Научная статья на тему 'INVERSE PROBLEM FOR FREDHOLM INTEGRO-DIFFERENTIAL EQUATION WITH FINAL REDEFINITION CONDITIONS AT THE END OF THE INTERVAL'

INVERSE PROBLEM FOR FREDHOLM INTEGRO-DIFFERENTIAL EQUATION WITH FINAL REDEFINITION CONDITIONS AT THE END OF THE INTERVAL Текст научной статьи по специальности «Математика»

CC BY
34
9
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
INTEGRO-DIFFERENTIAL EQUATION / DEGENERATE KERNEL / FINAL CONDITIONS AT THE END OF A SEGMENT / PARAMETERS / REDEFINITION DATA / SOLVABILITY

Аннотация научной статьи по математике, автор научной работы — Yuldashev T.K., Zarifzoda S.K.

The questions of solvability and construction of solutions of an inverse problem for second-order Fredholm integro-differential equation with degenerate kernel, final conditions at the end of the interval, two parameters, and two redefinition data are considered. The sets of regular parameter values are determined and the corresponding solutions are constructed. The specific features of the inverse problem are studied. Criteria for the unique solvability of the posed inverse problem are established.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «INVERSE PROBLEM FOR FREDHOLM INTEGRO-DIFFERENTIAL EQUATION WITH FINAL REDEFINITION CONDITIONS AT THE END OF THE INTERVAL»

NANOSYSTEMS: Yuldashev T.K., Zarifzoda S.K. Nanosystems:

PHYSICS, CHEMISTRY, MATHEMATICS Phys. Chem. Math., 2022,13 (5), 483-490.

http://nanojournal.ifmo.ru

Original article DOI 10.17586/2220-8054-2022-13-5-483-490

Inverse problem for Fredholm integro-differential equation with final redefinition conditions at the end of the interval

Tursun K. Yuldashev1", Sarvar K. Zarifzoda2'6

1Tashkent State University of Economics, Tashkent, Uzbekistan 2Tajik National University, Dushanbe, Tajikistan

°tursun.k.yuldashev@gmail.com, bsarvar8383@list.ru

Corresponding author: Tursun K. Yuldashev, tursun.k.yuldashev@gmail.com

Abstract The questions of solvability and construction of solutions of an inverse problem for second-order Fredholm integro-differential equation with degenerate kernel, final conditions at the end of the interval, two parameters, and two redefinition data are considered. The sets of regular parameter values are determined and the corresponding solutions are constructed. The specific features of the inverse problem are studied. criteria for the unique solvability of the posed inverse problem are established.

Keywords integro-differential equation, degenerate kernel, final conditions at the end of a segment, parameters, redefinition data, solvability.

For citation Yuldashev T.K., Zarifzoda S.K. Inverse problem for Fredholm integro-differential equation with final redefinition conditions at the end of the interval. Nanosystems: Phys. Chem. Math., 2022,13 (5), 483-490.

1. Problem statement

The differential and integro-differential equations have applications in biological, chemical and physical sciences, ecology, biotechnology, industrial robotics, pharmacokinetics, biophysics at micro- and nano-scales [1-13]. Today, for ordinary integro-differential equations, new problems are posed and a large number of papers, devoting to study of integro-differential equations, are published. Problems with nonlocal conditions for differential and integro-differential equations were considered in [14-35]. Integro-differential equations with degenerate kernel were considered in [36-40].

In this paper, we study the solvability of the inverse problem for second-order ordinary Fredholm integro-differential equation with degenerate kernel, two parameters, and final conditions at the end of the interval. This paper differs from papers mentioned above in requirement of finding two unknown redefinition data. This inverse problem has features related with the corresponding direct problem. Let us describe the latter one. We consider on the segment [0; T] integro-differential equation of the form

T

u"(t) + (A 2 - a(t)) u(t) = v J K(t, s) u(s) ds, (1)

0

where T, T > 0, is given real number, A, A > 0, is real parameter, v is real nonzero parameter, a(t) G C [0; T] is positive

k

function, K(t, s) = ^ a¿(t) b¿(s), a¿(t), b¿(s) G C [0; T]. It is assumed that the systems of functions {a¿(t)} and

_ ¿=1

{b¿(s)}, i = 1, k are linear independent.

We consider equation (1) with the following conditions

u (T) = , u'(T) = y>2, (2)

u(ti) = Vi, u'(ti) = V2, (3)

where 0 < t1 < T < to, yj = const, yj are constant quantities of redefinition, Vj = const, j = 1, 2. The choice of conditions (2) with the final data is related to the fact that in many practical applications, it is not possible to determine the initial conditions. For example, when studying the technological process of aluminum production, before the start of the production cycle, the raw material passes through firing and the state of the raw material at the beginning of the production cycle is not known. However, the final expected state of the output will be known or we can find it from known intermediate state.

Formulation of the problem. It is required to find a triple of unknowns

(u(t) G C2[0; T], yi G R, i = 1, 2} , where the first one is a function satisfying equation (1), the second and the third are values from conditions (2) and (3).

© Yuldashev T.K., Zarifzoda S.K., 2022

Note that the problem is formulated in such a way that the direct problem (1), (2) has a unique solution for all values of the parameter A, and the inverse problem (1)-(3) has a unique solution only for certain values of this parameter A. In addition, the second parameter v also plays an important role in the issue of solvability.

2. Solution of the direct problem (1), (2)

Taking into account the degeneracy of the kernel, we rewrite equation (1) in the following form

u"(t) + A2u(t) = v ^ a j(t) Ti + a(t) u(t),

where

T

ti = j bi(s) u(s) ds.

(4)

(5)

Solving the inhomogeneous differential equation (4) by the method of variation of arbitrary constants, we obtain the representation

(t) = A i cos At + A2 sin At + — ^^ ti j sin A (t — s) ai(s) ds + — j sin A (t — s) a(s) u(s) ds, (6)

where A i, A 2 are yet arbitrary constants. By differentiating (6) one time, we obtain

k t t u'(t) = — AA i sin At + AA 2 cos At + — ^^ t i j A cos A (t — s) a i(s) ds + — j A cos A (t — s) a(s) u(s) ds. (7)

i=i 0 0

To find the unknown coefficients, we use the final conditions (2). Then, from representations (6) and (7) we arrive at a system of algebraic equations (SAE)

where

A i cos AT + A 2 sin AT = y1, —A i sin AT + A2 cos AT = y2,

v k 1 T

Yi = ¥>i — A TiP ii — — sin A (T — s) a(s) u(s) ds,

i=i 0

v k IT

Y2 = ^2 — v TiP2i — — cos A (T — s) a(s) u(s) ds,

i=i o

T T

P ii = y sin A (T — s) ai(s) ds, P2i = j cos A (T — s) ai(s) ds.

(8)

(9)

(10)

For the unique solvability of SAE (8), the condition

cos AT sin AT - sin AT cos AT

= 0

should be fulfilled. Since ¿0 = 1, this condition is fulfilled for all values of the parameter A. Consequently, SAE (8) has the unique solution

Ai = ¿i =

Yi sin AT Y2 cos AT

= yi cos AT — y2 sin AT+

k t T

+ v ^^ Ti j sin Asai(s) ds + —J sin Asa(s) u(s) ds, (11)

i=i n n

u

A = ¿2

cos AT 71 — sin AT y2

sin AT + y2 cos AT+

k 1 1 + V T*y cos Asaj(s) ds + cos Asa(s) u(s) ds. (12)

i=1 n n

Substituting (11) and (12) into representation (6), we obtain

where

v k It

(t) = ^ 1 X i(t)+ ^ 2 X 2(t) + X 3i(t) + 1 H (t, s, A) a(s) u(s) ds,

i=1 n

X 1(t) = cos A (T — t) — sin A (T — t), X2(t) = cos A (T + t) — sin A (T — t),

T

X3i(t)=y H(t, s,A) ai(s) ds,

(13)

, sin A (t + s), t<s < T, H (t,s,A)=< ( ), < ,

sin A (t — s) + cos At sin As + A sin At sin As, 0 < s < t.

Although function (13) is a solution to the direct problem (1), (2), it contains quantities that are still unknown. To find these quantities twe substitute representation (13) into (5) and arrive at a new SAE:

where

k

t <— A ETj -3ij (t) = ^ -1i+^ -2i+-^

j=1

1 1 - 1i = y bj(s) cos A (T — s) ds, -2i = — y bj(s) sin A (T — s) ds,

(14)

T

0

T

0 T

T

1

aj (W) dW ds, -4j = — A

0 0 0 0 To establish the unique solvability of SAE (14), we introduce the following matrix

r3ij =y bj(s^y H (s,W,A) aj (W) dWds, - 4i = ^ Ms^ H (s,W,A) a(W) u(W) dWds.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

©0 (—, A) =

/ V —

11 — A-311 A

VV

- 32 1 1 T - 32 2

A

- 31 2 V

A

V

A

- 3k 1

A

- 3k 2

V

A-31 k N

V

T - 32 k

1

. . 1 — A-3kk /

and consider the values of the parameter v, for which the Fredholm determinant differs from zero:

A0(v, A) = det ©0 (v, A) =0.

(15)

Determinant A 0(v, A) in (15) is a polynomial with respect to — of the degree not higher than k. The algebraic

A _

equation A0(v, A) = 0 has no more than k different real roots. We denote them by ^; (l = 1, p, 1 < p < k). Then — = —; = A^; are called the characteristic (irregular) values of the kernel of the integro-differential equation (1). So, we introduce the following two designations

1 1 = {(—, A) : — = A ^;, A € (0, to)} , 1 2 = {(—, A) : — = A^;, A G (0, to)} .

The set 11 is the set of irregular values of the kernel of the integro-differential equation (1). While the set 12 is the set of regular values of the kernel.

On the number set 12 we consider a matrix

( 1- —

©im (—, A)

A

- 31 1

... A- 31 (i-1) - m 1 A- 31 (i+1) ... V V V

A-32 1 ... A-32(i-1) - m 2 A-32 (i+1) ...

V

A-31 k V

A - 332 k

\

V A

V

T - 3k 1

A-3k (i-1) - mk A-3k (i+1) .•

1 - --

3k k

u

V

V

V

V

m = 1,2,4. Taking into account the known properties of the matrix ©;m (v, A), we apply the Cramer method on the spectral set Q 2 and obtain solutions of SAE (14) in the form

A i;(v, A) A2; (v, A) A4;(v, A,u) .

t i = yi-

+ ^2"

+

-, i = 1, k, (v, A) G Q2,

A o (v, A) Ao(v, A) Ao(v, A)

where Aim(v, A) = det ©;m (v, A), m =1,2,4. Substituting solutions (16) into function (13), we obtain

u(t, v, A) = yi h i (t, v, A) + y2 h 2 (t, v, A)+

(16)

+ v E ^ff X 3 i(t) + / H(t, s, A) u(s, v, A) ds, (v, A) G Q2, (17)

where

h j (t, v, a)=Xj (t)+a e AjvA) x 3 ; (t), j=1,2

Xз¿(t) = J H(t, s, A) a¿(s) ds, H"(t, s, A) = a^(t, s, A) a(s).

0

Note that representation (17) is equivalent to the direct problem (1), (2) for regular values of the parameter v. However, and y2 have not been determined yet.

3. Solution of the inverse problem (1)-(3)

For convenience, representation (17) can be written in the following form

u (t, v, A) = yi

A <T -1) - - A <T - '> + A E AfeA) X3; (t)

;=i

+

+ y2

A (T + t) - Sln A (T - t) + A E X 3 ; (t)

;=i '

+

+ A E A4; (v.A\U) X3; (t)+/ #(t,s,A) u(s, v, A) ds, (v, A) G Q2. (18)

A ^ Ao (v, A)

We differentiate (18) one time:

/(t v, A) = yi

A sin A(T -1) + A cos A(T - t) + A E Xa ; (t)

A ri Ao(v, A)

+

+ y2

-A sin A(T +1) + A cos A(T - t) + A E X/3 ; (t)

A t"! Ao (v, A)

+

where

v £ A4, l>,A,u) x3 ; (()+f HH/(t, s, A) u(s,v, A) ds, (v, A) G Qs, (19)

+ AE

A i=i A0 (v, A) i=i

T

X3; (t) = J H/(t, s, A) a(s) ds,

H /(t,s,w)

A cos A (t + s), t<s < T,

A cos A (t - s) - A sin At sin As + A2 cos At sin As, 0 < s < t.

H^t, s,A) = 1 H/(t, s,A) a(s). A

Then, applying intermediate conditions (3) to functions (18) and (19), we arrive at the solution of the following SAE:

yi [X i(ti, A) + £ii] + y2 [X 2(ti, A) + £i2] = V>i, yi [Xi(ti,A)+ £2i] + y2 [X/2n(ti,A)+ £22] = V>2,

cos

cos

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

u

where

v ^ Aj (v,A)__ ^ __ _v ^ Aj (v,A)

A Ao(v, A)

¿=i v '

X 3 ¿(ti), £2j = aE

A ¿=i Ao(v,A)

X'3i(ti), j = 1, 2,

^Ai = - aE

v ^^ A 4 ¿(v, A, u)

A ¿=i Ao(v,A)

¿=i v '

X3¿(ti) ^ / H"(ii,s, A) u(s, v, A) ds,

o T

V>2 = ^2 - A £ A4 ¿fry X'3 ¿(ti)+ / H '(ti,s,A) u(s, v, A) ds.

A^ Ao(v,A)

(21)

(22)

The fulfillment of the following condition ensures the unique solvability of SAE (20): VQ(A) =

X i(ti,A)+ £ii X 2 (ti, A) + £i2 x'i(ti,A)+ £2i X2(ti, A) + £22 = -A sin 2AT - A cos 2AT + 2A sin A(T - ti) cos A(T - ti) - A cos 2A(T - ti)-

- A£u[sin A(T + ti) + cos A(T - ti)j - A£i2[sin A(T - t^ + cos A(T - ti)j-

- £2i[cos A(T + ti) - A sin A(T - ti)] - £22[sin A(T - ti) - A cos A(T - ti)]+

+ £ii£22 - £2i£i2 = 0. (23)

Before proceeding to the solution of SAE (20), we consider condition (23) for the general case. To do this, suppose the opposite:

- A sin 2AT - A cos 2AT + 2A sin A(T - ti) cos A(T - ti) - A cos 2A(T - ti)- A £ ii [sin A(T + ti) + cos A(T - ti)] - A£i2[sin A(T - ti) + cos A(T - ti)]- £2i[cos A(T + ti) - A sin A(T - ti)] - £22[sin A(T - ti) - A cos A(T - ti)]+

+ £ii£22 - £2i£i2 =0. (24) Condition (24) is a transcendental equation and the set of its solutions with respect to A denote by 9. So, on the set

ft3 = {(vn, A) : | Aq (v, A) | > 0, v„ = AM,, A 6 3} SAE (20) is not one valued solvable. But, on the other set

ft 4 = {(vn, A) : | Aq (v, A) | > 0, | Vq(A) | > 0, v„ = AM,, A 6 (0; to) \ 3} SAE (20) is one valued solvable. Taking into account notations (21) and (22), we obtain

v k A '(v A u) f

j = ^iWji + ^2Wj2 + - y] 4 8 ,, ' w j3i + Wj(s, A) u(s, v, A) ds, j = 1, 2, A A0 (v, A)

(25)

where

wii = (x2 (ti) + £22) , Wi2 = V0-i ( X2 (ti) + £i2) , W2i = V0-i (xi(ti) + £2i) , W22 = (Xi(ti) + £ii) , wi3(A) = - [X3i(ti, A)wii(A) + x3i(ti, A) wi2(A)],

W23(A) = - [X3i(ti, A) W2i(A) + x3i(ti, A) W22(A)], Wi(s, A) = H(ti, s) wii(A) + H'(ti, s) wi2(A), W2(s, A) = H(ti, s) W2i(A) + H'(ti, s) w22(A). Representations in (25) are expressions of unknown quantities and y2 in terms of an unknown function u(t, v, A). Therefore, we need to uniquely define the function u(t, v, A). Substituting representations (25) into equation (17), we obtain in the final form the following functional-integral equation

t(t, v, A) = W(t, v, A, u) = ^igi(t, v, A) + 2(t, v, A) +

v ^^ A 4 ¿(v, A, u)

+ AE

A ¿=i A o(v, A)

g3¿(t)+/ G(t, s, v,A) u(s, v, A) ds, (v, A) G (26)

where

gi (t, v, A) = wn(A)hi (t, v, A) + W2i(A)h2 (t, v, A), g2 (t, v, A) = wi2(A) h i (t, v, A) + W22(A) h2 (t, v, A), g3¿(t) = gi(t,v, A) Xз¿(tl) + g2(t, v,A) x3i(tl) + Xз¿(t),

G (t, s, v, A) = gi (t, v, A) #(ti, s) + g2 (t, v, A) Hf'(ti, s) + #(t, s).

Note that this functional-integral equation makes sense only for values of parameters v, A from the set Q4. In addition, in the functional-integral equation (26), the unknown function u(t, v, A) is under the sign of the determinant and under the sign of the integral. Let us investigate this equation in the question of unique solvability. To this end, consider the space of functions continuous on the interval [0; T]. In this space, we introduce the norm as follows: || u(t) || = max | u(t) |.

o<i<T

Theorem. Let be fulfilled the following condition

P -

ivi V

A ^

;=i

A 4 ;(v, A) Ao(v, A)

T

g3 ; (t) II + J y G(t, s, v, A) y ds < 1,

where | A 4 ¿(v, A) | is defined from (30). Then the functional-integral equation (26) has the unique solution for values of parameters v, A from the set Q 4 and for all t g [0; T]. This solution can be found from the following iterative Picard process

uo(t, v, A) = Vi g i(t, v, A) + V2 g2(t, v, A), uk(t, v, A) = W(t, v, A, uk-i), k =1, 2, 3,... Proof. Since Vj and gj(t, v, A), j = 1,2, are bounded, then for zero approximation we obtain the estimate

| uo(t,v,A) | = | Vi | | gi(t, v, A) | + | V2 | | g2(t, v, A) |< M (| Vi | + | V2 |) < to, (27)

where M = max {|| g i (t, v, A) ||, || g2 (t, v, A) ||}.

Similarly to (27), taking into account the property of the determinant, we obtain an estimate for the first difference of the approximation

| u i (t, v, A) — u 0 (t, v, A) | <

+¥ E

;=i

A4;(v, A, uo) Ao(v, A)

where | A;4(v, A, uo) | = | det ©;4 (v, A, uo)

v

A'

v

' 1 --<3ii

0;4(v, A, u o)

A< 321

g 3 ; (t) I + M (| ^ | + | ^2 |)y I G(t,s,v,A) I ds.

o

^ t \ "

t< 3i(;-i) < 41(u o) -ra 3i(;+i) ...

< 3i k

ACT 32 (;-i) < 4 2 (u o) A< 32 (;+i) ... A< 332 k

\ A< 3k i ... A< 3k (;-i) < 4 k(u o) A< 3k (;+i) ... 1 - A< 3k k /

(28)

a4¿(u0) = M (| Vi | + | V2 I) J | b¿(s) ^|i?(s,0,A)| dflds.

00

Continuing this process, we obtain by induction that

| u k (t, v, A) - u k-i(t, v, A) | <

+ ^^ ^

;=i

A 4 ;(v, A, u k-i) - A 4 ; (v, A, u k-2) Ao (v, A)

I g 3 ; (t) I +

T

+ y y G(t, s,v, A) y | uk-i(s, v, A) - uk-2(s,v, A) | ds.

This implies the estimate

where

I u k (t, v,A) - u k-i(t, v, A) y < p y u k-i(t, v, A) - u k-2(t, v, A) || ,

(29)

| v | A

P =

^ 4 ;(v, A) Ao(v, A)

T

g3 ; (t) y + J y G(t,s,v, A) y ds,

AA 4 ;(v, A) I = I det <9 4 ;(v, A)

(30)

v

( 1-v

<э 4 i(v, A)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

a 31 1

Aa 321

a 3k 1

V V

.. Aa 31(i-1) a 4 1 Aa 31(i+1)

V V

.. A a 32 (i-1) a 42 A a 32 (i+1)

V V

Aa 3k (i-1) a 4 k Aa 3k (i+1)

Aa 31 k

V

A a 332 k

1 — a a3k k

a4i = J | 6i(s) \ J I #(s,0,A) I döds.

o o

According to the theorem, p < 1. Estimates (27), (28) and (29) imply that the operator on the right side of (26) is contractive. This implies the existence of a single fixed point. Consequently, the functional-integral equation (26) has the unique solution on the set ft 4 of values of parameters v, A for all t 6 [0; T]. The theorem is proved.

Now, the function u(t, v, A) 6 C2 [0; T] is already known. In order to determine the unknown quantities and y2, we will substitute the solution u(t, v, A) 6 C2[0; T] of equation (26) into representations (25). Then, the quantities and y2, are uniquely determined.

V

A

V

4. Conclusion

We have considered questions of the unique solvability of the inverse problem for the second-order Fredholm integro-differential equation (1) with a degenerate kernel, final conditions (2) at the end of the interval, two parameters, and two redefinition data. Sets of regular parameter values are defined. The features that arise when solving the inverse problem (1)-(3) are studied. Criteria for the unique solvability of the posed inverse problem are established.

Remark 1. For values of parameters (v, A) from the set ft3, the uniqueness of the set of solutions to the inverse problem (1)-(3) is violated. Because in this case condition (23) is not satisfied.

Remark 2. For values of parameters (v, A) from the set ft1, the inverse problem (1)-(3) does not make sense. Because in this case condition (15) is not satisfied. But, the direct problem (1), (2) has an infinite set of solutions, if = y2 = 0 and a(t) = 0 for all t G [0; T].

References

[1] Cavalcanti M. M., Domingos Cavalcanti V. N., Ferreira J. Existence and uniform decay for a nonlinear viscoelastic equation with strong damping. Math. Methods in theAppl. Sciences, 2001, 24, P. 1043-1053.

[2] Bykov Ya. V. On some problems in the theory of integro-differential equations. Izdatelstvo Kirg. Gos. Univ-ta, Frunze, 1957, 327 p. (in Russian).

[3] Dzhumabaev D. S., Bakirova E. A. Criteria for the well-posedness of a linear two-point boundary value problem for systems of integro-differential equations. Differential Equations, 2010, 46(4), P. 553-567.

[4] Dzhumabaev D. S., Mynbayeva S. T. New general solution to a nonlinear Fredholm integro-differential equation. Eurasian Math. Journal, 2019, 10(4), P. 24-33.

[5] Gianni R. Equation with nonlocal boundary condition. Mathematical Models and Methods in Applied Sciences, 1993. 3(6), P. 789-804.

[6] Giacomin G., Lebowitz J. L. Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits. J. of Statist. Phys., 1997, 87, P. 37-61.

[7] Falaleev M. V. Integro-differential equations with a Fredholm operator at the highest derivative in Banach spaces and their applications. Izv. Irkutsk. Gos. Universiteta. Matematika, 2012, 5(2), P. 90-102 (in Russian).

[8] FedorovE. G., Popov I. Yu. Analysis of the limiting behavior of a biological neurons system with delay. J. Phys.: Conf. Ser, 2021, 2086, P. 012109.

[9] Fedorov E. G., Popov I. Yu. Hopf bifurcations in a network of FitzHugh-Nagumo biological neurons. International Journal of Nonlinear Sciences and Numerical Simulation, 2021.

[10] Fedorov E. G. Properties of an oriented ring of neurons with the FitzHugh-Nagumo model. Nanosystems: Phys. Chem. Math., 2021,12(5), P. 553562.

[11] Sidorov N. A. Solution of the Cauchy problem for a class of integro-differential equations with analytic nonlinearities. Differ. Uravneniya, 1968, 4(7), P. 1309-1316 (in Russian).

[12] Ushakov E. I. Static stability of electrical circuits. Nauka, Novosibirsk, 1988. 273 p. (in Russian)

[13] Vainberg M. M. Integro-differential equations. Itogi Nauki, 1962, VINITI, Moscow, 1964, P. 5-37 (in Russian).

[14] Yuldashev T. K., Odinaev R. N., Zarifzoda S. K. On exact solutions of a class of singular partial integro-differential equations. Lobachevskii Journal of Mathematics, 2021, 42(3), P. 676-684.

[15] Yuldashev T. K., Zarifzoda S.K. On a new class of singular integro-differential equations. Bulletin of the Karaganda University. Mathematics series, 2021,101(1), P. 138-148.

[16] Abildayeva A. T., Kaparova R. M., Assanova A. T. To a unique solvability of a problem with integral condition for integro-differential equation. Lobachevskii Journal of Mathematics, 2021, 42(12), P. 2697-2706.

[17] Asanova A. T., Dzhumabaev D. S. Correct solvability of a nonlocal boundary value problem for systems of hyperbolic equations. Doklady Mathematics, 2003, 68(1), P. 46-49.

[18] Assanova A. T., On the solvability of nonlocal problem for the system of Sobolev-type differential equations with integral condition. Georgian Mathematical Journal, 2021, 28(1), P. 49-57.

[19] Asanova A.T., Dzhumabaev D.S. Well-posedness of nonlocal boundary value problems with integral condition for the system of hyperbolic equations. Journal of Mathematical Analysis and Applications, 2013, 402(1), P. 167-178.

[20] Assanova A. T., Imanchiyev A. E., Kadirbayeva Zh. M. A nonlocal problem for loaded partial differential equations of fourth order. Bulletin of the Karaganda university-Mathematics, 2020, 97(1), P. 6-16.

[21] Assanova A. T., Tokmurzin Z. S. A nonlocal multipoint problem for a system of fourth-order partial differential equations. Eurasian Math. Journal, 2020,11(3), P. 8-20.

[22] Gordeziani D. G., Avalishvili G.A. Gordeziani solutions of nonlocal problems for one-dimensional vibrations of a medium. Matematicheskoye Modelirovaniye, 2000,12(1), P. 94-103 (in Russian).

[23] Dzhumabaev D. S. Well-posedness of nonlocal boundary value problem for a system of loaded hyperbolic equations and an algorithm for finding its solution. Journal of Mathematical Analysis and Applications, 2018, 461(1), P. 1439-1462.

[24] Ivanchov N. I. Boundary value problems for a parabolic equation with integral conditions. Differential Equations, 2004, 40(4), P. 591-609.

[25] Pao C. V. Numerical solutions of reaction-diffusion equations with nonlocal boundary conditions. J. of Computational and Applied Mathematics, 2001,136(1-2), P. 227-243.

[26] Ochilova N. K., Yuldashev T. K. On a nonlocal boundary value problem for a degenerate parabolic-hyperbolic equation with fractional derivative. Lobachevskii Journal of Mathematics, 2022, 43(1), P. 229-236.

[27] Tikhonov I. V. Theorems on uniqueness in linear nonlocal problems for abstract differential equations. Izvestiya: Mathematics, 2003, 67(2), P. 333-363.

[28] Yurko V. A. Inverse problems for first-order integro-differential operators. Math Notes, 2016,100(6), P. 876-882.

[29] Yuldashev T. K. Determination of the coefficient and boundary regime in boundary value problem for integro-differential equation with degenerate kernel. Lobachevskii Journal of Mathematics, 2017, 38(3), P. 547-553.

[30] Yuldashev T. K., Kadirkulov B. J. Inverse boundary value problem for a fractional differential equations of mixed type with integral redefinition conditions. Lobachevskii Journal of Mathematics, 2021, 42(3), P. 649-662.

[31] Yuldashev T. K., Saburov Kh. Kh., Abduvahobov T. A. Nonlocal problem for a nonlinear system of fractional order impulsive integro-differential equations with maxima. Chelyabinskii Phys.-Mathem. Journal, 2022, 7(1), P. 113-122.

[32] Yuldashev T. K., Rakhmonov F. D. Nonlocal problem for a nonlinear fractional mixed type integro-differential equation with spectral parameters. AIP Conference Proceedings, 2021, 2365(060003), P. 1-20.

[33] Zaripov S. K. Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel. Vestnik Tomsk. gos. universiteta. Matematika i mekhanika, 46, 2017, P. 24-35.

[34] Zaripov S. K. A construction of analog of Fredgolm theorems for one class of first order model integro-differential equation with logarithmic singularity in the kernel. Vestnik Samar. gos. tekh. univ. Fiz.-mat. nauki, 21(2), 2017, P. 236-248.

[35] Zaripov S. K. On a new method of solving of one class of model first-order integro-differential equations with singularity in the kernel. Matem-aticheskayafizika i compyuternoe modelirovanie, 2017, 20(4), P. 68-75.

[36] Yuldashev T. K. On Fredholm partial integro-differential equation of the third order. Russian Mathematics, 2015, 59(9), P. 62-66.

[37] Yuldashev T. K. On a boundary-value problem for a fourth-order partial integro-differential equation with degenerate kernel. Journal of Mathematical Sciences, 2020, 245(4), P. 508-523.

[38] Yuldashev T. K. Determining of coefficients and the classical solvability of a nonlocal boundary-value problem for the Benney-Luke integro-differential equation with degenerate kernel. Journal of Mathematical Sciences, 254(6), 2021, P. 793-807.

[39] Yuldashev T. K. Inverse boundary-value problem for an integro-differential Boussinesq-type equation with degenerate kernel. Journal of Mathematical Sciences, 2020, 250(5), P. 847-858.

[40] Yuldashev T. K., Apakov Yu. P., Zhuraev A. Kh. Boundary value problem for third order partial integro-differential equation with a degenerate kernel. Lobachevskii Journal of Mathematics, 2021, 42(6), P. 1317-1327.

Submitted 27 August 2022; revised 17 September 2022; accepted 18 September 2022

Information about the authors:

Tursun K. Yuldashev - Tashkent State University of Economics, Karimov street, 49, TSUE, Tashkent, 100066, Uzbekistan; tursun.k.yuldashev@gmail.com

Sarvar K. Zarifzoda - Tajik National University, st. Khovaron, apt. 381, Shohmansur district, Dushanbe, Tajikistan; sarvar8383@list.ru

Conflict of interest: the authors declare no conflict of interest.

i Надоели баннеры? Вы всегда можете отключить рекламу.