Научная статья на тему 'INVERSE SOURCE PROBLEM FOR AN EQUATION OF MIXED PARABOLIC-HYPERBOLIC TYPE WITH THE TIME FRACTIONAL DERIVATIVE IN A CYLINDRICAL DOMAIN'

INVERSE SOURCE PROBLEM FOR AN EQUATION OF MIXED PARABOLIC-HYPERBOLIC TYPE WITH THE TIME FRACTIONAL DERIVATIVE IN A CYLINDRICAL DOMAIN Текст научной статьи по специальности «Математика»

CC BY
52
17
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
INVERSE PROBLEM / EQUATION OF MIXED TYPE / FOURIER-BESSEL SERIES / MITTAG-LEFFLER FUNCTION / UNIQUENESS AND EXISTENCE

Аннотация научной статьи по математике, автор научной работы — Durdiev Durdimurod Kalandarovich

This article is devoted to the study of an inverse source problem for a mixed type equation with a fractional diffusion equation in the parabolic part and a wave equation in the hyperbolic part of a cylindrical domain. The solution is obtained in the form of Fourier-Bessel series expansion using an orthogonal set of Bessel functions. The theorems of uniqueness and existence of a solution are proved.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «INVERSE SOURCE PROBLEM FOR AN EQUATION OF MIXED PARABOLIC-HYPERBOLIC TYPE WITH THE TIME FRACTIONAL DERIVATIVE IN A CYLINDRICAL DOMAIN»

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki

[J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2022, vol. 26, no. 2, pp. 355-367 ISSN: 2310-7081 (online), 1991-8615 (print) d https://doi.org/10.14498/vsgtu1921

MSC: 35K15, 35R30, 35R09

Inverse source problem for an equation of mixed parabolic-hyperbolic type with the time fractional derivative in a cylindrical domain

D. K. Durdiev

1 Bukhara Branch of the Institute of Mathematics named after V. I. Romanovskiy at the Academy of Sciences of the Republic of Uzbekistan,

11, Muhammad Igbol st., Bukhara, 705018, Uzbekistan.

2 Bukhara State University, 11, Muhammad Igbol st., Bukhara, 705018, Uzbekistan.

Abstract

This article is devoted to the study of an inverse source problem for a mixed type equation with a fractional diffusion equation in the parabolic part and a wave equation in the hyperbolic part of a cylindrical domain. The solution is obtained in the form of Fourier-Bessel series expansion using an orthogonal set of Bessel functions. The theorems of uniqueness and existence of a solution are proved.

Keywords: inverse problem, equation of mixed type, Fourier-Bessel series, Mittag-Leffler function, uniqueness and existence.

Received: 25th April, 2022 / Revised: 27th May, 2022 / Accepted: 7th June, 2022 / First online: 30th June, 2022

1. Formulation of Problem

The importance of considering equations of mixed type, when an equation of parabolic type is given on one part of the domain and an equation of hyperbolic type on the other, was first pointed out by I. M. Gelfand in 1959 [1]. The study of electrical oscillations in wires leads to a problem for a mixed parabolic-hyperbolic type of equations. In a homogeneous medium, in the case of its low conductivity, the strength of the electromagnetic field satisfies the wave equation, but in the

Differential Equations and Mathematical Physics Short Communication

© Authors, 2022

© Samara State Technical University, 2022 (Compilation, Design, and Layout) 9 ©® The content is published under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) Please cite this article in press as:

Durdiev D. K. Inverse source problem for an equation of mixed parabolic-hyperbolic type with the time fractional derivative in a cylindrical domain, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2022, vol. 26, no. 2, pp. 355-367. EDN: TWHCKX. DOI: 10.14498/vsgtu1921. Author's Details:

Durdimurod K. Durdiev https://orcid.org/0000-0002-6054-2827

Dr. Phys. & Math. Sci.; Head of Branch1; Professor; Dept. of Differential Equations2;

e-mail: durdiev65@mail.ru

case of relatively high conductivity, when displacement currents can be neglected in comparison with conduction currents, the mentioned value satisfies the heat equation (see [2, pp. 443-447]). Problems of this kind are also encountered in studying the motion of a fluid in a channel surrounded by a porous medium; so, in a channel, the hydrodynamic pressure of a liquid satisfies the wave equation, and in a porous medium it satisfies the filtration equation, which in this case coincides with the diffusion equation [3]. In this case, some matching conditions are satisfied at the channel boundary. Such equations arise in a number of other areas of natural science.

Direct problems for mixed parabolic-hyperbolic equation types were studied in [4-8]. Inverse problems about determining the right side or the initial function in the initial-boundary value problems for the equation of mixed parabolic-hyperbolic type in a rectangular domain were considered in the monograph [9] (see also references there). On the basis of the spectral method, criteria for uniqueness and existence are established.

In this paper, we study direct and inverse problems related to finding a solution to an initial-boundary value problem for a mixed equation, when on one part of the domain the fractional diffusion equation and on another part the wave equation are given, and the unknown right-hand side of this equation in a cylindrical

domain. _

Consider in a cylinder G :— {(x,y, t) : 0 < r < 1, —a < t < b}, v — \Jx2 + y2 the equation of mixed type

Lu =(d?u — Au — f (r), t> 0,

[utt — Au — f(r), t< 0, ()

where a, b are given positive numbers, dfu is the Gerasimov-Caputo fractional derivative of order a (0 < a ^ 1) in the time variable and it is defined by formula (see [10, p. 90]):

1

,

d?9(t) :—< r(1 — a)

[ (t — r)-ag'(r)dT, 0 < a < 1,

J 0

g'(t), a — 1;

A is the Laplace operator in variables x and y.

We pose the following problem: find in the domain G the functions u(x, y, t) and ( ) satisfying the equation (1) and conditions

((x, y), Vu)|r=0 — u| r=1 — 0, —a ^t^ b, (2)

u| t=-a — <p(r), 0 ^r^ 1, (3)

u|t=b — $(r), 0 ^r^ 1. (4)

Here ((x, y), Vu) is scalar product of vectors (x, y) and Vu; <p( ■) and ■) are given sufficiently smooth functions.

Denote G+ — G n {t > 0}, G- —G n {t < 0}.

Definition 1. The solution of problem (1)-(4) are the functions u(x,y, t) and f(r) from the classes C^'«;t(G+ U {t — b}) n C2(G- U {t — —a}) and C[0,1],

respectively, satisfying relations (1)-(4) and the following conjugation conditions: u(x,y, +0) = u(x,y, —0), lim d£u(x,y,t) = ut(x,y, —0), r G (0,1). (5)

If a = 1, then conditions (5) mean the continuity of the solution u(x, y, t) and its derivative with respect to t on the line of change of equation type t = 0.

In the parabolic part of the domain, the function u(x, y, t) satisfies the fractional diffusion equation (1). Fractional differential equations become an important tool in mathematical modeling many problems arising in applications. The time fractional diffusion equations can be used to describe superdiffusion and subdiffusion phenomena [11-13] (see also references there). Direct problems, i.e. well-posed initial value problems (Cauchy problem), initial boundary value problems for one time-fractional diffusion equations and various inverse problems, have attracted much more attention in recent years. For instance, on some uniqueness and existence results we refer readers to works [14-17] on direct and inverse source problems (see also references in [17]), and on direct and inverse coefficient problems to [18-23].

The paper organized as follows. Section 2 provides some definitions and known results that will be used later in this article. In Section 3, by using the Fourier method a formal solution of the inverse problem is obtained. In Section 4, the existence and uniqueness of a solution to the inverse problem are proved. Finally, a conclusion and a list of references are given.

2. Preliminaries

In this section, we provide some definitions and results that will be used later in this article.

The classical Mittag-Leffler Ea(z) function with one parameter is defined by the following series:

where a, z e C with Re(a) > 0. This function and its generalizations play an important role in describing solutions to fractional-order differential equations. The Mittag-Leffler function has been studied by many authors who have proposed and studied various generalizations and applications. A very interesting work that has received many results on this function is due to Haubold et al. [24].

If 2 = Xta, with A > 0 and t> 0, then

Here and throughout this article, M denotes a positive constant.

In studying the problem under consideration, we also need the Bessel function and the conditions for the convergence of the Fourier-Bessel series. The linear

i^+0

Here Cj°t(fi) := {v(x,y,t) : v G C(Q), (Av,d?v) G C(Q)}.

d?Ea(—\ta) = —\Ea(—\ta). Moreover, The Mittag-Leffler function Ea(—Xta) is bounded [24]:

0 < Ea(—\ta) < 1.

(6)

differential Bessel equation (or the equation of cylindrical functions) with a parameter A of order or index u ^ 0 with respect to the function z of the real variable x has the form [25, ch. 8]:

z!' + -z! + (a2 - 4)z = 0. (7)

x V x2 /

The solution of Equation (7), except for very particular values u, is not expressed in terms of elementary functions (in the final form) and leads to the so-called Bessel functions, which have large applications in the natural sciences [26]. When u is an integer number, then Equation (7) has the following solution:

z(x) = C\JV (Ax) + C2Yv (Ax),

where Jv and Yv are the Bessel functions of the first and second kind of order u, respectively. Bessel functions of the second kind are not bounded near the point x = 0, so for a bounded solution near zero it is necessary that C2 = 0, i.e. solution (7) has the following form:

z(x) = CJv (Ax).

Furthermore, if the boundary condition z(1) = 0 is imposed, then the parameter A must satisfy Jv(A) = 0, i.e. the values of A are the zeros of the Bessel function Jv(x), which has the following asymptotic representation [25, p. 213]:

T , \ AT . ( un n \ rv (x) Jv (x) = \ —sm x - — + + —^, V nx V 2 4) xyjx

where the function rv (x) is bounded for x ^ <x>. Therefore, for any large k, the zeros of Jv(x) are given by the expression [25, p. 214]:

. un n kn +----.

2 4

We define the Fourier-Bessel expansion of the given function f(x) as follows: for any function f(x), absolutely integrable on [0,1], one can compose a Fourier series in the system Jv(Akx), k = 1,2,..., or, in briefly, the Fourier-Bessel series

f(x)=YlCkJv (Xk x(8

k=l

where the constants ck are determined by the formula:

2 f1

Ck = -2-7VT Xf (X)Jv (Xk x)dx, k = 1,2,...

Ju+l(Ak) J0

and are called the Fourier-Bessel coefficients.

Let us give without proof the most important criteria for the convergence of the Fourier-Bessel series to the function for which it is composed. These criteria are similar to those known to us for the convergence of trigonometric Fourier series.

Theorem 1 [25, p. 282]. If v ^ 0 and for all sufficiently large k, we have the estimate

. . M I Ck I < TT+T, Afc

where e > 0 and M > 0 are constants, then series (8) converges absolutely and uniformly on [0,1].

Theorem 2 [25, pp. 289-291]. Let the function f(x) is defined and 2s times continuously differentiable on the interval [0,1] ( s ^ 1), and

1) /(0) = Z'(0) = ... = /(2i—T)(0) = 0,

2) f(2s)(x) is bounded (this derivative may not exist at some points),

3) /(i) = /'(1) = ••• = /(2ii-2)(1) = 0.

Then, for the Fourier-Bessel coefficients of the function f(x), the inequality is valid:

M

1 Ck 1 ^ X2,-(V2) (M = const). xk

We now turn to the study of the problem (1)-(4).

3. Formal Construction of the Solution

Note that since the right-hand side of equation (4) and the functions of (6) and (7) depend on the distance r, then u(x, y, t) = u(r, t), i.e. we have an axisymmetric case. Then the operator Laplace on the function u(x,y, t) in polar coordinate systems will not depend on the angle and has the form:

. , . d2u 1 du Au(x,y, t) = ^-o .

Therefore, equation (4) in these coordinate systems is written as follows:

(9)

1 du d2u . 9*U = rd~r + d? + /(r)' *> 0'

d2u 1 du d2u

dt2 r dr dr2 '

Conditions (2)-(4) take the following form:

d_ d

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

d

r—u( r, t) n = 0, u\r=l = 0, -a ^t^ b, (10)

r=0

u(r, —a) = <p(r), 0 ^r^ 1, (11)

u(r, b)=^(r), 0 ^r^ 1. (12)

Thus, the inverse problem (2)-(4) is reduced to the problem definitions of the functions u(r, t), f(r) from equalities (9)-(12).

According to the Fourier method, searching partial solutions of equation (9) for the case = 0 in form

u(r, t) = R(r)T(t),

we get the following relations:

d"T(t)R(r) = -T(t)R'(r) + T(t)R"(r), t > 0,

T"(t)R(r) = 1t(t)R'(r) + T(t)R"(r), t < 0. Therefore, separating the variables, we have

d?T(t) = 1 Rf(r) + Rnr) = _X2 ,> 0

T(t) r R(r) + R(r) , > ,

T"(t) = 1 R' (г) ЯПг) = _х2 0 T(t) r R(r) + R(r) Л , 0

where Л is an arbitrary real parameter. Hence, to find the function R(r) we get the problem of the equation

R"(r) + 1r' (r) + X2R(r) = 0

with boundary conditions

lim(r R (r)) = 0, R(1) = 0, (13)

which is a self-adjoint problem.

The solutions of equation (10) are the following zero-order Bessel functions of the first kind:

Rk (г) = МЛкг), к = 1, 2, 3,...

They also are eigenfunctions. We find the eigenvalues using the second boundary condition of (13) (the validity of the first boundary condition in (13) is obvious), positive roots of the equation J0(Лk) = 0. As noted in the previous section, they look like: _ _

Лk = к— - — = (4к - 1) -.

Expand now all functions in a Fourier-Bessel series in terms of eigenfunctions Jo^kr) i.e.

u(r, t) = Y,Uk(t)Jo^kr), (14)

k=i <x

f (r) = ^fkJo&kr), (15)

where

k=i

2 i 2 i

Uk(f) = .Jl(\k) Jo fu(f, 1)'7о(Лkr)dr, fk = J0 rf(r)Jo^r)dr.

Substituting (14), (15) into (9), we obtain

d?u,k(t) = -ЛkUk(t) + fk, t> 0,

u'k(t) = -ЛkUk(t) + fk, t< 0.

It is not difficult to find that these differential equations have general solutions:

uk(i) = ckEa(-X2kta) + I2, t> 0,

fk (16) Uk(t) = dk cos(Xkt) + ek sin(Xkt) + ^, t < 0,

where Ea( ■ ) is the Mittag-Leffler function; dk, ek, ck are arbitrary constants. To find the coefficients dk, ek, ck, we use conditions

Uk(0 + 0) = Uk(0 - 0), d^Uk(0 + 0) = Uk(0 - 0),

which follow from conditions (5). In view of this, from (16) we have

dk = Ck, ek = -XkCk.

From the initial and additional conditions (11), (12), we get:

dk cos(Xka) - ek sin(Xka) + XX2 = ^,

CkEa(-Xkba) + Xi =Фk,

where <pk, are Fourier-Bessel coefficients of functions <p, respectively:

œ œ

P(r) = ^fkJo(Xkr ), i)(r) = ^2^kJo(Xk r). k=l k=l Substituting the values dk, ek found through ck, into the previous equations and solving the resulting system with respect to k and k, we find

^k — <fk

Ck =

Ea(-X2kba) - (cos(Xkfl) + Xk sin(Xkfl)) ' (17)

k

fk = Xk(^k - CkEa(-X2kba).

Introduce the notation

Aab(k) = Ea(-Xkba) - (cos(Afca) + Xk sin(Afca)). (18)

4. Existence and Uniqueness of the Solution

We find the values of a and b for which (18) takes values not equal to zero. To do this, we rewrite (18) in the following form:

„ ^ ( (4 k - 1)2i2ia\ I (4k - 1)2i2 (4k - 1 \ .

Aab(k) = Ea(-(--ba) 1 + (--si^4___air + 7fcJ, (18')

where 7k = arcsin^1/y^1 + (4k ^ - j. Obtain the values of a for which Aab(k) = 0. It equals

a = -771-tv arcsm -, 16 + in — 7k .

(4k — 1)i V V J1 | (4k-i)--- J ]k)

We now find the values of a and b, for which the following condition is met:

lAab(k)l ^Ca > 0. (19)

For this, we calculate

,, „m r^f (4k — i)2v2^a\ r (4k — 1)2i2 . (4k — 1 \

lAab (k)l = Ea(-^-ba) — ^ 1 + ±-^-sm{—^air + 7k)

If a = 4n, n £ N, then

,, „m 7-. ( (4k — 1)2i\a\ L (4k — 1)2i2 . f4k — 1 n

|Aa6 (k)| = Ea[ —^-^-ba) — ^ 1 + ±-^-sm{—^air + 7kJ

En\ -^-ba) ± 1

According to (6) we have 0 < Ea(—(4k 16) - ba) < 1, for all k = 1, 2,..., then

lAab( k)l ^ Co > 0. As Co, it can be taken 1 — Ea(—^l--ba) as the largest of all possible such constants.

Thus, we have obtained the following uniqueness criterion: Theorem A. If there exists a solution to problem (1)-(4), then it is unique for the values a — 4n, n £ N for any b > 0.

We now investigate the existence of a solution. To this end, we prove the following assertion:

Theorem B. Assume that {p(r),^(r)} £ C6[0,1] and, in addition, condition (19) and the equalities

p(i)(0) = 0, 4>(i)(0) = 0, i = 0,1,..., 5,

p(i)(1) = 0, ^(i)(1) = 0, j = 0,1,..., 4

are satisfied.

Then there is a unique solution to problem (1) —(4), which is defined (20)-(22), where p(l\ ^(z) are i—th derivatives of the functions p, ^, and pk, ^k are the Fourier-Bessel coefficients of the functions p and ^, respectively.

To prove the theorem, substituting the found values of the coefficients dk, ek, ck in (16), (17), we find uk(t) and fk:

Uk(t) = ^J^kfE^—Xkn — ^^Ea(—Xkba), t > 0,

1U(Wcos(Akt) kAMsln(Akt^ — AMQ^k6 >

fk = —Am *-(—>&)).

Taking into account these relations, from (14) and (15) we obtain the formal solution of problem in the form of series:

ro ro i

u(r, t) = ^Uk (t)Jo(\kT) = E ^—^E^kn + k=i k=i ab( >

+ — ^ bJV)^Ea(—\2kba) Jo(Xkr), t > 0, (20)

ro ro I

u(r, t) = E Uk(t)Jo(Xkr) = E [ ^ ^ cos(Xkt) — Xk k ,sln(Xkt) +

k=l k=ll Aab(k) Aab(k)

Aab (k)

+ — , n kEa(—X2kba) Jo(Xkr), t < 0, (21)

ro ro I

№ = E fkJo(XkT) = EXk — t^kfEa(—Xkha)\ Jo (Xkr )• (22

k=l k=l

To prove the existence of a solution, we need to show that the series in (20)-(22) and the series obtained as a result of the action of fractional differentiation df, by differentiating with respect to r twice, in domain G+ and by differentiating twice in r, t, in domain G-, converge uniformly. To this end, we calculate dfu(r, t), [d2/dt2)u(r, t), (d2/dr2)u(r, t), by formally performing differentiation under the signs of sums. Using properties of the Bessel functions, namely (see [24]) J'0(r) = = — Jl(r), 2 Jl(r) = Jo(r) — J2(r), from formulas (20), (21) we obtain the following:

k=l

dfu( r, t) = Y^dfuk (t)Jo (Xkr)

- X? E (-X? ia )! (

Aab (k)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

= E [—XkEf (—Xktf)] Jo(XkT), t> 0, (23)

k=l

d2u(r, t) rod2uk (t)

= E "^T" Jo(Xkr) =

k=l

V [—Xk cos( Xkt) + X3 sln(Xki)] (ipkA ,Jo(Xkr), t< 0, (24) k=l Aab(k)

d2u(r, t)__ {t)d\J°{Xkr )

dr 2

E

- fk

Ea(-Xkta) +

k=l

+ *k -

dr 2 t=llAab (k) ^^E^-X^)] Y (J2^kT) -J0(Xkr)), t> 0, (25)

d2u(r, t) ^ i,,d2Jo(Xkr) ^-fk > -fk . /Wn ,

^2- = w^^X— = £[Amcos(Xkt)-XkAm sin(Xkt)+

+ *k - Aky^-Xk^)} Xt ( J2(Xkr) -Jo(Xkr)), t< 0. (26)

Let the functions f(r) and *(r) satisfy the conditions of Theorem 2 with some s ^ 1 (we define the number s later). Then for the Fourier-Bessel coefficients of these functions are true the following estimates:

I I ^ Mi Mi

\fk \ < ,2 s- (i/2) , \ <

^-(1/2)' ^ x2s-(1/2)"

Now we will evaluate the expressions at Bessel functions on the right-hand sides of equalities (20)-(26). In this case, the expressions in (20), (21) are estimated as follows:

*k - VkEa(-Xkf) + *k - Ea(-Xk^)

Aab (k) ay k J rk Aab (k)

<

Mi M2 \ Ni

^ M\X2s (i/2) + X2s-(1/2)) ^ X2s-(i/2) , *< 0, Xk Xk Xk

cos(Xkt) - Xk . n, sin(Xkt) + *k - k n , Ea(-Xkba)

Aa ( k) k k Aa ( k) k k Aa ( )

<

xk

where M, M1, M2, N1, N2 are positive constants.

Similarly, it is established that the expressions in (22), (23), (25) are less than

X X +Aa

N3 2s_(i/2), and the expressions in (24), (26) are less than N4 2sfe_(1/fc2), N3, N4 are Afc Xk positive constants.

It follows from these estimates that if s = 3, then, according to Theorem 1, the series in (23)-(26) and the series obtained as a result of the action of fractional differentiation df, by differentiating with respect to r twice, in domain G+ and by differentiating twice in r,t, in domain G-, converge uniformly. Thus, Theorem B is proved.

5. Conclusion

This paper concerns the existence and uniqueness of a solution to the inverse source problem for a mixed-type equation with a fractional diffusion equation in the parabolic part and a wave equation in the hyperbolic part of a cylindrical domain. The solution is obtained in the form of Fourier-Bessel series expansion using an orthogonal set of Bessel functions. Competing interests. I declare that I have no competing interests.

Authors' contributions and responsibilities. I take full responsibility for submitting the final manuscript for printing. I approve the final version of the manuscript.

Funding. Not applicable. References

1. Gel'fand I. M. Some questions of analysis and differential equations, Am. Math. Soc., Transi., II. Ser., 1963, vol.26, pp. 201-219. DOI: https://doi.org/10.1090/trans2/026.

2. Tikhonov A. N., Samarskii A. A. Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics]. Moscow, Nauka, 1977, 735 pp. (In Russian)

3. Leibenzon L. S. Dvizhenie prirodnykh zhidkostei i gazov v poristoi srede [Flow of Natural Liquids and Gases through a Porous Medium]. Moscow, Leningrad, Gostekhizdat, 1947, 244 pp. (In Russian)

4. Tricomi F. O lineinykh uravneniiakh smeshannogo tipa [On Linear Equations of Mixed Type]. Moscow, Gostekhizdat, 1947, 192 pp. (In Russian)

5. Fichera G. On a unified theory of boundary value problems for elliptic parabolic equations of second order, In: Boundary Problems in Differential Equations, Proc. Sympos. (Madison, April 20-22, 1959). Madison, Univ. of Wisconsin, 1960, pp. 97-120.

6. Dzhuraev T. D., Sopuev A., Mamazhanov M. Kraevye zadachi dlia uravnenii parabolo-giperbolicheskogo tipa [Boundary Value Problems for Equations of Parabolic-Hyperbolic Type]. Tashkent, FAN, 1986, 220 pp. (In Russian)

7. Sabitov K. B. On the theory of equations of mixed parabolic-hyperbolic type with a spectral parameter, Differ. Uravn., 1989, vol. 25, no. 1, pp. 117-126 (In Russian). EDN: TVVHKL.

8. Sabitov K. B., Martem'yanova N. V. On the question of the correctness of inverse problems for the inhomogeneous Helmholtz equation, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2018, vol. 22, no. 2, pp. 269-292 (In Russian). EDN: UXHTKM. DOI: https://doi.org/10.14498/vsgtu1600.

9. Sabitov K. B. Priamye i obratnye zadachi dlia uravnenii smeshannogo parabolo-giperboli-cheskogo tipa [Direct and Inverse Problems for Equations Mixed Parabolic-Hyperbolic Type]. Ufa, Gilem, 2015, 271 pp. (In Russian). EDN: QWTYOF.

10. Kilbas A. A., Srivastava H. M., Trujillo J. J. Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Amsterdam, Elsevier, 2006, xv+523 pp. EDN: YZECAT.

11. Metzler R., Klafter J. Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion, Phys. Rev. E, 2000, vol. 61, no. 6, pp. 6308-6311. DOI: https://doi.org/10.1103/physreve.61.6308.

12. Scalas E., Gorenflo R., Mainardi F. Fractional calculus and continuous-time finance, Physica A, 2000, vol.284, no. 1-4, pp. 376-384. DOI: https://doi.org/10.1016/ s0378-4371(00)00255-7.

13. Sokolov I. M., Klafter J. From diffusion to anomalous diffusion: A century after Einstein's Brownian motion, Chaos, 2005, vol.15, no. 2, 026103. DOI: https://doi.org/10.1063/1. 1860472.

14. Sakamoto K., Yamamoto M. Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 2011, vol. 382, no. 1, pp. 426-447. DOI: https://doi.org/10.1016/j.jmaa.2011.04.058.

15. Wei T., Li X. L., Li Y. S. An inverse time-dependent source problem for a time-fractional diffusion equation, Inverse Probl., 2016, vol.32, no. 8, 085003. DOI: https://doi.org/10. 1088/0266-5611/32/8/085003.

16. Aleroev T. S., Kirane M., Malik S. A. Determination of a source term for a time fractional diffusion equation with an integral type over-determining condition, Electron. J. Differ. Equ., 2013, vol.2013, no. 270, pp. 1-16. https://www.emis.de/journals/EJDE/2013/270/ abstr.html.

17. Liu Y., Li Zh., Yamamoto M. Inverse problems of determining sources of the fractional partial differential equations, In: Handbook of Fractional Calculus with Applications, vol.2, Fractional Differential Equations. Berlin, De Gruyter, 2019, pp. 411-430, arXiv: 1904.05501 [math.AP]. DOI: https://doi.org/10.1515/9783110571660-018.

18. Li G. S., Zhang D. L., Jia X. Z., Yamamoto M. Simultaneous inversion for the space-dependent diffusion coefficient and the fractional order in the time-fractional diffusion equation, Inverse Probl., 2013, vol.29, no. 6, 065014. DOI: https://doi.org/10.1088/ 0266-5611/29/6/065014.

19. Durdiev D. K., Rahmonov A. A., Bozorov Z. B. A two-dimensional diffusion coefficient determination problem for the time-fractional equation, Math. Methods Appl. Sci., 2021, vol.44, no. 13, pp. 10753-10761. EDN: RVTMGQ. DOI: https://doi.org/10.1002/mma.7442.

20. Durdiev D. K. Inverse coefficient problem for the time-fractional diffusion equation, Euras. J. Math. Comp. Appl., 2021, vol.9, no. 1, pp. 44-54. EDN: CCQGZT. DOI: https://doi.org/ 10.32523/2306-6172-2021-9-1-44-54.

21. Subhonova Z. A., Rahmonov A. A. Problem of determining the time dependent coefficient in the fractional diffusion-wave equation, Lobachevskii J. Math., 2022, vol. 43, no. 3, pp. 687700. EDN: HAEXYF. DOI: https://doi.org/10.1134/S1995080222030209.

22. Wei T., Zhang Z. Q. Robin coefficient identification for a time-fractional diffusion equation, Inverse Probl. Sci. Eng., 2016, vol.24, no. 4, pp. 647-666. DOI: https://doi.org/10.1080/ 17415977.2015.1055261.

23. Durdiev U. K. Problem of determining the reaction coefficient in a fractional diffusion equation, Differ. Equ., 2021, vol. 57, no. 9, pp. 1195-1204. EDN: XQJICE. DOI: https://doi. org/10.1134/S0012266121090081.

24. Haubold H. J., Mathai A. M., Saxena R. K. Mittag-Leffler functions and their applications, J. Appl. Math., 2011, vol.2011, 298628. DOI: https://doi.org/10.1155/2011/298628.

25. Tolstov G. P. Fourier Series. New York, Dover Publ., 1976, x+336 pp.

26. Petrova T. S. Application of Bessel's functions in the modelling of chemical engineering processes, Bulg. Chem. Commun., 2009, vol.41, no. 4, pp. 343-354.

Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2022. Т. 26, № 2. С. 355-367

ISSN: 2310-7081 (online), 1991-8615 (print) EDN: TWHCKX

d https://doi.org/10.14498/vsgtu1921

УДК 517.956.6

Обратная задача об источнике для уравнения смешанного параболо-гиперболического типа с дробной производной по времени в цилиндрической области

Д. К. Дурдиев

1 Бухарское отделение Института математики

им. В. И. Романовского АН Республики Узбекистан, Узбекистан, 705018, Бухара, ул. Мухаммад Икбол, 11.

2 Бухарский государственный университет, Узбекистан, 705018, Бухара, ул. Мухаммад Икбол, 11.

Аннотация

Исследуется обратная задача об источнике для уравнения смешанного типа с дробным уравнением диффузии в параболической части и волновым уравнением в гиперболической части цилиндрической области. Решение задачи получено в виде ряда Фурье-Бесселя с использованием ортогонального множества функций Бесселя. Доказаны теоремы единственности и существования решения.

Ключевые слова: обратная задача, уравнение смешанного типа, ряд Фурье-Бесселя, функция Миттаг-Леффлера, единственность и существование.

Получение: 25 апреля 2022 г. / Исправление: 27 мая 2022 г. / Принятие: 7 июня 2022 г. / Публикация онлайн: 30 июня 2022 г.

Конкурирующие интересы. Я заявляю, что конкурирующих интересов не имею. Авторская ответственность. Я несу полную ответственность за предоставление окончательной версии рукописи в печать. Окончательная версия рукописи мною одобрена.

Финансирование. Исследование выполнялось без финансирования.

Дифференциальные уравнения и математическая физика Краткое сообщение

© Коллектив авторов, 2022 © СамГТУ, 2022 (составление, дизайн, макет)

<3 @® Контент публикуется на условиях лицензии Creative Commons Attribution 4.0 International (https://creativecommons.org/licenses/by/4.0/deed.ru) Образец для цитирования

Durdiev D. K. Inverse source problem for an equation of mixed parabolic-hyperbolic type with the time fractional derivative in a cylindrical domain, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2022, vol. 26, no. 2, pp. 355-367. EDN: TWHCKX. DOI: 10.14498/vsgtu1921.

Сведения об авторе

Дурдимурод Каландарович Дурдиев А https://orcid.org/0000-0002-6054-2827 доктор физико-математических наук, профессор; заведующий отделением1; проф. кафедры дифференциальных уравнений ; e-mail: durdiev65@mail.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.