Научная статья на тему 'INVESTIGATION OF PHASE EQUILIBRIA AND PHYSICO-CHEMICAL PROPERTIES OF OBTAINED PHASES IN THE Sb2S3-Cr2Se3 SYSTEM'

INVESTIGATION OF PHASE EQUILIBRIA AND PHYSICO-CHEMICAL PROPERTIES OF OBTAINED PHASES IN THE Sb2S3-Cr2Se3 SYSTEM Текст научной статьи по специальности «Химические науки»

CC BY
34
5
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Azerbaijan Chemical Journal
Область наук
Ключевые слова
phase diagram / microhardness / solid solution / eutectic / solidus / фаза / микротвердость / твердый раствор / эвтектика / солидус

Аннотация научной статьи по химическим наукам, автор научной работы — E.I.Mamedov, F.V.Yusubov, L.F.Masiyeva, I.I.Aliyev, C.A.Ahmedova

Using complex of physicochemical methods of analysis (DTA, XRD, MSA, as well as measurements of density and microhardness), the phase equilibria in the Sb2S3-Cr2Se3 system was studied and a phase diagram was con-structed. It is established that the system is quasi-binary and has eutectic type T-x diagram. In the process of chemical interaction, a compound with composition Cr2Sb2S3Se3 is formed in the system. The Cr2Sb2S3Se3 compound melts incongruently at 6500C., A limited area of the solid solution based on the initial components of the system is formed. The coordinates of the eutectic formed between the α-solid solution and the Cr2Sb2S3Se3 compound is 17 mol % Cr2Se3 at 4500C. At room temperature, solid solutions based on Sb2S3 reach up to 5 mol% Cr2Se3, and based on Cr2Se3 up to – 3 mol % Sb2S3. According to the results of X-ray diffraction analysis, Cr2Sb2S3Se3 crystallizes in a tetragonal system with lattice parameters: a=16.37; c=11.69 Å, ρpuc.=5.40 q/sm3,ρX-ray=5.42 q/sm3. The temperature dependence of the electrical conductivity and thermo-EMF of the(Sb2S3)1-x(Cr2Se3)x (x=0.01; 0.02; 0.03;) solid solution has been studied.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ИССЛЕДОВАНИЕ ФАЗОВОГО РАВНОВЕСИЯ И ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ПОЛУЧЕННЫХ ФАЗ В СИСТЕМЕ Sb2S3-Cr2Se3

Фазовое равновесие в системе Sb2S3-Cr2Se3 изучено с использованием комплексных физико-химических методов анализа (ДТА, РФА, МCА, а также измерения плотности и микротвердости) и построена фазовая диаграмма. Было определено, что фазовая диаграмма системы является квазибинарной и эвтектической типа. В процессе химического взаимодействия в системе образуется соединение, содержащее Cr2Sb2S3Se3. Соединение Cr2Sb2S3Se3 плавится при 6500C. На основе исходных компонентов в системе образуется ограниченное области твердого раствора. Координата эвтектики, образованная между α-твердым раствором и соединением Cr2Sb2S3Se3, составляет 17 мол. % Cr2Se3 при температуре 4500C. При комнатной температуре на основе Sb2S твердые доходятдо 5 мол. % Cr2Se3, а на основе Cr2Se3 до – 3 мол. % Sb2S3. Согласно результатам рентгенофазового анализа, Cr2Sb2S3Se3 кристаллизуется в тетрагональной сингонии с параметрами решетки: a=16.37; c=11.69 Å, ρпик.=5.40 q/sm3, ρрент..=5.42 q/sm3.. Исследована температурная зависимость электропроводности и термо-ЭДС твердогораствора (Sb2S3)1-x(Cr2Se3)x (x=0.01; 0.02; 0.03).

Текст научной работы на тему «INVESTIGATION OF PHASE EQUILIBRIA AND PHYSICO-CHEMICAL PROPERTIES OF OBTAINED PHASES IN THE Sb2S3-Cr2Se3 SYSTEM»

152 AZERBAIJAN CHEMICAL JOURNAL № 3 2023 ISSN 2522-1841 (Online)

ISSN 0005-2531 (Print)

UDC 546.863.22+ 763.23

INVESTIGATION OF PHASE EQUILIBRIA AND PHYSICO-CHEMICAL PROPERTIES OF OBTAINED PHASES IN THE Sb2S3-Cr2Se3 SYSTEM

E.LMamedov1, F.V.Yusubov1, L.F.Masiyeva1, I.I.Aliyev2, C.A.Ahmedova3, Kh.M.Gashimov4

Azerbaijan Technical University 2 M.Nagiyev Institute of Catalysis and Inorganic Chemistry, Ministry of Science and Education of

the Republic of Azerbaijan 3Adiyaman University, Faculty of Arts and Sciences, Department of Chemistry, Turkey

4Azerbaijan State Economic University aliyemimir@rambler.ru

Received 07.12.2022 Accepted 01.02.2023

Using complex of physicochemical methods of analysis (DTA, XRD, MSA, as well as measurements of density and microhardness), the phase equilibria in the Sb2S3-Cr2Se3 system was studied and a phase diagram was constructed. It is established that the system is quasi-binary and has eutectic type T-x diagram. In the process of chemical interaction, a compound with composition Cr2Sb2S3Se3 is formed in the system. The Cr2Sb2S3Se3 compound melts incongruently at 6500C., A limited ansa of the solid solution based on the initial components of the system is formed. The coordinates of the eutectic formed between the a-solid solution and the Cr2Sb2S3Se3 compound is 17 mol % Cr2Se3 at 4500C. At room temperature, solid solutions based on Sb2S3 reach up to 5 mol % Cr2Se3, and based on Cr2Se3 up to - 3 mol % Sb2S3. According to the results of X-ray diffraction analysis, Cr2Sb2S3Se3 crystallizes in a tetragonal system with lattice parameters: a=16.37; c=11.69 A, ppuc.=5.40 q/sm3, pX-iay=5.42 q/sm3. The temperature dependence of the electrical conductivity and thermo-EMF of the (Sb2S3)1-x(Cr2Se3)x (x=0.01; 0.02; 0.03;) solid solution has been studied.

Keywords: phase diagram, microhardness, solid solution, eutectic, solidus.

doi.org/10.32737/0005-2531-2023-3-152-160 Introduction

Antimony chalcogenides and ternary and more complex compounds based on them are materials with with various functional properties. Sulfides and selenides of antimony are photosensitive [1-6], and tellurides are thermoelectric materials and may be used in the radio and electronic industries [7-12]. Chromium chalcogenides are semiconductor materials with optical and magnetic properties. Ternary and more complex compounds based on chromium chalcogenides have high ferromagnetic properties [13-21]. The magnetic properties increase in the series Cr2S3 ^ Cr2Se3 ^ Cr2Te3. In the chemical interaction of light-sensitive antimony chalcogenides with magnetic compounds, obtaining magneto-optical [22-24] materials that retain the properties of primary compounds is of both scientific and practical importance.

Ternary and more complex systems consisting of antimony chalcogenides have been studied in number of works [25-30].

The purpose of the study is investigation of the phase equilibria in the Sb2S3-Cr2Se3 system, construct its phase diagram, and search for new intermediate phases and regions of solid solutions.

The Sb2S3 compound melts incongruently at 559.50C and crystallizes in the orthorhom-bic system with lattice parameters: a = 11229; b = 11310; c = 3.83 A, sp. gr. Pbnm-D162h, density 4.63 g/cm3, microhardness 1400 MPa [31]. The Cr2Se3 compound melts congruently at 15200C and crystallizes in the hexagonal structure with lattice parameters: a = 3605; c = 5.774 A, sp. gr. P3 [32].

Experimental part

The Sb2S3-Cr2Se3 alloys were synthesized from Sb2S3 and Cr2Se3 components in quartz ampoules evacuated at 0.133 Pa in the temperature range of 600-1100°C. The resulting alloys were subjected to heat treatment at a temperature of 5000C for 320 hours.

The equilibrium alloys were studied using the methods of physicochemical analysis (DTA, XRD, MSA, measurements of specific gravity and microhardness).

DTA analysis of the samples was carried out on an NTR-73 low-frequency pyrometer with chromel-alumel thermocouple. The heating rate of the samples was 100C/min.

The X-ray diffraction analysis of the alloys was performed on a D2 PHASER X-ray diffractometer. In this case, CuKa radiation and a Ni filter were used.

Microstructure analysis (MSA) was performed using the MIM-8 microscope. A solution of 1 N sodium hydroxide was used as a clarifier to determine the phase boundaries. HNO3: H2O2=1:1. Microhardness was measured on a PMT-3 metallographic microscope. The density of the samples was determined by the pycnomet-ric method; toluene was taken as a filler.

The temperature dependence of electrical conductivity and thermo-EMF of (Sb2S3)1_x(Cr2Se3)x (x=0.01; 0.02; 0.03) solid solution alloys was studied by the compensation method [33, 34].

Results and discussion

Alloys of the Sb2S3-Cr2Se3 system in the concentration range 0-60 mol. % Cr2Se3 were obtained as a compact mass of dark gray color. The rest of the alloys were obtained in the form of fine cakes due to the high melting point. It should be noted that the Cr2Se3 compound also melts at high temperatures, which hinders its synthesis. To facilitate the reaction, the chromium element was crushed. The Cr2Se3 compound was synthesized by fusing the Cr and Se components in quartz ampoules evacuated 25 cm long to a pressure of 0.133 Pa. Cooling was

continued with water wool, and sometimes by compressing the wool to prevent the high pressure of the evaporated sulfur. Each time the ampoule is cooled, liquid sulfur enters the reaction section and reacts with free chromium. This process continues until the end of the sulfur vapor. After the exhaustion of sulfur vapors, the ampoule is completely placed in the oven and stored for 2 hours at a temperature of 12000C. Then the temperature in the furnace is brought to 8000C and the furnace is switched off.

The Cr2Se3 compound, obtained in the form of fine cakes, is then still finely ground and poured out at a pressure of 200 atm. Solid phase reaction was carried out by keeping in a sealed ampoule at 800°C for 50 hours. It was used in an ampoule after obtaining the Cr2Se3 compound. Next, alloys of the Sb2S3-Cr2Se3 system were synthesized and heat treated at 5000C for 240 hours.

Alloys of the system were investigated using the methods of physicochemical analysis mentioned above. According to the thermal analysis data, it was found that two and three endothermic effects were obtained on the heat curves of the alloys.

To determine the area of a solid solution based on the Sb2S3 compound, samples with 2, 3, 5, and 7 mol. % Cr2Se3 was kept at 200, 300°C for 150 h, then cooled directly in water and microstructural analysis was performed. It has been established that solid solutions based on Sb2S3 at room temperature reach 5 mol. % Cr2Se3, and at eutectic temperatures up to -10 mol. % Cr2Se3. Microstructures of alloys containing 5, 17, 40 and 50 mol % Cr2Se3 are shown in Figure 1.

Fig.1. Microstructures of alloys of the Sb2S3-Cr2Se3 system. 1 - 3 mol %, 2 - 17 mol %, 3 - 40 mol %, 4 - 50 mol % Cr2Se3.

Sample 5 mol % Cr2Se3 is a solid solution based on the Sb2S3 compound, alloy 17 mol % Cr2Se3 has a eutectic composition, alloy 40 mol % Cr2Se3 has a two-phase field, the sample is 50 mol. % Cr2Se3 is single-phase is a quaternary compound according to the formula Cr2Sb2S3Se3.

The X-ray phase analysis of alloys of the Sb2S3-Cr2Se3 system was carried out. It was determined that the diffraction patterns of a sample of 50 mol % Cr2Se3 differ from the X-ray diffraction patterns of the starting materials due to diffraction peaks, interplanar spacings, and intensities.

As a result, a new quaternary compound containing Cr2Sb2S3Se3 was obtained (Figure 2). Based on the results of physicochemical methods of analysis, a phase diagram of the Sb2S3-Cr2Se3 system was constructed (Figure 3). The phase diagram of the system is quasi-binary, of the eutectic type. The formation of the ternary compound Cr2Sb2S3Se3 in the ratio of components 1:1 was established. The Cr2Sb2S3Se3

compound is formed as a result of a peritectic reaction at 6500C:

L+ Cr2Se3 ~ Cr2Sb2S3Se3

The liquidus of the Sb2S3-Cr2Se3 system is surrounded by monovariant equilibrium curves of a-solid solution based on Sb2S3, Cr2Sb2S3Se3, P-solid solutions of alloys based on Cr2Se3. The eutectic coordinate formed between the a-solid solution and the Cr2Sb2S3Se3 compound is 17 mol % Cr2Se3 at 4500C. At the eutectic point, three-phase equilibrium occurs as follows: M^ a + Cr2Sb2S3Se3. In the field 0-17 mol % Cr2Se3, the crystallization of the asolid solution from the liquid begins.

Crystallization is completed along the soli-dus line at 45 00C. Two-phase alloys crystallize with a concentration range of 5-50 mol % Cr2Se3 (a+Cr2Sb2S3Se3). The two-phase (P+ Cr2Sb2S3Se3) and single-phase P-phase crystallizes below the solidus line in the range of 50-100 mol % Cr2Se3. Some physicochemical properties of the alloys of the system are given in Table 1.

l,% 100

80 60 40 ■

20 T

100-1

806040 20 -

I,% 1008060.

40 -20-

1 •t Cr2Se3

1 OO Ï ^o ci 0 00 1, 7 3

Ï \Q 1 ^ I >rÇ in (N OO 2,120 1,7225 1,637 ,5304 1,508:

f—1-J-r r-i ts 1 32 -1 L -1 1 1

10

20

30

40 29

T"

50

60

70

Fig.2. Diffractograms of alloys of the Sb2S3-Cr2Se3 system. 1-Sb2S3, 2-50 (Cr2Sb2S3Se3), 3-Cr2Se3

mol %

Fig.3. Phase diagram of the Sb2S3-Cr3Se3 system.

Table 1. Composition of alloys of the Sb2S3-Cr3Se3 system, DTA data, results of determination of microhardness and density_

Composition, mol % Thermal effects, 0C Density, q/cm3 Microhardness, MPa

Sb2S3 Cr3Se3 a Cr2Sb2S3Se3 ß

P=0.10 N P=0.20 N

100 0.0 560 4.63 1400 - -

95 5.0 490.550 4.65 1470 - -

90 10 460.530 4.75 1500 - -

83 17 450 4.84 Eutec. Eutec. -

80 20 450.540 5.00 - - -

70 30 450.650 5.35 - 1800 -

60 40 450.650.975 5.38 - 1800 -

55 45 450.650.1070 5.44 - 1800

50 50 650.1140 5.40 - 1820 -

40 60 650 5.76 - 1890 -

30 70 650 5.95 - 1890 2600

20 80 650 6.15 - - 2600

10 90 650 6.54 - - 2600

0.0 100 1520 6.52 - - 2580

Three different microhardness values are defined in the system. The microhardness value (1400-1500) MPa from heat treatment corresponds to the microhardness of the a-solid solution based on the Sb2S3 compound, the value (1820-1890) MPa corresponds to the micro-hardness of the Cr2Sb2S3Se3 compound, and the value (2580-2600) MPa corresponds to the p-solid solution based on Cr2Se3. No sharp change

in the density of the alloys of the system was o bserved.

The lattice parameters of Cr2Sb2S3Se3 are calculated. According to the results of X-ray diffraction analysis the Cr2Sb2S3Se3 compound crystallizes in a tetragonal system with lattice parameters: a=16.37; c=11.69 Â, ppuc.=5.40 g/cm , pX-ray= 5.42 g/cm3. The results of X-ray diffraction analysis of Cr2Sb2S3Se3 are presented in Table 2.

Table 2. X-ray diffraction analysis data for the Cr2Sb2S3Se3 compound

I, % d ecs^ d cal/^ 1/d2ecs., 1/d2cal., hkl

6 8.1858 8.1858 0.0149 0.0149 200

31 5.8425 5.8425 0.0293 0.0293 002

46 5.5821 5.5048 0.0321 0.0330 102

77 5.2056 5.1987 0.0369 0.0370 310

13 4.1087 4.10927 0.0592 0.0597 400

59 3.6959 3.6936 0.0732 0.0733 113

21 3.6624 3.6613 0.0745 0.0746 420

60 3.2306 3.2342 0.0955 0.0956 223

69 3.1407 3.1528 0.1014 0.1006 501

100 2.8475 2.8560 0.1233 0.1226 502

62 2.7576 2.7524 0.1315 0.1320 204

16 2.6834 2.6909 0.1389 0.1381 610

31 2.6390 2.6681 0. 1436 0. 1426 601

98 2.6110 2.6064 0.1467 0.1472 224

29 2.5034 2.5071 0.1596 0.1591 503

22 2.3510 2.3537 0. 1809 0.1805 414

38 2.3046 2.3150 0.1882 0.1866 710

28 2.1697 2.1713 0.2124 0.2121 702

15 2.1514 2.1546 0. 2161 0. 2154 730

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

29 2.0442 2.0464 0.2393 0.2388 800

16 1.9941 1.9905 0.2515 0.2524 713

26 1.9740 1.9730 0. 2566 0. 2569 652

4 1.9250 1.9291 0.2699 0.2687 660

9 1.7776 1.7755 0.3165 0.3172 920

34 1.7500 1.7493 0.3265 0.3268 416

7 1.6844 1.6841 0.3525 0.3526 635

8 1.5906 1.5901 0.3952 0.3955 950

8 1.5832 1.5853 0.3989 0.3979 853

5 1.5357 1.5374 0.4240 0.4231 914

4 1.4026 1.4032 0.5083 0.5079 637

15 1.3506 1.3501 0.5482 0.5486 775

In the literature, many works are devoted to the study of ternary compounds and alloys of solid solutions, thermoelectric and photoelectric properties of antimony chalcogenides. However, the physical properties of quaternary phases and solid solutions obtained from these chalcogenides have not been studied. It is known that with a complex composition of alloys, the phases included in it can create various effects.

These compounds and their solid solutions are semiconductors with relatively low resistance. Their conductivity increases significantly with an increase in the proportion of metallic bonds in the series S^Se^Te. The study of the electrophysical properties of alloys of solid solutions formed during the interaction of

Sb2S3 with Cr2Se3 could become the basis for obtaining practically important materials.

For this purpose, the electrophysical properties of solid-solution alloys (Sb2S3)i-x(Cr2Se3)x (x=0.01; 0.02; 0.03) were studied. Alloys (Sb2S3)1-x(Cr2Se3)x solid solutions were synthesized from Sb2S3 and Cr2Se3 components. After the synthesis of samples containing 1.0; 2; and 3 mol % Cr2Se3 was prepared in the form of parallelepipeds (1.5*1 cm) for measurements. The temperature dependence of the electrical conductivity of the samples was measured by the compensation method. Compounds Sb2S3 and Cr2Se3 are low-resistance semiconductors.

For alloys (Sb2S3)1-x(Cr2Se3)x (x=0.01; 0.02; 0.03) of solid solutions, the electrical conductivity (o), thermo-EMF in the range of 20-

2300C was investigated. On Figure 4 shows the temperature dependence of the electrical conductivity of alloys containing (Sb2S3)1_x(Cr2Se3)x (x=0.01; 0.02; 0.03).

As can be seen from Figure 4, the electrical conductivity increases as the amount of Cr2Se3 compound added to Sb2S3 increases. This is due to the fact that when the second component is added to Sb2S3, defects are filled and the resistance decreases simultaneously. Since the Sb2S3 crystal is layered, it is more likely that the Cr2Se3 compound is located between the layers of the crystal.

As can be seen from the temperature dependence of the electrical conductivity of the (Sb2S3)1-x(Cr2Se3)x (x=0.01; 0.02; 0.03) solid solution, all alloys of the solid solution have semiconductor properties. Their electrical conductivity increases with temperature.

When adding 1 mol % Cr2Se3 to the

Sb2S3 compound, the electrical conductivity be-

8 1 1

comes o = 7.6410- Q- cm- at room temperature and o = 3.9810-7 Q-1cm-1 at 2300C. The electrical conductivity increases relatively weakly in

the temperature range 20-100 C, and the conductivity in this range corresponds to the additive conductivity. At the upper temperature value (110-2300C), the electrical conductivity increases markedly and corresponds to the intrinsic conductivity of the electrical conductivity.

The electrical conductivity of alloys of

solid solutions containing 2 and 3 mol % Cr2Se3

is also characteristic of semiconductor materials

and increases with temperature. The electrical

conductivity of alloys 2 and 3 mol % Cr2Se3 at

8 11

room temperature is o = 8.4610- Q- cm- , o = 9.0310-8 Q-1cm-1, and at 230°C it is o = 4.7810-7 Q-1cm-1 and o = 5.8010-7 Q-1cm-1, respectively (Fig.4). As can be seen from the graph, the electrical conductivity exhibits semiconductor properties depending on the composition and temperature. From the electrical conductivity graph, the band gap of the samples was calculated based on the angle tga divided by the abscissa axis lgo ~ f(10 /T) of the tangent to the temperature curve of the graph of the additive and specific conductivity of the samples. The band gap varies within AE=0.97-1.05 eV.

lgc, Om-1sm-1

-6.50

-6.75

-7.00

-7.25

-7.50

2.0 2.5 3.0 3.5 103/T,K

Fig. 4. Temperature dependence of the electrical conductivity of solid solutions of alloys (Sb2S3)1-x(Cr2Se3)x (x=0.01; 0.02; 0.03;) 1-1.0 mol %, 2-2 mol %, 3-3 mol % Cr2Se3.

1

300 350 400 450 500 T, K

Fig. 5. Temperature dependence of thermo-e.h.q of (Sb2S3)i-x(Cr2Se3)x (x=0.01; 0.02; 0.03) solid solution alloys. 1 - 1 mol %, 2 - 2 mol %, 3 - 3 mol % C^Ses.

Temperature dependence of thermo-EMF of solid solutions (Sb2S3)1-x(Cr2Se3)x (x=0.01; 0.02; 0.03) containing 1, 2 and 3 mol % Cr2Se3 are presented in Figure 5. As can be seen from the graph of the temperature dependence of a ~ (T) thermo-EMF, this dependence first increases and then gradually decreases in the temperature range of 20-2300C. In the temperature range of 20-2300C, the value of the thermoelectric driving force of the samples increases depending on the composition and temperature. Thermo-EMF of samples containing 1, 2 and 3 mol % Cr2Se3, at room temperature are respectively equal: a = 10.310-4 V/deg, a = 10.9510-4 V/deg and a = 11.510-4 V/deg. At a temperature of 2300C their thermo-EMF values are: a = 12.3510 V/der, a = 12.6010-4 V/deg. and a = 13.5510-4 V/deg.

The thermo-EMF value depends on the composition and concentrations of charge carriers.

Conductivity and thermo-EMF in solid solution alloys based on Sb2S3, the fact that the concentration of charge carriers has the same character depending on the composition confirms that they are all semiconductors.

The difference in the calculated values of electrical conductivity and thermo-EMF of solid solutions formed on the basis of the Sb2S3 compound also depends on the properties of the second component included in it and the mass number of its element.

Solid solutions obtained on the basis of Sb2S3 are p-type semiconductors in the above temperature range. The characteristic properties of semiconductor materials are that when additives are added to them, additive conductivity first appears, and then intrinsic conductivity at a certain temperature value. Depending on the nature of the dopant located between the valence band and the conduction band (donor or acceptor), the conductivity type of the sample can change.

Conclusion

To elucidate the character of the interaction in the Sb2S3-Cr2Se3 system, a number of alloys were synthesized and studied by methods of phys-icochemical analysis. As a result, a T-x phase diagram was built. It has been established that the state diagram of the system is quasi-binary, of the eutectic type. The state diagram of the Sb2S3-Cr2Se3 system is characterized by the formation of a compound with the composition Cr2Sb2S3Se3. The Cr2Sb2S3Se3 compound melts incongruently at 65 00C. Using X-ray phase analysis methods, it was established that the Cr2Sb2S3Se3 compound crystallizes in a tetragonal syngony with lattice parameters: o=16.37; c=11.69 A, ppuc/=5.40 g/cm3, pX-ray=5.42 g/cm3. The joint crystallization of the Sb2S3 and Cr2Sb2S3Se3 compound ends in a double eutectic with a composition of 17 mol % Cr2Se3, temperature 4500C. The electrophysical

properties of solid (Sb2S3)1-x(Cr2Se3)x (x=0.01; 0.02; 0.03) solutions have been studied.

References

1. Maghraoyi-Mehezi H., Ben Nasr T., .Dachraoui M. Synthesis, structure and optical properties of Sb2Se3 2013. V. 16. P. 179-184. https://doi.org/ 10.1016/j.mssp.2012.04.019

2. Ivanova L.D., Petrova JI.E., Granatkina Yu.V., Zemskov B.C. Materialy na osnove khal'-kogenidov vismuta i sur'my dlya kaskadov termo okhladiteley. Neorgan. materialy. 2011. T. 47. № 5. S. 521-527.

3. Chen, C., Bobela, D.C., Yang, Y. et al. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 2017. V. 10. P. 18-30. https://doi.org/10.1007/ s12200-017-0702-z

4. Ju, T., Koo, B., Jo, J. W., &Ko, M. J. Enhanced photovoltaic performance of solution-processed Sb2Se3 thin film solar cells by optimizing device structure // Current Applied Physics, 2020. V. 20. № 2. P. 282-287. https://doi.org/10.1016/j. cap. 2019.11.018

5. Li. X.; Lin. M.W.; Puretzky, A.A.; Idrobo, J.C.; Ma, C.; Chi, M.; Yoon, M.; Rouleau, C.M.; Kravchenko, I.I.; Geohegan, D.B.; et al. Controlled vapor phase growth of single crystalline, two-dimensional Gase crystals with high photore-sponse. Sci. Rep. 2014. V. 4. P. 5497-550.

6. Fernandez, A.; Merino, M. Preparation and characterization of Sb2Se3 thin films prepared by elec-trodeposition for photovoltaic applications. Thin Solid Films. 2000. V. 366. P. 202-206.

7. Eliana M.F.Vieira, Joana Figueirab, Ana L. Piresc, José Griloa, Manuel F. Silva, André M. Pereirac, Luis M. Goncalves. Enhanced thermoelectric properties of Sb2Te3 and Bi2Te3 films for flexible thermal sensors. J. Alloys and Compounds. 2019. V.774. 5 February, P.1102-1116. https://doi.org/ 10.1016/j.jallcom.2018.09.324

8. Kulbachinskii V.A., Kytin V.G., Zinoviev D.A. Thermoelectric Properties of Sb2Te3-Based Nano-composites with Graphite. Semiconductors. 2019. V. 53. P. 638-640. doi:10.1134/S1063782619050129

9. Wang G., Cagin T. Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations. Phys. Rev. B. 2007. V. 76. P. 075201.

10. Haijun Zhang, Chao-Xing Liu, Xiao-Liang Qi, Xi Dai, Zhong Fang and Shou-Cheng Zhang. Topo-logical insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics. 2009. V. 5. No 6. P. 369447.

11. Bin Xu, Jing Zhang, Gongqi Yu, Shanshan Ma, Yusheng Wang, and Yuanxu Wang Thermoelectric properties of monolayer Sb2Te3. Journal of Applied Physics. 2018. V. 124. P.165104; https://doi.org/10.1063/L5051470

12. Haixu Qin, Jianbo Zhu, Bo Cui, Liangjun Xie, Wei Wang, Li Yin, Dandan Qin, Wei Cai, Qian Zhang, Jiehe Sui. Achieving a High Average zT Value in Sb2Te3-Based Segmented Thermoelectric Materials. ACS Applied Materials & Interfaces. 2020. V 12 (1) P. 945-952. DOI: 10.1021/acsami. 9b19798.

13. Robbins M., BalterP.K., LopatinE. Ferromagnetic Chalcogenide spinels (CuCr2X4) and some properties of the system CuCr2Se3Br-CuCr2Se4 and CuCr2Te3-CuCr2Te4. J. Appl. Phys. 1968. V. 39. P. 662-664.

14. Belov L.P., Tret'yakov YU.D., Gordeyev I.V. i dr. Ferromagnitnyye khal'kogenidnyye shpineli. Fer-romagnetizm. M.: Izd-vo MGU, S. 19-59.

15. Babitsyna A.A., Yemel'yanova T.A., Koneshova T.I. Vzaimodeystviye v sisteme Cu-Cr-Te. Zhurn. neorgan. khimii.2000. T. 45. № 8. S.1397-1400.

16. Koneshova T.I. Poverkhnosti likvidusa i polya kristallizatsii troynykh i chetvernykh magnitnykh i poluprovodnikovykh faz v sisteme Cu2Se-In2Se3-Cr2Se3. DAN. 2000. T. 376. № 3. S. 361-3.65.

17. Hamedoun M., Hourmatallah A., Zerhouni A., Ben-zakour N., Belayachi A., Nogues M. Critical behaviour and critical exponents in ZnxCd1-xCr2Se4 compounds (0,35<x<0,45). Phys. Stat. Sol. 1997. V. 203. № 6. P. 521- 528.

18. Benzakour N., Hamedoun M., Houssa M., Hour-matallah A., Mahjoubi F. Critical properties of the magnetically disordered B-spinel behavior and critical exponents in ZnxCd1-xCr2Se4 (0,35<x< 0,58). Phys. Stat. Sol. 1999. V. 212. № 6. P. 335-342.

19. Iton H., Motida K. The magnetic moment distribution in CuCr2Se4 obtained by polarized neutron diffraction can be also explained on thebasis of Goodenough's model. J. Phys. Soc. Jap. 1980. V. 48. P.1380-1381.

20. Sleight A.W., Jarret H.S. Preparation and properties of some copper chromium chalcogenides with the spinel structure. J. Phys. Chem. Sol. 1968. V.29. P. 868-870.

21. Tsurkan B.B., Veselago V.G., Babitsyna A.A., Tezlevan B.E., Radian S.I., Kalinnikov V.T. Temperatura fazovogo; perekhoda paramagnetik-ferromagnetik v sisteme CuyCr2Se4-xBrx. FTT. 1978. T.20. № 9. S.2863-2864.

22. Makhotkin V.Ye., Shabunina GG., Aminov T.G., Vinogradova G.I., Veselago V.G., Kalinnikov V.T. Fotoferromagnitnyy effekt i fotoprovodimost' v sisteme Cd^ ZnxC^. FTT. 1974. T. 16. №10. P. 3141-3142.

23. Aminov T.G., Vel'skiy N.K., Vigileva Ye.S., Vinogradova G.I., Kalinnikov V.T, Shabunina GG. Sin-tez legirovannykh Ga kristallov CdCr2Se4 i izme-reniye na nikh fotoferromagnitnogo effekta. Izv. AN SSSR Neorgan.materialy. 1976. T.12. № 7. S. 1297-1298.

24. Kalinnikov V.T., Aminov T.O., Golik L.L., Kun-kova Z.E. Magneto-Optical Properties of CdCr2Se4 Single Crystals in the Region of Magnetically Sensi-

tive "Red-Shifting" Band. Digests of the Intennag Conference. Plorence (Italy), 1978. R 8-8.

25. Aliyev I.I., Mamedov E.I., Yusubov F.V. Masiyeva L.F., Gashimov Kh.M. Synthesis and physico-chemical interaction of alloys of the Sb2S3-Cu2Cr4Te7 system. Azerb. Chem. Jour. 2023. № 1. P. 62-68.

26. Zargarova M.I., MamedovA.N., Azhdarova D.S., Akhmedova (Veliyev) Dzh.A., Abilov Ch.I. Spra-vochnik: Neorganicheskiye veshchestva, sintezi-rovannyye i issledovannyye v Azerbaydzhane. Baku: Elm, 2004. 462 c.

27. Aliyev I.I., Mamedov E.I., Yusubov F.V., Ma-sieva L.F., Ahmedova C.A. Physico-chemical interaction of the Sb2Se3-CuCr2Se4 system. Norwegian J. development of the International Science No 104/2023. P. 19-24.

28. Mamedova N.A., Aliyev I.I., Gasanov A.A., Akhmedova Dzh.A., Shakhbazov M.G. Kharakter vzaimodeystviya v sisteme Sb2Te3-GaSb4Se6Te. Sciences of Europe. 2023. No 110. Praga Czech. S. 9-14.

29. Aliyev I.I., Ismailova S.Sh., Rzayev R.M., Mamedov A.N., Gashimov Kh.M., Karimova N.K. Syn-

thesis and physico-chemical studies of alloys of the As2Se3{CuCr2Te4 system and properties of the obtained composite materials. Modern Physics Letters B. 2022. V. 36. No 28n29. P. 2250155 World Scientific Publishing Company DOI: 10.1142/S021798492250155X Aliyev I.I., Ismailova S.Sh., Babanly K.N., Mekh-tiyeva S.T. Fiziko-khimicheskiye i rentgenografi-cheskiye issledovaniye splavy sistemy As2Te3-Cr2Te3. Zhurn. neorgan. khimii. 2022. T. 67. № 4. S. 497-501.

31. Fiziko-khimicheskiye svoystva poluprovodnikovykh veshchestv. Spravochnik. M.: Nauka, 1979. 339 c.

32. Diagrammy sostoyaniya dvoynykh metallich-eskikh sistem. Spravochnik: V 3t. / Pod. Red. N.P. Lyakisheva. M.: Mashinostroyeniye, 1997. 1023 c Kolomiets N.B. Measurement of thermoelectro-motive force and resistivity in the temperature range from 20 to 1900oC. Factory laboratory. 1962. T. 28. No 2. P. 238-240. Okhotin A., Pushkarskiy N., Borovikova R., Smirnov R. Methods of investigation of thermoelectric properties of semiconductors. M.: Atomiz-dat, 1969.175 p.

33.

34.

Sb2S3-Cr2Se3 SISTEMINDO FAZA TARAZLIGININ VO ALINAN FAZALARIN FIZIKI-KIMYOVI

xassolorínín todqíqí

E.LMammadov, F.V.Yusubov, L.F.Masiyeva, LLOliyev, C.A.Ahmedova, X.M.Ha§imov

Sb2S3-Cr2Se3 sisteminda faza tarazligi kompleks fiziki-kimyavi analiz metollan (DTA, RFA, MCA hamçinin sixligin va mikrobarkliyin ôlçûlmasi) vasitasila tadqiq edilmiç va faza diaqrami qurulmuçdur. Müayyan edilmiçdir ki, sistemin faza diaqrami kvazibinar olub, evtektik tiplidir. Sistemda kimyavi qarçiliqli tasir zamani Cr2Sb2S3Se3 tarkibli bir birlaçma amala galdiyi müayyan edilmiçdir. Cr2Sb2S3Se3 birlaçmasi 650 C-da inkonqruyent ariyi. Sb2S3 birlaçmasi asasinda a -bark mahlul ila Cr2Sb2S3Se3 birlaçmasi arasinda amala galan evtektikanin tarkibi 17 mol % Cr2Se3, temperaturu 4500C-dir. Sistemda baçlangic komponentlar asasinda mahdud miqdarda bark mahlul amala galir. Otaq temperaturunda Sb2S3 birlaçmasi asasinda 5 mol % Cr2Se3 hall olur, Cr2Se3 birlaçmasi asasinda tamini 3 mol % Sb2S3 hall olur. Rentgenfaza analizinin naticalarina asasan Cr2Sb2S3Se3 birlaçmasinin tetraqonal sinqoniyada kristallaçir va qafas parametri: a=16.37; c=11.69 Â, Ppik.=5.40 q/sm3, preilt=5.42 q/sm3-dir. (Sb2S3)i-x(Cr2Se3)x (x=0.01; 0.02; 0.03) bark mahlul arintilarinin elektrik keçiriciliyinin va termo-e.h.q-nin temperatur asililigi ôyranilmiçdir.

Açar sozter: faza, mikrobarklik, bark шэк1ы1, evtektika, solidus.

ИССЛЕДОВАНИЕ ФАЗОВОГО РАВНОВЕСИЯ И ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ПОЛУЧЕННЫХ ФАЗ В СИСТЕМЕ Sb2S3-Cr2Se3

Е.И.Мамедов, Ф.В.Юсубов, Л.Ф.Масиева, И.И.Алиев, Дж.А.Ахмедова, Х.М.Гашимов

Фазовое равновесие в системе Sb2S3-Cr2Se3 изучено с использованием комплексных физико-химических методов анализа (ДТА, РФА, MCA, а также измерения плотности и микротвердости) и построена фазовая диаграмма. Было определено, что фазовая диаграмма системы является квазибинарной и эвтектической типа. В процессе химического взаимодействия в системе образуется соединение, содержащее Cr2Sb2S3Se3. Соединение Cr2Sb2S3Se3 плавится при 6500C. На основе исходных компонентов в системе образуется ограниченное области твердого раствора. Координата эвтектики, образованная между a-твердым раствором и соединением Cr2Sb2S3Se3, составляет 17 мол. % Cr2Se3 при температуре 4500C. При комнатной температуре на основе Sb2S твердые доходят до 5 мол. % Cr2Se3, а на основе Cr2Se3 до - 3 мол. % Sb2S3. Согласно результатам рентгенофазового анализа, Cr2Sb2S3Se3 кристаллизуется в тетрагональной сингонии с параметрами решетки: a=16.37; с=11.69 Â, рпик=5.40 q/sm3, ррент =5.42 q/sm3. Исследована температурная зависимость электропроводности и термо-ЭДС твердого раствора (Sb2S3)1-x(Cr2Se3)x (x=0.01; 0.02; 0.03).

Ключевые слова: фаза, микротвердость, твердый раствор, эвтектика, солидус.

i Надоели баннеры? Вы всегда можете отключить рекламу.