Научная статья на тему 'INTERFERON SIGNATURE IN THE DEVELOPMENT OF SLE: MOLECULAR MECHANISMS, APPROACHES TO DIAGNOSIS AND TREATMENT'

INTERFERON SIGNATURE IN THE DEVELOPMENT OF SLE: MOLECULAR MECHANISMS, APPROACHES TO DIAGNOSIS AND TREATMENT Текст научной статьи по специальности «Фундаментальная медицина»

CC BY
0
0
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
systemic lupus erythematosus / interferon signature / anifrolumab / системная красная волчанка / интерфероновая сигнатура / анифролумаб

Аннотация научной статьи по фундаментальной медицине, автор научной работы — Nakonechnaya T.O., Shagina I.A., Myshkin M.Yu, Mutovina Z.Yu, Ryazantseva E.V.

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by inflammation of connective tissue and damage to various organs, including joints, skin, kidneys and heart. The disease has a significant gender predisposition and is more common in women. The pathogenesis of SLE is based on a violation of immunological tolerance, accompanied by activation of B lymphocytes and the production of autoantibodies. Recent advances in basic research have significantly deepened the understanding of the immunopathogenetic mechanisms of SLE, which justifies the use of new pharmacotherapeutic approaches. These approaches involve the use of biological drugs aimed at blocking the activity of type I interferon (IFN) or its receptors. The article discusses the molecular mechanisms of activation of the interferon response in SLE, modern methods for diagnosing the interferon signature, and new approaches to treatment aimed at blocking the interferon pathway. The possible role of the interferon signature in the stratification of SLE patients is also discussed. Such stratification will make it possible to more effective select treatment regimens taking into account the individual characteristics of the immune response of each patient. This may increase the effectiveness of treatment, reduce the likelihood of side effects and improve the prognosis for patients with SLE.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

АНАЛИЗ ЭКСПРЕССИИ ИФН-СТИМУЛИРОВАННЫХ ГЕНОВ КАК ИНСТРУМЕНТ ДЛЯ ОПТИМИЗАЦИИ ТЕРАПИИ СИСТЕМНОЙ КРАСНОЙ ВОЛЧАНКИ

Системная красная волчанка (СКВ) представляет собой хроническое аутоиммунное заболевание, характеризующееся воспалением соединительной ткани и поражением различных органов, включая суставы, кожу, почки и сердце. Заболевание демонстрирует значительную гендерную предрасположенность, чаще встречается у женщин. В основе патогенеза СКВ лежит нарушение иммунологической толерантности, сопровождающееся активацией В-лимфоцитов и продукцией аутоантител. Достижения последних лет в фундаментальных исследованиях значительно углубили понимание иммунопатогенетических механизмов СКВ, что обосновывает применение новых фармакотерапевтических подходов, в том числе использование биологических препаратов, направленных на блокировку активности интерферона (ИФН) типа I или его рецепторов. В статье рассмотрены молекулярные механизмы активации интерферонового ответа при СКВ, современные методы диагностики интерфероновой сигнатуры и новые подходы к лечению, направленные на блокировку интерферонового пути. Обсуждается возможная роль интерфероновой сигнатуры для стратификации пациентов с СКВ. Стратификация позволит более точно подбирать терапевтические схемы, учитывая индивидуальные особенности иммунного ответа каждого пациента. Такой подход может повысить эффективность лечения, снизить вероятность развития побочных эффектов и улучшить прогноз для пациентов с СКВ.

Текст научной работы на тему «INTERFERON SIGNATURE IN THE DEVELOPMENT OF SLE: MOLECULAR MECHANISMS, APPROACHES TO DIAGNOSIS AND TREATMENT»

INTERFERON SIGNATURE IN THE DEVELOPMENT OF SLE: MOLECULAR MECHANISMS, APPROACHES TO DIAGNOSIS AND TREATMENT

Nakonechnaya TO1, Shagina iA2-3, Myshkin MYu23, Mutovina ZYu4, Ryazantseva EV4, Chudakov DM1'2, Turchaninova MA2'3, Britanova OV2'3E3

1 Shemyakin and Ovchinnikov institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia

2 Pirogov Russian National Research Medical University, Moscow, Russia

3 LLC MiLaboratory, Moscow, Russia

4 Department of Rheumatology, City Clinical Hospital No. 52 of the Department of Health, Moscow, Russia

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by inflammation of connective tissue and damage to various organs, including joints, skin, kidneys and heart. The disease has a significant gender predisposition and is more common in women. The pathogenesis of SLE is based on a violation of immunological tolerance, accompanied by activation of B lymphocytes and the production of autoantibodies. Recent advances in basic research have significantly deepened the understanding of the immunopathogenetic mechanisms of SLE, which justifies the use of new pharmacotherapeutic approaches. These approaches involve the use of biological drugs aimed at blocking the activity of type i interferon (IFN) or its receptors. The article discusses the molecular mechanisms of activation of the interferon response in SLE, modern methods for diagnosing the interferon signature, and new approaches to treatment aimed at blocking the interferon pathway. The possible role of the interferon signature in the stratification of SLE patients is also discussed. Such stratification will make it possible to more effective select treatment regimens taking into account the individual characteristics of the immune response of each patient. This may increase the effectiveness of treatment, reduce the likelihood of side effects and improve the prognosis for patients with SLE. Keywords: systemic lupus erythematosus, interferon signature, anifrolumab

Financing: the study was supported by a grant from the Moscow Government (NIP No. 2412-63/22-1 dated May 13, 2022), sponsored by the Moscow Center for innovative Technologies in Healthcare.

Author contribution: Myshkin MYu — literature analysis; Mutovina ZYu, Shagina IA — data collection in the field of rheumatology and medicine; Chudakov DM — concept, Turchaninova MA — analysis and interpretation of scientific data; Ryazantseva EV Kazhdan MA — manuscript proofreading, Britanova OV Nakonechnaya TO — literature analysis and manuscript preparation.

[><] Correspondence should be addressed: Olga V Britanova.

Miklouho-Maklaya, s. 16/10, 117997, Moscow, Russia; olbritan@gmail.com

Received: 24.06.2024 Accepted: 28.06.2024 Published online: 30.06.2024

DOI: 10.24075/brsmu.2024.027

АНАЛИЗ ЭКСПРЕССИИ ИФН-СТИМУЛИРОВАННЫХ ГЕНОВ КАК ИНСТРУМЕНТ ДЛЯ ОПТИМИЗАЦИИ ТЕРАПИИ СИСТЕМНОЙ КРАСНОЙ ВОЛЧАНКИ

Т. О. Наконечная1, И. А. Шагина2,3, М. Ю. Мышкин2,3, З. Ю. Мутовина4, Е. В. Рязанцева4, Д. М. Чудаков1,2, М. А. Турчанинова2,3, О. В. Британова2,3 н

1 Институт биоорганической химии имени М. М. Шемякина и Ю. А. Овчинникова Российской академии наук, Москва, Россия

2 Российский национальный исследовательский медицинский университет имени Н. И. Пирогова, Москва, Россия

3 ООО МайЛаборатори, Москва, Россия

4 Отделение ревматологиии Городской клинической больницы № 52 Депертамента здравоохранения Москвы, Москва, Россия

Системная красная волчанка (СКВ) представляет собой хроническое аутоиммунное заболевание, характеризующееся воспалением соединительной ткани и поражением различных органов, включая суставы, кожу, почки и сердце. Заболевание демонстрирует значительную гендерную предрасположенность, чаще встречается у женщин. В основе патогенеза СКВ лежит нарушение иммунологической толерантности, сопровождающееся активацией В-лимфоцитов и продукцией аутоантител. Достижения последних лет в фундаментальных исследованиях значительно углубили понимание иммунопатогенетических механизмов СКВ, что обосновывает применение новых фармакотерапевтических подходов, в том числе использование биологических препаратов, направленных на блокировку активности интерферона (ИФН) типа I или его рецепторов. В статье рассмотрены молекулярные механизмы активации интерферонового ответа при СКВ, современные методы диагностики интерфероновой сигнатуры и новые подходы к лечению, направленные на блокировку интерферонового пути. Обсуждается возможная роль интерфероновой сигнатуры для стратификации пациентов с СКВ. Стратификация позволит более точно подбирать терапевтические схемы, учитывая индивидуальные особенности иммунного ответа каждого пациента. Такой подход может повысить эффективность лечения, снизить вероятность развития побочных эффектов и улучшить прогноз для пациентов с СКВ.

Ключевые слова: системная красная волчанка, интерфероновая сигнатура, анифролумаб

Финансирование: исследование выполнено на средства гранта Правительства Москвы (НИР № 2412-63/22-1 НИР от 13.05.2022), спонсор — АНО «Московский центр инновационных технологий в здравоохранении».

Вклад авторов: М. Ю. Мышкин — анализ литературы; З. Ю. Мутовина, И. А. Шагина — сбор данных в сфере ревматологии и медицины; Д. М. Чудаков — концепция, М. А. Турчанинова — анализ и интерпретация данных; О. В. Британова, Т. О. Наконечная — анализ литературы и подготовка рукописи.

Çx] Для корреспонденции: Ольга Владимировна Британова

ул. Миклухо-Маклая, д. 16/10, 117997, г. Москва, Россия; olbritan@gmail.com

Статья получена: 24.06.2024 Статья принята к печати: 28.06.2024 Опубликована онлайн: 30.06.2024 DOI: 10.24075/vrgmu.2024.027

Epidemiological significance

The incidence of SLE varies from 4 to 250 cases per 100,000 population, the incidence rate depends on the region, ethnic composition of the population, gender and age [1, 23].

The risk of SLE in women is 8-10 times higher than in men; women have a higher risk during their reproductive years of 16-25 years, while SLE activity is expected during pregnancy and the puerperium [1-3].

Mortality in SLE is 4-5 times higher than in the the population at all; Possible causes of death in patients with SLE include infection (30%), neuropsychiatric disorders (15%), renal failure (14%) and cardiopulmonary damage (8%) [1].

Brief overview of the disease

Systemic lupus erythematosus (SLE) is an autoimmune disease in which the human immune system perceives host connective tissue cells as foreign [4]. The central mechanism of the immunopathology of SLE is a violation of immunological tolerance, leading to uncontrolled activation of B-cells response, the development of which is determined by a combination of genetic and epigenetic predisposition, environmental factors (ultraviolet radiation, viral infections, etc.) and intestinal dysbiosis [5].

Dendritic cells play a central role in the production of type I interferon and influence the clearance and sensitivity of nucleic acids (NAs) and immune complexes, known autoantigens in lupus (Fig. 1). In fact, endogenous and extrinsic nucleic acids are the major antigenic stimulus in SLE. Autoantibodies targeting nucleic acid-bound antigens are one of the hallmarks of the disease. Apoptosis and NETosis (NET) may be the main source of such antigens. Excessive and impaired NET degradation is associated with lupus severity, lupus nephritis, anti-dsDNA antibodies, and complement consumption.

The strategic goal of SLE treatment is to achieve a state of remission or low activity [6-8].

Despite the increase in life expectancy of patients with SLE, associated primarily with improved tactics of using glucocorticoids (GCs) and immunosuppressive drugs, the incidence of deaths remains high, and adequate control of inflammatory diseases is observed in no more than half of patients [9]. Progress in basic research contributes to a better understanding of the pathogenesis of SLE and provides a conceptual basis for the development of new approaches to the pharmacotherapy of SLE [8, 10-11].

Diagnostics

In clinical practice, clinical complaints and manifestations in combination with hematological and immunological disorders are assessed to diagnose SLE [12]

In 2012, the SLICC/ACR diagnostic criteria for SLE were developed: the diagnosis is considered established if 4 criteria are present, of which one criterion must be clinical and the other immunological.

The EULAR/ACR (2019) [13] criteria are used to classify SLE, with sensitivity and specificity ranging from 96.1% to 93.4% [14].

The role of T and B lymphocytes in the pathogenesis of SLE

The causes of SLE in adults can vary, including genetics, hormonal imbalances, past infection, and environmental factors. Often in SLE there is an increased circulation of apoptotic bodies formed after cell death. The engulfment of cell bodies by dendritic or B cells can result in the presentation of self-antigens on their surface in the MHC class II complex, leading to T cell destruction and increased inflammation.

Influence of enviromental factors (smoking, dust, silica, UV light, infections...)

Increased apoptotic cell debris

\ »

NeutrOphill NETosis

Tolerance defect

*

auto-ab t

C

/

Clearance defect

Immune complex: NK

NK-binding proteins antinuclear antibodies

Dendritic cell activation, maturation, antigen presentation, IFNa

cytokine production |FNa

Inflammation and organ damage

T-cell activation, antigen presentation, cytokine production, T-B cell co-stimulation

Fig. 1. Development of systemic lupus erythematosus

A study of 41 patients with active SLE and 101 healthy donors showed that the proportion of both CD4+CD28- and CD8+CD38+HLADR+ T cells with effector activity was significantly increased in SLE [15]. There is a shift toward a Th1716 inflammatory response with a decrease in the proportion of Tregs [16, 17].

Increased levels of expression of interferon-induced genes or type I interferon "signature" are found in the mononuclear fraction of blood, which confirms the key role of the innate immune system in the pathogenesis of SLE [18,19]. An increased type I interferon (IFN) signature has been reported to be found in approximately 75% of adult patients and 90% of pediatric patients [20].

The role of interferons in the development of the disease

Recently, special attention has been paid to the regulation of interferon production in SLE [12, 21, 22].

Interferon is a cytokine produced under normal conditions in response to viral infection and has effects such as regulation of immunity, antiviral and antitumor activity. Depending on the sequence of the first protein, the cognate receptor, the gene locus and the cell type responsible for its production, IFN is mainly classified into three types.

- Type I IFN (IFN-a and IFN-p, -e, -k and -w);

- IFN type II (IFN-y);

- IFN type III (IFN-A).

Many studies have shown the phenomenon of IFN-a dominance in SLE, but there is evidence that the IFN-y signature may occur in the early stages of SLE and play an important role in the development of lupus nephritis [23] and, in general, IFN-y levels are higher in the serum of patients with SLE than in healthy people [24, 25], and the pattern is that there is an abnormal accumulation of IFN-y long before the diagnosis of SLE and before the appearance of autoantibodies and IFN-a.

IFN-y levels and their gene boundaries have also been shown to increase with type I IFN activation in SLE patients [26, 27].

IFN-y is a pleiotropic type II IFN that is primarily produced by effector Th1 CD4+ T cells, cytotoxic CD8+ T cells and NK cells and to a lesser extent by other cell types such as dendritic cells (DCs), macrophages and B cells [28]. IFN-y binds to IFN-y receptors (IFNG-R), which is expressed in most cells and activates Janus kinase 1 (JAK1) and JAK2 in canonical pathway, that lead to phosphorylation of STAT1 homodimers and binding to the IFN-y activation site (GAS) for gene transcription [29]. Moreover, IFN-y may also play a role in signal transduction through non-canonical pathways. There is overlap (crosstalk) between type I and type II inducible genes, and signaling pathways may be shared between them. Each type of interferon induces the production of the other, which ultimately leads to stimulation from the other side and a mixed signature [29].

IFN-a is a pleiotropic cytokine related to type I IFN that is widely used in patients with certain risk factors and viral diseases. IFN-a can influence tumor cell functions through several principles. In addition, these cytokines can mediate the differentiation and activity of host immune cells.

Type I IFN is critical. At least 10% of the genes of the human body take part for rergulation IFN type I, the expression of which depends on the cell type, cellular distribution of receptors and the nature of activation stimuli [30]. At the same time, against a viral background, the controlled synthesis of type I IFN is important in maintaining immune homeostasis by inducing the differentiation of B cells into plasma cells, synthesizing antiviral antibodies and generating B regulatory cells.

Plasmacytoid dendritic cells (pDCs) are the focus of attention in SLE [31]. Although almost all cells containing a nucleus are capable of synthesizing and activating type I IFN, its main source is pDCs, which generate it 1000 times more powerfully than other cells. Each pDC can produce up to 109 IFN-a molecules in 12 hours. This fact, as well as the unevenness of IFN-a compared to IFN-p in the blood in SLE, confirms that pDCs are the main cellular source of IFN-a in SLE. Accordingly, pDC deficiency has been shown to ameliorate disease in mouse models [32, 33]. Although other cell types, including macrophages and fibroblasts, are also known types of IFN I, these cells exclusively synthesize IFN-p. However, isolation of IFN-a-producing PDCs from the blood and tissues of SLE patients remains stringent.

The leading mechanism of activation of type I IFN synthesis in SLE is associated with impaired nucleic acid (NA) clearance.

Type I IFN production primarily triggers the activation of NK-binding receptors, which are released from medical apoptotic and non-totic (NET) cells. The NK-binding receptor group includes endosomal toll-like receptors (TLRs) 3, 4, 7, and 9, cytosolic sensor cyclic GMP-AMP synthase (cGAS), and RNA sensor RIG-I-like receptors (RLRs)-MAVS[34]. Under normal conditions, these NK sensing pathways are tightly regulated and create the requirement for a normal antiviral response [34, 35], but many patients with SLE have chronic hyperactivity of these pathways. NCs themselves are capable of producing IFN, and can also be included in the so-called "interferonogenic" immune complexes (IC). Interferonogenic IC means complexes consisting of NK, NK-binding proteins and antinuclear antibodies.

Impaired clearance and the formation of complexes in the form of the NETs method is very typical of SLE, as well as a weakening of the function of extracellular DNase I. In turn, NK and IR, binding to TLR7 and TLR9, localized in the endosomes of the PDK and induce the synthesis of type I IFN (Fig. 2). The role of TLR7 in SLE is well conserved, as its overexpression is associated with a hard form of lupus in mice, and inhibition of TLR7 is protective [36].

Additional stimuli for the synthesis of type I IFN are mitochondrial DNA, a complex consisting of the cationic antimicrobial peptide LL37 and DNA, and the HMGB1 protein (chromosomal high mobility group block protein 1).

Study of interferons and interferon signatures in the clinic

Highly sensitive methods for determining IFN-a itself in blood serum have been developed, the results of which generally correlate with the parameters of gene expression of IFN type I [34, 37].

In all studies, the effectiveness of type I IFN overproduction is based on the analysis of interferon signals [38] by the expression of various genes (IFI27, IFI44, IFI44L, RSAD2, etc.) using PCR recently. Other approaches to measure the interferon signature include microarray technologies and the highly sensitive NanoString system using probes, which allow analysis of modern genes [39].

Since hyperactivation of the type I IFN signaling system is a feature not only of SLE, routine development of assessments of IFN signaling is also being carried out in Russia [40-42]. A multiparameter diagnostic test system has been patented, which can be used to determine the levels of mRNA of the human RIG-1, IFIT-1, IFIH-1 genes in a biological sample [43].

The question of the necessity and sufficient set of genes remains unresolved; expression should be assessed, as well as a unified method for calculating the interferon index.

NETs (neutrophill extracellular traps); Apoptosis

Plasmacytoid DC

Cell death

. *

Interferonogenic immune complex: / NK

< NK-binding proteins V antinuclear antibodies

Fig. 2. Pattern of type I interferon production

IFNa

Should be emphasized that the results of methods for determining the interferon signature depends on material (whole blood, cell population) and quantitative type I IFN genes. In addition, patterns of gene expression induced by IFN types I, II and III are observed. There is evidence that the expression of some IFN-responsive genes may reflect SLE activity [44, 45], but this has not been confirmed in more recent studies [46]. It has been established that overproduction of IFN-a is associated with the detection of "lupus" autoantibodies, primarily to RNA-containing antigens [47-51], but their level does not correlate with the activity of SLE and does not change during therapy.

It is noteworthy that in SLE, natural autoantibodies to type I IFN are present, as a rule, in patients with low disease activity [52], and in COVID-19, on the contrary, in patients with severe infection [53]. These data reflect the primary role of type I IFN in the development of an effective antiviral immune response in patients with COVID-19 and provide the basis for deciphering the relationship between viral infection and autoimmunity in general.

It is noteworthy that hyperproduction of type I IFN in SLE is associated with the development of a wide range of diseases, on the one hand, observed during viral infections, and on the other, characteristic of SLE. These include fever, weakness, myalgia, arthralgia, headaches, pleurisy, as well as hematological disorders (anemia, neutropenia, lymphopenia, thrombocytopenia), damage to the skin, joints, lower extremities and nervous system (CNS). For example, when study target organ biopsy obtained from patients with SLE, an increased IFN signature was found to correlate with skin lesion activity [54, 55], exist in synovial tissue from patients with arthritis [56], in kidney tissue from lupus nephritis [57], and in the cerebrospinal fluid in patients with central nervous system lesions [58].

The recent SPOCS study (SLE Prospective Observational Cohort Study) characterized patients with high disease activity and/ or elevated type I interferon levels. As shown, patients with high levels of IFN symptoms are, firstly, younger in age and diagnosed later.And secondly, in such patients there was a predominance of cutaneous, immunological and hematological manifestations compared with patients with low levels of type I IFN [59].

Interferons in the pharmacotherapy of SLE

A body of evidence obtained from basic and medical research provides grounds for the development of new pharmacotherapy options for SLE using monoclonal antibodies (mAbs) that block the activity of type I IFN or its receptors [60-62] (Fig. 3).

Several biologies are currently used to block type I IFN in SLE. The main ones include:

1. Anakinra: A recombinant interleukin-1 (IL1) receptor antagonist that may inhibit interferon-activated signaling pathways. Clinical data on its effectiveness in SLE are limited, but some studies show improvement in patients with refractory forms of the disease. The response to therapy may be variable.

2. Anaxifumab (Anifrolumab): Monoclonal antibody that blocks type I interferon receptors (IFNAR1 (Interferon receptor alpha and beta subunit 1)). Anaxifumab is intended to reduce the activity of the type I interferon signaling pathway. In phase III studies (TULP-1 and TULP-2), anaxifumab demonstrated improvement in patients with SLE. In TULIP-2, improvement in SRI-4 (systemic lupus erythematosus responder index) was observed in 47.8% of patients receiving anaxifumab, compared with 31.5% in the placebo group.

3. Belimumab: Although belimumab is primarily aimed at inhibiting B cells, it also affects signaling pathways associated with interferons and may reduce their activity. Belimumab has received widespread acceptance and approval for the treatment of SLE. In phase III clinical trials (BLISS-52 and BLISS-76), approximately 43-58% of patients experienced further improvement compared to 34-44% in the placebo group.

Among these drugs, anifrolumab (AFM) [63, 64] and belimumab [65] occupy a special place.

AFM induces the internalization of IFNAR1, thereby reducing its membrane expression, which is necessary for the creation of a multifunctional IFN receptor consisting of two subunits — IFNAR1 and IFNAR2. The APM molecule is specially designed with a triple mutation L234F/L235E/P331S in the immunoglobulin chain gene, which leads to a decrease in the connection of APM molecules with membrane cellular Fc receptors. As a result, when introduced into the human body, APM does not have the ability to induce antibody-dependent and complement-dependent cellular cytotoxicity, which reduces the risk of developing infusion phenomena.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

When studying the principle of action of APM, it was shown that blockade of IFNAR1-mediated signaling is associated with a wide range of molecular and cellular effects: suppression of the expression of IFN-induced genes; phosphorylation of STAT I (signal transducer and activator of transcription); synthesis of type I IFN and inflammatory cytokines; overexpression of costimulatory molecules on the pDC membrane; pDC and B cell differentiation [66]. There was a decrease in TRAIL (TNF-related apoptosis-inducing ligand) load, which was previously found to increase in SLE [67], as well as IP-10 (interferon gamma-

IF Na

lFNAR-1

JAK1

IFNAR-2

TYK2

r

J L

STAT1 STAT2 IGSF3 { P-

rt

IRF9

STAT1

STAT1

STAT3

STAT3

signaling

SYN3A

Inhibitor of proinflammatory

signaling Nucleus

Antiviral immune response GAS, MX1

Proinflammatory immune response IRF1, CXCL9

Fig. 3. Type I IFN signaling pathway: IFGF3 — IFN-stimulated factor 3, ISRE — IFN-stlmulated response, IFR9 — IFN regulatory factor 9, GAS — gamma-activated sequence, SIN3A-SIN3 — transcription regulator homolog, CXCL9 — llgand 9 CXC chemoklnes, JAD — 2~5~-ollgoadenylate synthesis, MX1 — IFN-lnduced GTP-binding protein 1, P — phosphate [66]

induced protein 10) and progranulin (regulate the recruitment of immune cells in the zone), associated with activity SKV [68, 69].

Other consequences of AFM include normalization of the B cell cytokine chain, such as BAFF (B cell activating factor belonging to the TNF family), the synthesis of which is altered by IFN type I [70]. When treating AFM in patients with SLE, rapid normalization of the level of lymphocytes, neultrophy, monocytes and platelets, circulating CD4+ and CD8+ T cells and memory B cells is observed. Notably, the anti-BAFF monoclonal antibody (belimumab) used in SLE [65] causes a decrease in naive and switched B cells but does not affect B cell memory [71]. There was a tendency towards normalization of the level of antibodies to double-stranded DNA (anti-dsDNA) and complement components (C3, C4, CH50).

CONCLUSION

In addition, in the vast majority of patients treated for SLE, AFM was associated with suppression of basal expression of

interferon signatures. Thus, after 24 weeks, the average level of suppression index of 21 genes characteristic of the signature was 89.7% at a dose of APM 300 mg after 4 weeks and 91.7% with a dose of AFM 1000 mg in women for 4 weeks. However, suppression of type I IFN signatures in patients with initial overexpression of these genes was detected after 12 weeks and persisted for 52 weeks [72] In addition to standard individual therapy, AFM reduces the need for corticosteroids and reduces the activity of lupus, especially skin and musculoskeletal diseases, and has an acceptable safety profile [73].

The data obtained to date indicate the expediency of studying the level of expression of IFN-induced genes, for example, using PCR test systems, both in the case of SLE and in some other systemic inflammatory diseases. Such a study should improve the stratification of patients with SLE, prompt replacement of other therapeutic approaches with targeted blockade of IFN type I for patients with a high IFN signature, and expand the range of interventions for the use of such therapy.

References

1. Popkova TV, Panafidina TA, Gerasimova EV, Lila AM. Cistemnaja krasnaja volchanka: diagnostika, lechenie, monitoring dlja specialistov pervichnogo zvena: vrachej-terapevtov, vrachej obshhej praktiki. Metodicheskie rekomendacii FGBU Nauchno-issledovatel'skij institut revmatologii imeni V. A. Nasonovoj. 2022. Russian.

2. Tian J, Zhang D, Yao X, Huang Y, Lu, Q. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis. 2023; (82): 351-56.

3. Izmirly PM, et al. Incidence rates of systemic lupus erythematosus in the USA: estimates from a meta-analysis of the Centers for

Disease Control and Prevention national lupus registries. Lupus Sci Med. 2021; (8): e000614.

4. Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016; 2: 16039

5. Kiriakidou M, Ching CL. Systemic Lupus Erythematosus. Ann Intern Med. 2020; (172): ITC81-ITC96.

6. Fanouriakis A, Bertsias G. Changing paradigms in the treatment of systemic lupus erythematosus. Lupus Sci Med. 2019; (6): e000310.

7. Durcan L, O'Dwyer T, Petri, M. Management strategies and future directions for systemic lupus erythematosus in adults. The Lancet.

2019; (393): 2332-43.

8. Solovev SK, Aseeva EA, Popkova TV, Lila AM, Mazurov VI, Nasonov EL. Sistemnaja krasnaja volchanka: novye gorizonty diagnostiki i terapii. Nauchno-prakticheskaja revmatologija. 2020; 58 (1): 5-14. Russian.

9. Jorge AM, Lu N, Zhang Y, Rai SK, Choi HK. Unchanging premature mortality trends in systemic lupus erythematosus: a general population-based study (1999-2014). Rheumatology. 2018; (57): 337-44.

10. Gatto M, Zen M, laccarino L, Doria A. New therapeutic strategies in systemic lupus erythematosus management. Nat Rev Rheumatol. 2019; (15): 30-48.

11. Dörner T, Furie R. Novel paradigms in systemic lupus erythematosus. The Lancet. 2019; (393): 2344-58.

12. Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic diseases associated with type i interferon: new evidence. Rheumatology Science and Practice. 2019; (57): 452-61.

13. Aringer M, et al. 2019 European League Against Rheumatism/ American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019; (78): 1151-9.

14. Siegel CH, Sammaritano LR. Systemic Lupus Erythematosus. JAMA. 2024; (331): 1480.

15. Yuan S, et al. Phenotypical changes and clinical significance of CD4+/CD8+ T cells in SLE. Lupus Sci Med. 2022; (9): e000660.

16. Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Front Immunol. 2020; (11).

17. Tsai Y-G, et al. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus. Front Immunol. 2023; (14).

18. Baechler EC, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proceedings of the National Academy of Sciences. 2003; (100): 2610-5.

19. Kirou KA, et al. Coordinate overexpression of interferon-a-induced genes in systemic lupus erythematosus. Arthritis Rheum. 2004; (50): 3958-67.

20. Londe AC, Fernandez-Ruiz R, Julio PR, Appenzeller S, Niewold TB. Type I Interferons in Autoimmunity: Implications in Clinical Phenotypes and Treatment Response. J Rheumatol. 2023; (50): 1103-13.

21. Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. Annual Review of Pathology: Mechanisms of Disease. 2019; (14): 369-93.

22. Rönnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci Med. 2019; (6): e000270.

23. Fava A, et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-y response gradient in lupus nephritis. JCI Insight. 2020; (5)

24. Viallard JF, et al. Th1 (IL-2, interferon-gamma (IFN-y)) and Th2 (IL-10, IL-4) cytokine production by peripheral blood mononuclear cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. 2001; (115): 189-95.

25. Yang B-C, Wang Y-S, Lin L-C, Liu M-F. Induction of Apoptosis and Cytokine Gene Expression in T-ell Lines by Sera of Patients with Systemic Lupus Erythematosus. Scand J Immunol. 1997; (45): 96-102.

26. Greene JA, DeVecchio JL, Gould MP, Auletta JJ, Heinzel FP. In vivo and In vitro Regulation of Type I IFN Synthesis by Synergistic Effects of CD40 and Type II IFN. The Journal of Immunology. 2006; (176): 5995-6003.

27. Weihua X, Ling W, Kalvakolanu D. Regulation of interferon-a/ß-stimulated gene expression through the gamma-activated transcriptional element. Antiviral Res. 1990; (40): 145-53.

28. Tan EM, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982; (25): 1271-7.

29. Hochberg MC. Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997; (40): 1725.

30. Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? Annu Rev Virol. 2019; (6): 567-84.

31. Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity. 2019; (50): 37-50.

32. Baccala R, et al. Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus. Proceedings of the National Academy of Sciences. 2013; (110): 2940-5.

33. Sisirak V, et al. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. Journal of Experimental Medicine. 2014; (211): 1969-76.

34. Crowl JT, Gray EE, Pestal K, Volkman HE, Stetson DB. Intracellular Nucleic Acid Detection in Autoimmunity. Annu Rev Immunol. 2017; (35): 313-36.

35. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol. 2016; (16): 566-80.

36. Kono DH, Baccala R, Theofilopoulos AN. TLRs and interferons: a central paradigm in autoimmunity. Curr Opin Immunol. 2013; (25): 720-27.

37. Mathian A, et al. Ultrasensitive serum interferon-a quantification during SLE remission identifies patients at risk for relapse. Ann Rheum Dis. 2019; (78): 1669-76.

38. Miyamoto, Takayuki et al. Assessment of type I interferon signatures in undifferentiated inflammatory diseases: A Japanese multicenter experience. Frontiers in immunology, 2022; (13): 905960.

39. Kim H, et al. Development of a Validated Interferon Score Using NanoString Technology. Journal of Interferon & Cytokine Research. 2018; (38): 171-85.

40. Suspicyn EN, Raupov RK, Kuchinkskaja EM, Kostik MM. Analiz profilja jekspressii interferon-zavisimyh genov dlja differencial'noj diagnostiki zabolevanij immunnoj sistemy (obzor literatury). Klinicheskaja Laboratornaja Diagnostika. 2021; 279-84. Russian.

41. Raupov R, Suspitsin E, Preobrazhenskaya EV, Kostik M. Interferon type I signature associated with skin disease in juvenile dermatomyositis. Front Med (Lausanne). 2024; (11).

42. Suspitsin EN, Raupov RK, Kuchinskaya EM, Kostik MM. Analysis of interferon type I signature for differential&#13; diagnosis of diseases of the immune system (review of literature). Russian Clinical Laboratory Diagnostics. 2021; (66): 279-84.

43. Vasin AV, Plotnikova MA, Klotchenko SA, Gjulihandanova NE, Lozhkov AA, avtory; FGAOU VO «SpbPU», patentoobladatel'. Mnogoparametricheskaja diagnosticheskaja test-sistema dlja kolichestvennogo opredelenija urovnja mrnk genov rig-1, if it -1, ifih-1 cheloveka. Patent «RU 2782428». Russian.

44. Banchereau R, et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell. 2016; (165): 551-65.

45. Chiche L; et al. Modular Transcriptional Repertoire Analyses of Adults With Systemic Lupus Erythematosus Reveal Distinct Type I and Type II Interferon Signatures. Arthritis & Rheumatolog. 2014; (66): 1583-95.

46. Petri M, et al. Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med Genomics. 2019; (12): 4.

47. Weckerle CE, et al. Network analysis of associations between serum interferon-a activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011; (63): 1044-53.

48. Feng X, et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum. 2006; (54): 2951-62.

49. Wither J, et al. Presence of an interferon signature in individuals who are anti-nuclear antibody positive lacking a systemic autoimmune rheumatic disease diagnosis. Arthritis Res Ther. 2017; (19): 41.

50. Hua J, Kirou K, Lee C, Crow MK. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 2006; (54): 1906-16.

51. Kennedy WP, et al. Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE. Lupus Sci Med. 2015; (2): e000080-e000080.

52. Bradford HF, et al. Inactive disease in patients with lupus is linked to autoantibodies to type I interferons that normalize blood IFNa and B cell subsets. Cell Rep Med. 2023; (4): 100894.

53. Bastard P, et al. Autoantibodies against type I IFNs in patients with

life-threatening COVID-19. Science. 2020; (370).

54. Sarkar MK, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018; (77): 1653-64.

55. Braunstein I, Klein R, Okawa J, Werth VP. The interferonregulated gene signature is elevated in subacute cutaneous lupus erythematosus and discoid lupus erythematosus and correlates with the cutaneous lupus area and severity index score. British Journal of Dermatology. 2012; (166): 971-5.

56. Toukap AN, et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 2007; (56): 1579-88.

57. Castellano G, et al. Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res Ther. 2015; (17): 72.

58. Shiozawa S, Kuroki Y, Kim M, Hirohata S, Ogino T. Interferonalpha in lupus psychosis. Arthritis Rheum. 1992; (35): 417-22.

59. Arnaud L, et al. Burden of systemic lupus erythematosus in clinical practice: baseline data from the SLE Prospective Observational Cohort Study (SPOCS) by interferon gene signature. Lupus Sci Med. 2023; (10): e001032.

60. Paredes JL, Niewold TB. Type I interferon antagonists in clinical development for lupus. Expert Opin Investig Drugs. 2020; (29): 1025-41.

61. Chaichian Y, Strand V. Interferon-directed therapies for the treatment of systemic lupus erythematosus: a critical update. Clin Rheumatol. 2021; (40): 3027-37.

62. Goulden B, Isenberg D. Anti-IFNaR Mabs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther. 2021; (21): 519-28.

63. Peng L, Oganesyan V, Wu H, Dall'Acqua WF, Damschroder MM. Molecular basis for antagonistic activity of anifrolumab, an anti-

interferon-a receptor 1 antibody. Mabs. 2015; (7): 428-39.

64. Riggs JM, et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med. 2018; (5): e000261.

65. Nasonov EL, Popkova TV, Lila AM. Belimumab v lechenii sistemnoj krasnoj volchanki: 20 let fundamental'nyh issledovanij, 10 let klinicheskoj praktiki. Nauchno-prakticheskaja revmatologija. 2021; 59 (4): 367-83. Russian.

66. Casey KA, et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci Med. 2018; (5): e000286.

67. Lub-de Hooge, M. N. Soluble TRAIL concentrations are raised in patients with systemic lupus erythematosus. Ann Rheum Dis. 2005; (64): 854-8.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

68. Tanaka A, et al. Serum progranulin levels are elevated in patients with systemic lupus erythematosus, reflecting disease activity. Arthritis Res Ther. 2012; (14): R244.

69. Bauer JW, et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: A validation study. Arthritis Rheum. 2009; (60): 3098-107.

70. Sjöstrand M, et al. The Expression of BAFF Is Controlled by IRF Transcription Factors. The Journal of Immunology. 2016; (196): 91-96.

71. Jacobi AM, et al. Effect of long-term belimumab treatment on b cells in systemic lupus erythematosus: Extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 2010; (62): 201-10.

72. Furie RA, et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol. 2019; (1): e208-e219.

73. Loncharich MF, Robertson I. Anifrolumab in systemic lupus erythematosus. Drugs of Today. 2023; (59): 53-61.

Литература

1. Попкова Т. В, Панафидина Т. А., Герасимова Е. В., Лила А. М. Системная красная волчанка: диагностика, лечение, мониторинг для специалистов первичного звена: врачей-терапевтов, врачей общей практики. Методические рекомендации ФГБУ Научно-исследовательский институт ревматологии имени В. А. Насоновой. 2022.

2. Tian J, Zhang D, Yao X, Huang Y, Lu, Q. Global epidemiology of systemic lupus erythematosus: a comprehensive systematic analysis and modelling study. Ann Rheum Dis. 2023; (82): 351-56.

3. Izmirly PM, et al. Incidence rates of systemic lupus erythematosus in the USA: estimates from a meta-analysis of the Centers for Disease Control and Prevention national lupus registries. Lupus Sci Med. 2021; (8): e000614.

4. Kaul A, Gordon C, Crow MK, et al. Systemic lupus erythematosus. Nat Rev Dis Primers. 2016; 2: 16039

5. Kiriakidou M, Ching CL. Systemic Lupus Erythematosus. Ann Intern Med. 2020; (172): ITC81-ITC96.

6. Fanouriakis A, Bertsias G. Changing paradigms in the treatment of systemic lupus erythematosus. Lupus Sci Med. 2019; (6): e000310.

7. Durcan L, O'Dwyer T, Petri, M. Management strategies and future directions for systemic lupus erythematosus in adults. The Lancet. 2019; (393): 2332-43.

8. Соловьев С. К., Асеева Е. А., Попкова Т. В., Лила А. М., Мазуров В. И., Насонов Е. Л. Системная красная волчанка: новые горизонты диагностики и терапии. Научно-практическая ревматология. 2020; 58 (1): 5-14.

9. Jorge AM, Lu N, Zhang Y, Rai SK, Choi HK. Unchanging premature mortality trends in systemic lupus erythematosus: a general population-based study (1999-2014). Rheumatology. 2018; (57): 337-44.

10. Gatto M, Zen M, Iaccarino L, Doria A. New therapeutic strategies in systemic lupus erythematosus management. Nat Rev Rheumatol. 2019; (15): 30-48.

11. Dörner T, Furie R. Novel paradigms in systemic lupus erythematosus. The Lancet. 2019; (393): 2344-58.

12. Nasonov EL, Avdeeva AS. Immunoinflammatory rheumatic

diseases associated with type i interferon: new evidence. Rheumatology Science and Practice. 2019; (57): 452-61.

13. Aringer M, et al. 2019 European League Against Rheumatism/ American College of Rheumatology classification criteria for systemic lupus erythematosus. Ann Rheum Dis. 2019; (78): 1151-9.

14. Siegel CH, Sammaritano LR. Systemic Lupus Erythematosus. JAMA. 2024; (331): 1480.

15. Yuan S, et al. Phenotypical changes and clinical significance of CD4+/CD8+ T cells in SLE. Lupus Sci Med. 2022; (9): e000660.

16. Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Front Immunol. 2020; (11).

17. Tsai Y-G, et al. Pathogenesis and novel therapeutics of regulatory T cell subsets and interleukin-2 therapy in systemic lupus erythematosus. Front Immunol. 2023; (14).

18. Baechler EC, et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proceedings of the National Academy of Sciences. 2003; (100): 2610-5.

19. Kirou KA, et al. Coordinate overexpression of interferon-a-induced genes in systemic lupus erythematosus. Arthritis Rheum. 2004; (50): 3958-67.

20. Londe AC, Fernandez-Ruiz R, Julio PR, Appenzeller S, Niewold TB. Type I Interferons in Autoimmunity: Implications in Clinical Phenotypes and Treatment Response. J Rheumatol. 2023; (50): 1103-13.

21. Crow MK, Olferiev M, Kirou KA. Type I Interferons in Autoimmune Disease. Annual Review of Pathology: Mechanisms of Disease. 2019; (14): 369-93.

22. Rönnblom L, Leonard D. Interferon pathway in SLE: one key to unlocking the mystery of the disease. Lupus Sci Med. 2019; (6): e000270.

23. Fava A, et al. Integrated urine proteomics and renal single-cell genomics identify an IFN-y response gradient in lupus nephritis. JCI Insight. 2020; (5)

24. Viallard JF, et al. Th1 (IL-2, interferon-gamma (IFN-y)) and Th2 (IL-10, IL-4) cytokine production by peripheral blood mononuclear

cells (PBMC) from patients with systemic lupus erythematosus (SLE). Clin Exp Immunol. 2001; (115): 189-95.

25. Yang B-C, Wang Y-S, Lin L-C, Liu M-F. Induction of Apoptosis and Cytokine Gene Expression in T-ell Lines by Sera of Patients with Systemic Lupus Erythematosus. Scand J Immunol. 1997; (45): 96-102.

26. Greene JA, DeVecchio JL, Gould MP, Auletta JJ, Heinzel FP. In vivo and In vitro Regulation of Type I IFN Synthesis by Synergistic Effects of CD40 and Type II IFN. The Journal of Immunology. 2006; (176): 5995-6003.

27. Weihua X, Ling W, Kalvakolanu D. Regulation of interferon-a/p-stimulated gene expression through the gamma-activated transcriptional element. Antiviral Res. 1990; (40): 145-53.

28. Tan EM, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982; (25): 1271-7.

29. Hochberg MC. Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997; (40): 1725.

30. Schoggins JW. Interferon-Stimulated Genes: What Do They All Do? Annu Rev Virol. 2019; (6): 567-84.

31. Reizis B. Plasmacytoid Dendritic Cells: Development, Regulation, and Function. Immunity. 2019; (50): 37-50.

32. Baccala R, et al. Essential requirement for IRF8 and SLC15A4 implicates plasmacytoid dendritic cells in the pathogenesis of lupus. Proceedings of the National Academy of Sciences. 2013; (110): 2940-5.

33. Sisirak V, et al. Genetic evidence for the role of plasmacytoid dendritic cells in systemic lupus erythematosus. Journal of Experimental Medicine. 2014; (211): 1969-76.

34. Crowl JT, Gray EE, Pestal K, Volkman HE, Stetson DB. Intracellular Nucleic Acid Detection in Autoimmunity. Annu Rev Immunol. 2017; (35): 313-36.

35. Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol. 2016; (16): 566-80.

36. Kono DH, Baccala R, Theofilopoulos AN. TLRs and interferons: a central paradigm in autoimmunity. Curr Opin Immunol. 2013; (25): 720-27.

37. Mathian A, et al. Ultrasensitive serum interferon-a quantification during SLE remission identifies patients at risk for relapse. Ann Rheum Dis. 2019; (78): 1669-76.

38. Miyamoto, Takayuki et al. Assessment of type I interferon signatures in undifferentiated inflammatory diseases: A Japanese multicenter experience. Frontiers in immunology, 2022; (13): 905960.

39. Kim H, et al. Development of a Validated Interferon Score Using NanoString Technology. Journal of Interferon & Cytokine Research. 2018; (38): 171-85.

40. Суспицын Е. Н., Раупов Р. К., Кучинкская Е. М. & Костик М. М. Анализ профиля экспрессии интерферон-зависимых генов для дифференциальной диагностики заболеваний иммунной системы (обзор литературы). Клиническая Лабораторная Диагностика. 2021; 279-84.

41. Raupov R, Suspitsin E, Preobrazhenskaya EV, Kostik M. Interferon type I signature associated with skin disease in juvenile dermatomyositis. Front Med (Lausanne). 2024; (11).

42. Suspitsin EN, Raupov RK, Kuchinskaya EM, Kostik MM. Analysis of interferon type I signature for differential&#13; diagnosis of diseases of the immune system (review of literature). Russian Clinical Laboratory Diagnostics. 2021; (66): 279-84.

43. Васин А. В., Плотникова М. А., Клотченко С. А., Гюлиханданова Н. Е., Ложков А. А., авторы; ФГАОУ ВО «СпбПУ», патентообладатель. Многопараметрическая диагностическая тест-система для количественного определения уровня мрнк генов rig-1, ifit-1, ifih-1 человека. Патент «RU 2782428».

44. Banchereau R, et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell. 2016; (165): 551-65.

45. Chiche L; et al. Modular Transcriptional Repertoire Analyses of Adults With Systemic Lupus Erythematosus Reveal Distinct Type I and Type II Interferon Signatures. Arthritis & Rheumatolog. 2014; (66): 1583-95.

46. Petri M, et al. Association between changes in gene signatures expression and disease activity among patients with systemic lupus erythematosus. BMC Med Genomics. 2019; (12): 4.

47. Weckerle CE, et al. Network analysis of associations between serum interferon-a activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011; (63): 1044-53.

48. Feng X, et al. Association of increased interferon-inducible gene expression with disease activity and lupus nephritis in patients with systemic lupus erythematosus. Arthritis Rheum. 2006; (54): 2951-62.

49. Wither J, et al. Presence of an interferon signature in individuals who are anti-nuclear antibody positive lacking a systemic autoimmune rheumatic disease diagnosis. Arthritis Res Ther. 2017; (19): 41.

50. Hua J, Kirou K, Lee C, Crow MK. Functional assay of type I interferon in systemic lupus erythematosus plasma and association with anti-RNA binding protein autoantibodies. Arthritis Rheum. 2006; (54): 1906-16.

51. Kennedy WP, et al. Association of the interferon signature metric with serological disease manifestations but not global activity scores in multiple cohorts of patients with SLE. Lupus Sci Med. 2015; (2): e000080-e000080.

52. Bradford HF, et al. Inactive disease in patients with lupus is linked to autoantibodies to type I interferons that normalize blood IFNa and B cell subsets. Cell Rep Med. 2023; (4): 100894.

53. Bastard P, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020; (370).

54. Sarkar MK, et al. Photosensitivity and type I IFN responses in cutaneous lupus are driven by epidermal-derived interferon kappa. Ann Rheum Dis. 2018; (77): 1653-64.

55. Braunstein I, Klein R, Okawa J, Werth VP. The interferonregulated gene signature is elevated in subacute cutaneous lupus erythematosus and discoid lupus erythematosus and correlates with the cutaneous lupus area and severity index score. British Journal of Dermatology. 2012; (166): 971-5.

56. Toukap AN, et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 2007; (56): 1579-88.

57. Castellano G, et al. Local synthesis of interferon-alpha in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res Ther. 2015; (17): 72.

58. Shiozawa S, Kuroki Y, Kim M, Hirohata S, Ogino T. Interferonalpha in lupus psychosis. Arthritis Rheum. 1992; (35): 417-22.

59. Arnaud L, et al. Burden of systemic lupus erythematosus in clinical practice: baseline data from the SLE Prospective Observational Cohort Study (SPOCS) by interferon gene signature. Lupus Sci Med. 2023; (10): e001032.

60. Paredes JL, Niewold TB. Type I interferon antagonists in clinical development for lupus. Expert Opin Investig Drugs. 2020; (29): 1025-41.

61. Chaichian Y, Strand V. Interferon-directed therapies for the treatment of systemic lupus erythematosus: a critical update. Clin Rheumatol. 2021; (40): 3027-37.

62. Goulden B, Isenberg D. Anti-IFNaR Mabs for the treatment of systemic lupus erythematosus. Expert Opin Biol Ther. 2021; (21): 519-28.

63. Peng L, Oganesyan V, Wu H, Dall'Acqua WF, Damschroder MM. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-a receptor 1 antibody. Mabs. 2015; (7): 428-39.

64. Riggs JM, et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci Med. 2018; (5): e000261.

65. Насонов Е. Л., Попкова Т. В., Лила А. М. Белимумаб в лечении системной красной волчанки: 20 лет фундаментальных исследований, 10 лет клинической практики. Научно-практическая ревматология. 2021; 59 (4): 367-83.

66. Casey KA, et al. Type I interferon receptor blockade with anifrolumab corrects innate and adaptive immune perturbations of SLE. Lupus Sci Med. 2018; (5): e000286.

67. Lub-de Hooge, M. N. Soluble TRAIL concentrations are raised in patients with systemic lupus erythematosus. Ann Rheum Dis. 2005; (64): 854-8.

68. Tanaka A, et al. Serum progranulin levels are elevated in patients with systemic lupus erythematosus, reflecting disease activity.

Arthritis Res Ther. 2012; (14): R244.

69. Bauer JW, et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: A validation study. Arthritis Rheum. 2009; (60): 3098-107.

70. Sjöstrand M, et al. The Expression of BAFF Is Controlled by IRF Transcription Factors. The Journal of Immunology. 2016; (196): 91-96.

71. Jacobi AM, et al. Effect of long-term belimumab treatment on b

cells in systemic lupus erythematosus: Extension of a phase II, double-blind, placebo-controlled, dose-ranging study. Arthritis Rheum. 2010; (62): 201-10.

72. Furie RA, et al. Type I interferon inhibitor anifrolumab in active systemic lupus erythematosus (TULIP-1): a randomised, controlled, phase 3 trial. Lancet Rheumatol. 2019; (1): e208-e219.

73. Loncharich MF, Robertson I. Anifrolumab in systemic lupus erythematosus. Drugs of Today. 2023; (59): 53-61.

i Надоели баннеры? Вы всегда можете отключить рекламу.