристика и биологическая активность полисахаридов Heracleum sosnowskyi Manden. Химия раст. сырья. 2015. № 4. С. 15-22. DOI: 10.14258/jcprm.201504878.

8. Patova O.A., Golovchenko V.V., Vityazev F.V., Burkov A.A., Belyi V.A., Kuznetsov S.N., Litvinets S.G., Martinson E.A. Physicochemical and rheological properties of gelling pectin from Sosnowskyi's hogweed (Heracleum sosnowskyi) obtained using different pretreatment conditions. Food Hydrocolloids. 2017. V. 65. P. 77-86. DOI: 10.1016/j.foodhyd.2016.10.042.

9. Юрлова Л.Ю., Черняк Д.М., Кутовая О.П. Фурокумарины Heracleum sosnowskyi и Heracleum moellendorff II. Тихоокеан. Мед. Журн. 2013. № 2 (52). С. 91-93.

10. Кушакова А.С., Ткаченко К.Г., Зенкевич И.Г. Определение компонентного состава эфирных масел борщевиков heracleum с использованием хромато-распределительного метода. Химия растит. сырья. 2010. № 4. С. 111-114.

11. Miranda M.I.G., Bica C.I.D., Nachtigall S.M.B., Rehman N., Rosa S.M.L. Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC-TGA and MDSC techniques. Thermochim. Acta. 2013. 565. Р. 65-71. DOI: 10.1016/j.tca.2013.04.012.

12. Фролова С.В., Кувшинова Л.А., Бугаева А.Ю., Кучин А.В. Термический анализ порошковых целлюлоз, полученных деструкцией сульфатной целлюлозы тетрахлоридом титана. Химия растит. сырья. 2011. № 1. С. 43-46.

13. Алешина Л.А., Власова Е.Н., Грунин Л.Ю., Грунин Ю.Б., Гуртов В.А., Коновалова К.А., Котельникова Н.Е., Кувшинова Л.А., Лаврентьев В.К., Логинова С.В., Масас Д.С., Махотина Л.Г., Михаилиди А.М., Никольская Е.А., Пикулев В.Б., Прусский А.И., Сапрыкина Н.Н., Таланцев В.И., Фролова С.В., Шах-мин А.Л. Структура и физико-химические свойства целлюлоз и нанокомпозитов на их основе. Петрозаводск: Изд-во ПетрГУ. 2014. 240 с.

14. Барышникова С.В., Шарыпова В.И., Жижаева А.М., Береговцова Н.Г., Кузнецов Б.Н. Изменения структурной упорядоченности древесины осины в процессе ее ме-ханохимической активации и гидролиза. Журн. Сибир. фед. ун-та. Сер.: Химия. 2010. № 2 (10). С. 120-127.

15. Иоелович М.Я. Модели надмолекулярной структуры и свойства целлюлозы. Высокомолек. соед. Сер. A. 2016. 58 (6). С. 604 - 624. DOI: 10.7868/S2308112016060109.

Sv-va, Naukoem. Tekhnol. Mater. 2020. N 1. P. 177-181 (in Russian). DOI 10.47367/2413-6514_2020_1_177.

4. Karmanov A.P., Kocheva L.S., Belyy V.A. Topological structure and antioxidant properties of macromolecules of lignin of hogweed Heracleum sosnowskyi Manden. Polymer. 2020. V. 202. P. 122756. DOI: 10.1016/j.polymer.2020.122756.

5. Chernyak D.M., Yurlova L.Yu., Zorikov P.S. Vitamin content in hogweed and the effect of water extracts on the body of laboratory animals. Estestv. Tekhn. Nauki. 2010. N 5 (48). P. 186-189 (in Russian).

6. Ivanova T.A., Matveeva T.N., Chanturiya V.A., Ivanova E.N. Composition of multicomponent heracleum extracts and its effect on flotation of gold-bearing sulfides. J.Min-ing Sci. 2015. N 4. P. 819-824 (in Russian). DOI: 10.1134/S1062739115040190.

7. Shahmatov E.G., Mikhaylova E.A., Makarova E.N. Structural-chemical characteristic and biological activity of poly-saccharides from Heracleum sosnowskyi Manden. Khim. Rastit. Syr'ya. 2015. N 4. P. 15-22 (in Russian). DOI: 10.14258/jcprm.201504878.

8. Patova O.A., Golovchenko V.V., Vityazev F.V., Burkov A.A., Belyi V.A., Kuznetsov S.N., Litvinets S.G., Martinson E.A. Physicochemical and rheological properties of gelling pectin from Sosnowskyi's hogweed (Heracleum sosnowskyi) obtained using different pretreatment conditions. Food Hydrocolloids. 2017. V. 65. P. 77-86. DOI: 10.1016/j.foodhyd.2016.10.042.

9. Yurlova L.Yu., Chernyak D.M., Kutovaya O.P. Furocou-marins Heracleum sosnowskyi and Heracleum moellen-dorffii. Tikhookean. Med. Zhurn. 2013. N 2 (52). P. 91-93 (in Russian).

10. Kushakova A.S., Tkachenko K.G., Zenkevich I.G. Determination of the component composition of the essential oils of hogweed heraculum using the chromatic-distribution method. Khim. Rastit. Syr'ya. 2010. N 4. P. 111-114 (in Russian).

11. Miranda M.I.G., Bica C.I.D., Nachtigall S.M.B., Rehman N., Rosa S.M.L. Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC-TGA and MDSC techniques. Thermochim. Acta. 2013. 565. P. 65-71. DOI: 10.1016/j.tca.2013.04.012.

12. Frolova S.V., Kuvshinova L.A., Bugaeva A.Yu., Kuchin A.V. Thermal analysis of powdered celluloses obtained by the destruction of sulfate cellulose with titanium tetrachloride. Khim. Rastit. Syr'ya. 2011. N 1. P. 43-46 (in Russian).

13. Aleshina L.A., Vlasova E.N., Grunin L.Yu., Grunin Yu.B., Gurtov V.A., Konovalova K.A., Kotel'nikova N.E., Kuvshinova L.A., Lavrent'ev V.K., Loginova S.V., Masas D.S., Mahotina L.G., Mihailidi A.M., Nikol'skaya E.A., Pikulev V.B., Prusskij A.I., Saprykina N.N., Talancev V.L, Frolova S.V., Shahmin A.L. Structure and physico-chemical properties of celluloses and nanocomposites based on them. Petrozavodsk: Izd-vo PetrGU. 2014. 240 p. (in Russian).

14. Baryshnikova S.V., Sharypova V.I., Zhizhaeva A.M., Beregovtsova N.G., Kuznetsov B.N. Variation a Structural Order of Aspen Wood During its Mechanochemical Activation and Hydrilysisa. Zhurn. Sibir. Fed. Un-ta. Ser.: Khimiya. 2010. N 2(10). P. 120-127 (in Russian).

15. Ioelovich M.Ya. Models of supramolecular structure and properties of cellulose. Vysokomolek. Soed. Sеr. A. 2016. N 58(6). P. 604-624 (in Russian). DOI: 10.7868/S2308112016060109.

16. Прусов A.H., Прусова C.M., Захаров A.r., Базанов A.B., Cмирнов П.Р., Радугин M.B. Химическая трансформация технического волокна льна, пеньки и джута в целлюлозу и их пиролиз. Изв. вузов. Химияи хим. технология. 2G16. Т. 59. Вып. 6. С. 97-104. DOI: 1G.6G6G/tcct.2G1659G6.5392k.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

17. Дейнеко И.П. Химические превращения целлюлозы при пиролизе. Изв. вузов. Лесной журн. 2004. № 4. С. 97-112.

1S. Mészáros Erika, Jakab Emma, Várhegyi G., Tóvári Р. Thermogravimetry / Mass spectrometry analysis of energy crops. J. Thermal Anal. Calorim. 2GG7. V. SS. 2. Р. 477-482. DOI: 1G.1GG7/s1G973-GG6-S1G2-4.

19. Ефремов A.A., Оффан К.Б., Киселев В.П. Исследование состава жидких и газообразных продуктов пиролиза скорлупы кедровых орехов. Химия раст. сырья. 2002. № 3. С. 43-47.

2G. Крутов C.M., Грибков И.В., Зарубин M.^, Пранович A.B., Cультанов B.C. Исследование гидролизных лиг-нинов методом пиролитической хромато-масс-спектро-метрии. Изв. вузов. Лесной журн. 2008. № 3. С. 130-136.

21. Гордин A.A., Пшеничникова Л.Н, ^^вицына O.A. Исследование состава гидролизного лигнина кировского биохимического завода. Хим. науки. 2G17. № 4(8). С. 7.

22. Mикулинцева M.!., Пономарев Д.Л., Грачев A.H., Покрышкин C.A., Косяков Д.С Химический состав фенольной фракции смолы абляционного пиролиза древесины. Изв. вузов. Лесной журн. 2019. № 3(369). С. 132-142.

16. Prusov A.N., Prusova S.M., Zakharov A.G., Bazanov A.V., Smirnov P.R., Radugin M.V. Chemical transformation of technical fiber of flax, hemp and jute to cellulose and their pyrolysis. ChemChemTech [Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol.]. 2016. V. 59. N 6. P. 97 - 104. DOI : 10.6060/tcct.20165906.5392k.

17. Deiyneko LP. Chemical transformations of cellulose under pyrolysis. Izv. Vuzov. Lesnoj Zhurn. 2004. N 4. P. 97-112 (in Russian).

18. Mészâros Erika, Jakab Emma, Vârhegyi G., Tôvâri P.

Thermogravimetry / Mass spectrometry analysis of energy crops. J. Thermal Anal. Calorim. 2007. V. 88. 2. P. 477-482. DOI: 10.1007/s10973-006-8102-4.

19. Efremov A.A., Offan K.B., Kiselev V.P. Investigation of the composition of liquid and gaseous products of pyrolysis of pine nut shells. KhimiyaRast. Syr'ya. 2002. N 3. P. 43-47 (in Russian).

20. Krutov S.M., Gribkov I.V., Zarubin M.Ya., Pranovich A.V., Sultanov V.S. Investigation of Hydrolysis Lignins by Method of Pyrolysis Chromato-mass-spectrometry. Izv. Vuzov. Lesnoj Zhurn. 2008. N 3. P. 130-136 (in Russian).

21. Gordin A.A., Pshenichnikova L.N., Nagovitsyna O.A. Study of the composition of hydrolysis lignin of the Kirov biochemical plant. Khim. Nauki. 2017. N 4(8). P. 7 (in Russian).

22. Mikulintseva M.Yu., Ponomarev D.A., Grachev A.N., Pokryshkin S.A., Kosyakov D.S. Chemical Composition of Phenolic Fraction of WoodAblative Pyrolysis Resin. Izv. Vuzov. Lesnoj Zhurn. 2019. N 3(369). P. 132-142. DOI: 10.17238/issn0536-1036.2019.3.132.

Поступила в редакцию 07.06.2021 Принята к опубликованию 18.03.2022

Received 07.06.2021 Accepted 18.03.2022

i Надоели баннеры? Вы всегда можете отключить рекламу.