Научная статья на тему 'Interaction of natural and synthetic polyelectrolytes with bovine serum albumin'

Interaction of natural and synthetic polyelectrolytes with bovine serum albumin Текст научной статьи по специальности «Химические науки»

CC BY
63
14
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
NATURAL AND SYNTHETIC POLYELECTROLYTES / BOVINE SERUM ALBUMIN / INTERPOLYELECTROLYTE REACTIONS / ПРИРОДНЫЕ И СИНТЕТИЧЕСКИЕ ПОЛИЭЛЕКТРОЛИТЫ / БЫЧИЙ СЫВОРОТОЧНЫЙ АЛЬБУМИН / ИНТЕРПОЛИЭЛЕКТРОЛИТНЫЕ РЕАКЦИИ

Аннотация научной статьи по химическим наукам, автор научной работы — Smirnova Natalya N., Smirnov Kirill V.

Interaction of a number of natural and synthetic polyelectrolytes (PE): chitosan, poly-N,N-dimethyl-N,N-diallylammonium chloride, sodium carboxymethylcellulose and aromatic copolyamide, synthesized on the bases of dichloranhydride of isophthalic acid and two diamines (4,4’-(2,2’-sodium disulfonate)-diaminodephenyl, 4,4’-(2,2’-dicarboxylic acid)-diaminodiphenylmethyl) and bovine serum albumin (BSA) in aqueous solutions were studied. It was shown that as a result of macromolecular reactions protein-polyelectrolyte complexes (PPC) forms, stabilized mainly by electrostatic forces. To characterize their composition we used the value of parameter φ, defined as an amount of ionic groups of polyelectrolytes calculated per macromolecule of protein. Using spectrophotometry and conductometry it was established that the composition of PPC in the studied systems when components are mixed at optimal conditions corresponds to the value of φ ~30 - 90. The conditions for the existence of insoluble PPC were determined. In the case of precipitation of poly-N,N-dimethyl-N,N-diallylammonium chloride and chitosan in protein - polyelectrolyte reactions the maximum yield of the product is observed at pH ≥ 7. The introduction of sodium carboxymethylcellulose and aromatic copolyamide into the interaction with protein accompanied by shifting the range of PPC existence into the acidic region: the maximum yield of the product is observed at рН ≤ 4. The size of the formed complex particles ranges from 10 nm ([PE]/[BSA] = 0.01 - 0.05 g/g) to ~ 1.0 - 5.5 μm ([PE]/[BSA] = 0.1 - 0.35 g/g). In case of relatively short-chained aromatic copolyamide, containing significant amount of non-ionized carboxylic groups, the ratio of micron size particles is about 5%. The presence of sulfonate and carboxylic groups in the composition of copolyamide gives an additional opportunity to regulate the conversation degree in the interpolyelectrolyte reactions, thus also implying the structure and the composition of the formed complexes.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Взаимодействие природных и синтетических полиэлектролитов с бычьим сывороточным альбумином

Изучено взаимодействие в водных растворах ряда природных и синтетических полиэлектролитов (ПЭ): хитозана, поли-N,N-диметил-N,N-диаллиламмоний хлорида, натрий карбоксиметилцеллюлозы и ароматического сополиамида, синтезированного на основе дихлорангидрида изофталевой кислоты и двух диаминов 4,4'-(2,2'-дисульфонат натрия)-диаминодифенила и 4,4'-(2,2'-дикарбоновая кислота)-диаминодифенилметила и бычьего сывороточного альбумина (БСА). Показано, что в результате макромолекулярных реакций образуются белок-полиэлектролитные комплексы (БПК), стабилизированные, в основном, электростатическими силами. Для характеристики их состава использовано значение параметра φ, определяемого как количество ионных групп полиэлектролитов в расчете на макромолекулу белка. Методами спектрофотометрии и кондуктометрии установлено, что в исследованных системах при смешивании компонентов при оптимальных условиях проведения реакции образуются комплексы, состав которых соответствует φ ~ 30 - 90. Определены условия существования нерастворимых БПК. В случае участия в реакции белок - полиэлектролит поли-N,N-диметил-N,N-диаллиламмоний хлорида и хитозана максимальный выход продукта наблюдается при рН ≥ 7. Включение во взаимодействие с белком натрий карбоксиметилцеллюлозы и ароматического сополиамида сопровождается смещением диапазона существования БПК в кислую область: максимальный выход продукта наблюдается при рН ≤ 4. Размер образующихся комплексных частиц варьируется в диапазоне от 10 нм ([ПЭ]/[БСА] = 0,01 - 0,05 г/г) до 1,0 - 5,5 мкм ([ПЭ]/[БСА] = 0,1 - 0,35 г/г). В случае относительно короткоцепочечного ароматического сополиамида, содержащего значительное количество неионизованных карбоксильных групп, доля частиц микронного размера составляет около 5 %. Наличие в составе сополиамида как сульфонатных, так и карбоксильных групп открывает дополнительную возможность для регулирования степени превращения в интерполиэлектролитных реакциях, а значит структуры и состава образующихся комплексов.

Текст научной работы на тему «Interaction of natural and synthetic polyelectrolytes with bovine serum albumin»

DOI: 10.6060/ivkkt.20196207.5839

УДК: 542.9

ВЗАИМОДЕЙСТВИЕ ПРИРОДНЫХ И СИНТЕТИЧЕСКИХ ПОЛИЭЛЕКТРОЛИТОВ С БЫЧЬИМ СЫВОРОТОЧНЫМ АЛЬБУМИНОМ

Н.Н. Смирнова, К.В. Смирнов

Наталья Николаевна Смирнова *

Кафедра химии, Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, ул. Горького, 87, Владимир, Российская Федерация, 600000 E-mail: smirnovann@list.ru

Кирилл Вадимович Смирнов

Кафедра биологии и экологии, Владимирский государственный университет им. А.Г. и Н.Г. Столетовых, ул. Горького, 87, Владимир, Российская Федерация, 600000 E-mail: kirillv.smirnov@yandex.ru

Изучено взаимодействие в водных растворах ряда природных и синтетических полиэлектролитов (ПЭ): хитозана, поли-М,М-диметил-М,М-диаллиламмоний хлорида, натрий карбоксиметилцеллюлозы и ароматического сополиамида, синтезированного на основе ди-хлорангидрида изофталевой кислоты и двух диаминов 4,4'-(2,2'-дисульфонат натрия)-диа-минодифенила и 4,4'-(2,2'-дикарбоновая кислота)-диаминодифенилметила и бычьего сывороточного альбумина (БСА). Показано, что в результате макромолекулярных реакций образуются белок-полиэлектролитные комплексы (БПК), стабилизированные, в основном, электростатическими силами. Для характеристики их состава использовано значение параметра ф, определяемого как количество ионных групп полиэлектролитов в расчете на макромолекулу белка. Методами спектрофотометрии и кондуктометрии установлено, что в исследованных системах при смешивании компонентов при оптимальных условиях проведения реакции образуются комплексы, состав которых соответствует ф ~ 30 - 90. Определены условия существования нерастворимых БПК. В случае участия в реакции белок - полиэлектролит поли-М,М-диметил-М,М-диаллиламмоний хлорида и хитозана максимальный выход продукта наблюдается при рН > 7. Включение во взаимодействие с белком натрий карбоксиметилцеллюлозы и ароматического сополиамида сопровождается смещением диапазона существования БПК в кислую область: максимальный выход продукта наблюдается при рН < 4. Размер образующихся комплексных частиц варьируется в диапазоне от 10 нм ([ПЭ]/[БСА] = 0,01 - 0,05 г/г) до 1,0 - 5,5 мкм ([ПЭ]/[БСА] = 0,1 - 0,35 г/г). В случае относительно короткоцепочечного ароматического сополиамида, содержащего значительное количество неионизованных карбоксильных групп, доля частиц микронного размера составляет около 5 %. Наличие в составе сополиамида как сульфонатных, так и карбоксильных групп открывает дополнительную возможность для регулирования степени превращения в интерполиэлектролитныхреакциях, а значит структуры и состава образующихся комплексов.

Ключевые слова: природные и синтетические полиэлектролиты, бычий сывороточный альбумин, интерполиэлектролитные реакции

INTERACTION OF NATURAL AND SYNTHETIC POLYELECTROLYTES WITH BOVINE SERUM ALBUMIN

N.N. Smirnova, K.V. Smirnov

Natalya N. Smirnova *

Department of Chemistry, Vladimir State University named after A.G. and N.G. Stoletovs, Gor'kogo str, 87, Vladimir, 600000, Russia E-mail: smirnovann@list.ru*

Kirill V. Smirnov

Department of Biology and Ecology, Vladimir State University named after A.G. and N.G. Stoletovs, Gor'kogo st., 87, Vladimir, 600000, Russia E-mail: kirillv.smirnov@yandex.ru

Interaction of a number of natural and synthetic polyelectrolytes (PE): chitosan, poly-N,N-dimethyl-N,N-diallylammonium chloride, sodium carboxymethylcellulose and aromatic copolyamide, synthesized on the bases of dichloranhydride of isophthalic acid and two diamines (4,4'-(2,2'-sodium disulfonate)-diaminodephenyl, 4,4'-(2,2'-dicarboxylic acid)-diaminodiphe-nylmethyl) and bovine serum albumin (BSA) in aqueous solutions were studied. It was shown that as a result of macromolecular reactions protein-polyelectrolyte complexes (PPC) forms, stabilized mainly by electrostatic forces. To characterize their composition we used the value ofparameter ф, defined as an amount of ionic groups ofpolyelectrolytes calculated per macromolecule ofprotein. Using spectrophotometry and conductometry it was established that the composition of PPC in the studied systems when components are mixed at optimal conditions corresponds to the value of ф ~30 - 90. The conditions for the existence of insoluble PPC were determined. In the case of precipitation of poly-N,N-dimethyl-N,N-diallylammonium chloride and chitosan in protein - poly-electrolyte reactions the maximum yield of the product is observed at pH > 7. The introduction of sodium carboxymethylcellulose and aromatic copolyamide into the interaction with protein accompanied by shifting the range of PPC existence into the acidic region: the maximum yield of the product is observed at рН < 4. The size of the formed complex particles ranges from 10 nm ([PE]/[BSA] = 0.01 - 0.05 g/g) to ~ 1.0 - 5.5 pm ([PE]/[BSA] = 0.1 - 0.35 g/g). In case of relatively short-chained aromatic copolyamide, containing significant amount of non-ionized carboxylic groups, the ratio of micron size particles is about 5%. The presence of sulfonate and carboxylic groups in the composition of copolyamide gives an additional opportunity to regulate the conversation degree in the interpolyelectrolyte reactions, thus also implying the structure and the composition of the formed complexes.

Key words: natural and synthetic polyelectrolytes, bovine serum albumin, interpolyelectrolyte reactions

Для цитирования:

Смирнова Н.Н., Смирнов К.В. Взаимодействие природных и синтетических полиэлектролитов с бычьим сывороточным альбумином. Изв. вузов. Химия и хим. технология. 2019. Т. 62. Вып. 7. С. 45-51 For citation:

Smirnova N.N., Smirnov K.V. Interaction of natural and synthetic polyelectrolytes with bovine serum albumin. Izv. Vyssh.

Uchebn. Zaved. Khim. Khim. Tekhnol. 2019. V. 62. N 7. P. 45-51

INTRODUCTION

The reaction products received during the interaction of chemically complementary polymers are called interpolymer complexes. Hydrogen bonds, Wan-der-Waals and donor-acceptor interactions can serve as basic stabilizing forces of such compounds. Special place here belongs to the interpolyelectrolyte complexes (IPEC) stabilized by electrostatic forces. They are formed as a result of coupling of oppositely charged polymer electrolytes or during matrix polymerization of ionic monomers upon the oppositely charged polyions [1-3]. The introduction of deoxyribonucleic acid (DNA) or protein macromolecule into IPEC as a polyelectrolyte partner causes the formation of biop-olyelectrolyte and protein-polyelectrolyte complexes (PPC) [4-6]. Such interactions as polyelectrolyte - biopolymer and polyelectrolyte - protein seem to be highly perspective for various applications in pharmaceutics, food industry, biomedicine including protein extraction and purification [7-10], obtaining bioactive materials, especially based on the multilayer systems [11-14], biosensors and biocatalysts development [15,

16], as well as biological substances encapsulation, medicines transfer, gene transfection and gene therapy [17-19]. The research results of the complex formation process in the protein containing systems, including both natural [20-22] and synthetic [23-25] polyelectro-lytes are widely published. However, there are no deep investigations dealing with the impact character of polymer macromolecular chain rigidity and the nature of its ionic groups on such interaction as polyelectrolyte -protein, on the composition and the structure of obtained products. The research objective is to study the contribution of these factors to the complexes formation.

Bovine serum albumin was selected as a simulating protein, as it is a typical globular protein, occurring as a monomer in the solution. The interest to it as a research object is caused by its isoelectric point (pI = 4.9) allowing to change the boundary space charge of mac-romolecules in a reasonable pH range.

EXPERIMENTAL TECHNIQUE

Natural and synthetic polyelectrolytes: chitosan (CS) (Mw = 2.5105, degree of substitution at

amino groups 0.8) (ZAO Bioprogress), poly-N,N-di-methyl-N,N-diallylammonium chloride (PDMDAAC) (M^ = 1.5105) (OAO Kaustik), sodium carbox-ymethylcellulose (CMC) mark 7M (M^ = 2.5 105, degree of substitution 0.8) (Aqualon-Hercules) and aro-

matic copolyamide (PA) (ÂQ = 3.0104) (OAO Poly-mersintez) of the following structure: n = 42; m = 58 mol.% were used in the work [28]. Characteristics of bovine serum albumin (BSA) (Sigma) shown in the table.

SO3Na

COOH

[-HN¿ Л^ y-NH-OC.

-CO-]m- [-HN^ jS -CH2^ Л -NH-OC- -CO-]n

SO3Na

COOH

Table

Characteristics of bovine serum albumin

Protein Molecular weight, kDa pI Stokes radius of the molecule, Â Structure

Bovine serum albumin [26, 27] 67.0 4.9 34.0 Ala - 48; Phe - 30; Lys - 60; Pro - 28; Thr - 34; Cys - 35; Gly - 17; Leu - 65; Gln - 21; Val - 38; Asp - 41; His - 16; Met - 5; Arg - 26; Trp - 2; Glu - 58; Ile - 15; Asn - 14; Ser - 32; Tyr - 21

PPC solutions were obtained by mixing in a specified ratio the solutions of bovine serum albumin (0.07-0.7 g/l) and polyelectrolytes (PE) (0.001-0.01 mol/l). To prepare the protein solutions universal buffer was used.

The compositions of PPC characterized by the 9 parameter defined as the number of ionic groups of polyelectrolytes per macromolecule of protein.

An ionomer Mettler Toledo with glass electrode as a measuring one used to carry out potentiom-etric titration of polyelectrolyte and PPC solutions. The change in electrical conductivity during the conducto-metric titration recorded using conductometer HI8733N.

A spectrophotometer SF-2000 used to meas-

ure the apparent optical density of solutions. The studies were carried out at wavelength of 440 nm. To study the phase state of PPC the 0.1 M solutions of HCl and NaOH were used.

To determine the size of PPC particles laser diffractive microanalyzer HORIBA LB-550 with a source of emission as a laser diode (^ = 650 nm), photoelectric multiplier and Fourier transforms was used.

RESULTS AND DISCUSSIONS

Being polyampholytes, the proteins can react with polyelectrolytes, containing both basic (Scheme 1, 2) and acid (Scheme 3, 4) functional groups:

( hB)n + ( \-S03~Na+)m<^> [( hS03-+HßH )A \-S03~Na*)m_x-( hB)„_J + xNa+ + xOH~ H о

( hB)n + ( hCOOrNa*)m 4 [( hCOO-+HB-\ )x - ( bCOO"/Va+)m-* - ( hB)n x] + xNa+ + xOH~ H*

(1) (2)

(3)

(4)

where B: -NH; >NH; >N

Schemes 1, 3, 4 are implemented when strong polyelectrolytes, such as PDMDAAC, PA and CMC participate in the interpolyelectrolyte reactions (IPR), but Scheme 2, when weak polybases, such as chitosan (pK = 6.3 [2]), do.

The ability of protein to form soluble and insoluble complexes with polyelectrolytes is known to be determined by the polyelectrolytes characteristics as well as by the IPR conditions [2, 4-6]. Fig. 1 shows the regions of existence of insoluble PPC in the researched systems. When participating in the reaction of protein - polyelectrolyte PDMDAAC and CS, maximal product yield is detected at pH > 7, i.e. when Z potential of BSA macromolecules is below -18 mV [24].

Fig. 1. Influence of pH on the phase state of complexes BSA with PDMDAAC (1), CS (2), CMC (3), PA (4); cbsa = 0.7 g/l Рис. 1. Влияние рН на фазовое состояние комплекса БСА с ПДМДААХ (1), ХТ (2), КМЦ (3), ПА (4); свел = 0,7 г/дм3

The introduction of CMC and PA into the interaction with protein is accompanied by shifting PPC existence range into the acidic area: the maximum product yield is observed at рН < 4 (Ç potential of BSA macromolecules exceeds +12 mV [24]). It should be considered, that PA macromolecules, similar to sul-phonate ones, contain carboxylic groups (рКа = 4.2), capable of forming salt bonds with BSA molecules at pH range from 4.2 to 4.9.

The impact character of polyelectrolytes structure and the nature of their ionic groups on the formed PPC composition were shown in Fig. 2. The PPC composition corresponding to maximum optical density on the turbidimetric titration curves is determined by the values of ф ~ 30 for PA, ~ 60 for CMC, ~ 80 for PDMDAAC and ~ 90 for CS. These results generally correlate with the conductometric titration data, despite the fact that the amount of the forming salt bonds during the reaction between protein and polyelectrolyte,

determined by the conductometric method cannot be equitable to ф value.

0 0.1 0.2 0.3 0.4 0.5 [PE]/[BSA],g/g

Fig. 2. Influence of PE nature on the composition of complexes BSA with PDMDAAC (1) (рН = 7.5), CS (2) (рН = 7.5), CMC (3) (рН = 3.5), PA (4) (рН = 3.5); cbsa= 0.7 g/l Рис. 2. Влияние природы ПЭ на состав комплекса БСА -ПДМДААХ (1) (рН = 7,5), ХТ (2) (рН = 7,5), КМЦ (3) (рН = 3,5), ПА (4) (рН = 3,5); сбса= 0,7 г/дм3

It is worth mentioning, that at pH = 3.5 ionization of carboxylic groups in PA is suppressed and they are not involved in the formation of salt bonds with protein molecules. Studying the composition of insoluble complexes, formed between linear poly-N-ethyl-4-vinylpyridinium bromide and BSA, the ф ~ 55 value was received [29]. The authors indicate, that the complex composition practically equals the value of ф* = |n+ - n-|, which is an absolute value of the difference between positively and negatively charged groups in the protein molecules at a given pH, which, in its turn, is determined by its amino acids composition [29]. The studied systems include rigid-chain polyelectrolytes: the value of a parameter in Kuhn-Mark-Houwink equation equals 0.81 [2], 0.85 [2] and 0.92 for CMC, chitosan, and PA respectively. However, there is no definite correspondence between the formed PPC composition and the macromolecular chain rigidity included in the polyelectrolyte complex. It can be assumed, that the conformational rearrangement of protein macromolecules at pH < 4.3 significantly influences PPC composition [30]. Besides the role of the ionization degree of polyelectrolyte functional groups should not be neglected. In case of relying on the process, suggested in the research [31], the contribution of the conformation state of polyelectrolyte macromole-cules at the stage of interaction with the protein is determined mainly by the availability of polymer ionic groups (Fig. 3).

Noiutoichiometric Complex

Fig. 3. Schematic diagram of complex BSA - PDMDAAC formation [31] Рис. 3. Принципиальная схема формирования комплекса БСА-ПДМДААХ [31]

The impact character of this factor on the structure-forming processes is shown in Fig. 4.

0.1 0.2 0.3 [PE]/[BSA],g/g

Fig. 4. Influence of the composition on the average size of the complex particles BSA with PDMDAAC (1) (рН = 7.5), CS (2) (рН = 7.5), CMC (3) (рН = 3.5), PA (4) (рН = 3.5); свsA= 0.07 g/l Рис. 4. Влияние состава на средний размер частиц комплексов БСА - ПДМДААХ (1) (рН = 7,5), ХТ (2) (рН = 7,5), КМЦ (3) (рН = 3,5), ПА (4) (рН = 3,5); сбса= 0,07 г/дм3

According to the research data [24] hydrody-namic radius of BSA molecule at the concentration of 0.1% and at pH range from 3.0 to 11.5 is about 4 nm. In the considered systems the introduction of polyelec-

trolyte into the solution leads to the formation of particles, which average size ranges from ~ 10.0 nm ([PE]/[BSA] = 0.01-0.05 g/g) to ~ 1.0-5.5 ^m ([PE]/[BSA] = 0.1-0.35 g/g). In case of relatively short-chained PA, containing significant amount of non-ionized carbox-ylic groups that do not participate in the formation of salt bonds of polyelectrolyte - protein, the ratio of micron size particles is about 5% under the considered conditions.

CONCLUSIONS

The conducted research revealed that the principle factors determining the composition and the structure of protein - polylectrolyte complexes are the ionization degree of the functional groups participating in the interpolyelectrolyte reaction, determined by their nature and by the solution pH, as well as the conformation state and molecular mass of polymer electrolyte. The composition of PPC under the optimal conditions of IPR corresponds to the value of 9 ~ 30-90. The size of the formed complex particles ranges from 10 nm to 5.5 ^m. The presence of both sulphonate and carbox-ylic groups in the copolyamide composition gives an additional opportunity to regulate the conversation degree in the interpolyelectrolyte reactions, thus also implying the structure and the composition of the formed complexes.

ЛИТЕРАТУРА

1. Кабанов В.А. Полиэлекгролигаые комплексы в растворе и в конденсированной фазе. Усп. химии. 2005. Т. 74. №№ 1. С. 5-24.

2. Polyelectrolytes. Ed. by P.M. Visakh, O. Bayraktar, G.A. Picó. Switzerland: Springer. 2014. 388 p. DOI: 10.1007/978-3-31901680-1.

REFERENCES

1. Kabanov V.A. Polyelectrolyte complexes in solution and in condensed phase. Usp. Khim. 2005. V. 74. N 1. P. 5-24 (in Russian).

2. Polyelectrolytes. Ed. by P.M. Visakh, O. Bayraktar, G.A. Picó. Switzerland: Springer. 2014. 388 p. DOI: 10.1007/978-3-31901680-1.

3. Polyelectrolyte complexes in the dispersed and solid state. I Principles and theory. Ed. by M. Müller. Berlin Heidelberg: Springer. 2014. 229 p. DOI: 10.1007/978-3-642-40734-5.

4. Изумрудов В.А. Явления самосборки и молекулярного «узнавания» в растворах (био)полиэлектролитных комплексов. Усп. химии. 2008. Т. 77. № 4. С. 401-414.

5. Polyelectrolyte complexes in the dispersed and solid state. II Application aspects. Ed. by M. Müller. Berlin Heidelberg: Springer. 2014. 264 p. DOI: 10.1007/978-3-642-40746-8.

6. Cooper C.L., Dubin P.L., Kayitmazer A.B., Turksen S. Poly-electrolyte-protein complexes. Current Opinion Coll. Int. Sci. 2005. V. 10. P. 52-78. DOI: 10.1016/j.cocis.2005.05.007.

7. Boeris V., Farruggia B., Nerli B., Romanini D., Picó G. Proteinflexible chain polymer interactions to explain protein partition in aqueous two-phase systems and the protein- polyelectrolyte complexe formation. Int. J. Biol. Macromol. 2007. V. 41. P. 286-294. DOI: 10.1016/j.ijbiomac.2007.03.006.

8. Lombardi J., Woitovich V., Picó G., Boeris V. Obtainment of a highly concentrated pancreatic serine proteases extract from bovine pancreas by precipitation with polyacrylate. Sep. Purif. Technol. 2013. V. 116. P. 170-178. DOI: 10.1002/jspurtech.2013.03/007.

9. Kurinomaru T., Maruyama T., Izaki S., Handa K., Kimoto T., Shiraki K. Protein-poly(amino acid)complex precipitation for high-concentration protein formulation. J. Pharmaceut. Sci. 2014. V. 103. P. 2248-2254. DOI: 10.1002/jps.24025.

10. Valetti N., Brassesco M., Picó G. Polyelectrolyte-protein complexes: a viable platform in the downstream processes of industrial enzymes at scaling up level. J. Chem. Technol. Biotechnol. 2016. V. 91. N 12. P. 2921-2928. DOI: 10.1002/jctb.5050.

11. Schwinté P., Voegel J.-C., Picart C., Haikel Y., Schaaf P., Szalontai B. Stabilizing effects of various polyelectrolyte multilayer films on the structure of adsorbed/embedded fibrinogen molecules: an ATR-FTIR study. J. Phys. Chem. B. 2001. V. 105. P. 11906-11916. DOI: 10.1021/jp0123031.

12. Multilayer thin films: sequential assembly of nanocomposite materials. Ed. by G. Decher, J.B. Schlenoff. Weinheim: Wiley-VCH. 2003. 543 p. DOI: 10.1002/352-7-600-574.

13. Becker A., Henzler K., Welsch N., Ballauff M., Borisov O. Protein and polyelectrolyte: a charged relationship. Cur. Opin. Coll. In-terf. Sci. 2012. V. 17. P. 90-96. DOI: 10.1016/jcocis.2011.10.001.

14. Schaaf P., Schlenoff B. Saloplastics: processing compact polyelec-trolyte complexes. Adv. Mater. 2015. V. 27. N 15. P. 2420-2432. DOI: 10.1002/adma.201500176.

15. Hilal N., Nigmatullin R., Alpatova A. Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. J. Membr. Sci. 2004. V. 238. P. 131-141. DOI: 10.1016/j.memsci.2004.04.002.

16. Talukdar H., Kundu S. Thin films of protein-polyelectrolyte complexes show larger red-shift in optical emission irrespective of protein conformation. J. Mol. Struct. 2017. V. 1143. P. 84-90. DOI: 10.1016/j.molstruc.2017.04.074.

17. Antipov A., Sukhorukov G., Leporatti S., Radtchenko I., Don-ath E., Mohwald H. Polyelectrolyte multilayer capsule permeability control. Col. Surf. A. 2002. V. 198. P. 535-541. DOI: 10.1002/1521-3927(20010101).

18. Korolev N., Lyubartsev A., Nordenskiöld L. Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Biophys. J. 2006. V. 90. P. 4305-4316. DOI: 10.1002/bip. 10583.

19. Maximova E.D., Zhiiyakova M.V., Faizuloev E.B., Nikonova A.A., Ezhov A.A., Izumrudov V.A., Orlov V.N., Grozdova I.D., Melik-Nubarov N.S. Cationic nanogels as Trojan carriers for disruption of endosomes. Col. Surf. B: Biointerfaces. 2015. V. 136. P. 981-988. DOI: 10.1016/j.colsurfb.2015.10.051.

3. Polyelectrolyte complexes in the dispersed and solid state. I Principles and theory. Ed. by M. Müller. Berlin Heidelberg: Springer. 2014. 229 p. DOI: 10.1007/978-3-642-40734-5.

4. Izumrudov V.A. Phenomenon of self-Assembly and molecular "recognition" in solutions of (bio)polyelectrolyte complexes. Usp. Khim. 2008. V. 77. N 4. P. 401-414 (in Russian).

5. Polyelectrolyte complexes in the dispersed and solid state. II Application aspects. Ed. by M. Müller. Berlin Heidelberg: Springer. 2014. 264 p. DOI: 10.1007/978-3-642-40746-8.

6. Cooper C.L., Dubin P.L., Kayitmazer A.B., Turksen S. Poly-electrolyte-protein complexes. Current Opinion Coll. Int. Sci. 2005. V. 10. P. 52-78. DOI: 10.1016/j.cocis.2005.05.007.

7. Boeris V., Farruggia B., Nerli B., Romanini D., Picó G. Proteinflexible chain polymer interactions to explain protein partition in aqueous two-phase systems and the protein- polyelectrolyte complexe formation. Int. J. Biol. Macromol. 2007. V. 41. P. 286-294. DOI: 10.1016/j.ijbiomac.2007.03.006.

8. Lombardi J., Woitovich V., Picó G., Boeris V. Obtainment of a highly concentrated pancreatic serine proteases extract from bovine pancreas by precipitation with polyacrylate. Sep. Purif. Technol. 2013. V. 116. P. 170-178. DOI: 10.1002/jspurtech.2013.03/007.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9. Kurinomaru T., Maruyama T., Izaki S., Handa K., Kimoto T., Shiraki K Protein-poly(amino acid)complex precipitation for high-concentration protein formulation. J. Pharmaceut. Sci. 2014. V. 103. P. 2248-2254. DOI: 10.1002/jps.24025.

10. Valetti N., Brassesco M., Picó G. Polyelectrolyte-protein complexes: a viable platform in the downstream processes of industrial enzymes at scaling up level. J. Chem. Technol. Biotechnol. 2016. V. 91. N 12. P. 2921-2928. DOI: 10.1002/jctb.5050.

11. Schwinté P., Voegel J.-C., Picart C., Haikel Y., Schaaf P., Szalontai B. Stabilizing effects of various polyelectrolyte multilayer films on the structure of adsorbed/embedded fibrinogen molecules: an ATR-FTIR study. J. Phys. Chem. B. 2001. V. 105. P. 11906-11916. DOI: 10.1021/jp0123031.

12. Multilayer thin films: sequential assembly of nanocomposite materials. Ed. by G. Decher, J.B. Schlenoff. Weinheim: Wiley-VCH. 2003. 543 p. DOI: 10.1002/352-7-600-574.

13. Becker A., Henzler K., Welsch N., Ballauff M., Borisov O. Protein and polyelectrolyte: a charged relationship. Cur. Opin. Coll. In-terf. Sci. 2012. V. 17. P. 90-96. DOI: 10.1016/jcocis.2011.10.001.

14. Schaaf P., Schlenoff B. Saloplastics: processing compact polyelectrolyte complexes. Adv. Mater. 2015. V. 27. N 15. P. 24202432. DOI: 10.1002/adma.201500176.

15. Hilal N., Nigmatullin R., Alpatova A. Immobilization of cross-linked lipase aggregates within microporous polymeric membranes. J. Membr. Sci. 2004. V. 238. P. 131-141. DOI: 10.1016/j.memsci.2004.04.002.

16. Talukdar H., Kundu S. Thin films of protein-polyelectrolyte complexes show larger red-shift in optical emission irrespective of protein conformation. J. Mol. Struct. 2017. V. 1143. P. 84-90. DOI: 10.1016/j.molstruc.2017.04.074.

17. Antipov A., Sukhorukov G., Leporatti S., Radtchenko I., Donath E., Mohwald H. Polyelectrolyte multilayer capsule permeability control. Col. Surf. A. 2002. V. 198. P. 535-541. DOI: 10.1002/1521-3927(20010101).

18. Korolev N., Lyubartsev A., Nordenskiöld L. Computer modeling demonstrates that electrostatic attraction of nucleosomal DNA is mediated by histone tails. Biophys. J. 2006. V. 90. P. 4305-4316. DOI: 10.1002/bip. 10583.

19. Maximova E.D., Zhiiyakova M.V., Faizuloev E.B., Nikonova A.A., Ezhov A.A., Izumrudov V.A., Orlov V.N., Grozdova I.D., Melik-Nubarov N.S. Cationic nanogels as Trojan carriers for disruption of endosomes. Col. Surf. B: Biointerfaces. 2015. V. 136. P. 981-988. DOI: 10.1016/j.colsurfb.2015.10.051.

20. Rinodo M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 2006. V. 31 (7). P. 603-632. DOI: 10.1016/j.prog-polymsci.2006.06.001.

21. Сабурова Е.А., Дыбовская Ю.Н., Сивожелезов В.С., Елфи-мова Л.И. Электростатический вклад во взаимодействие некоторых белков с полиэлектролитами. Биофизика. 2005. Т. 50 (3). С. 423-433.

22. Eisenbart E. Biomaterials for tissue engineering. Adv. Eng. Mat. 2007. V. 9. P. 1051-1060. DOI: 10.1002/adem.200700287.

23. Asimakopoulos Th., Staikos G. Comlexation of bovine serum albumin with cationic polyelectrolyte at pH 7.40 - Formation of soluble complexes. Eur. Polym. J. 2015. V. 71. P. 567-574. DOI: 10.1016/j.eurpolymj .2015.08.022.

24. Othman M., Aschi A., Gharbi A. Polyacrylic acids-bovine serum albumin complexation: Structure and dynamics. Mat. Sci. Eng. 2015. V. 58. P. 316-323 DOI: 10.1016/j.msec.2015.08.057.

25. Milyaeva O., Gochev G., Loglio G., Miller R., Noskov B. Influence of polyelectrolyte on dynamic surface properties of fibrinogen solutions. Col. Sur. A: Physicochem. Eng. Aspects. 2017. V. 532. P. 108-115. DOI: 10.1016/j.colsurfa.2017.06.002.

26. Cherkasov A.N. Rapid analysis of ultrafiltration. Membr. Struct., Separ. Sci. andTechnol. 2005. V. 40. N 14. P. 2775-2801.

27. Jakubke H.-D., Jeschkeit H. Aminosäuren, Peptide, Proteine. Berlin: Akademie-Verlag. 1982. 457 p.

28. Федотов Ю.А., Смирнова Н.Н. Ароматические полиамиды с ионогенными группами: синтез, свойства, области применения. Пласт. массы. 2008. № 8. С. 18-21.

29. Скобелева В.Б., Зинченко А.В., Рогачева В.Б., Зезин А.Б. Взаимодействие слабосшитого полиамина с бычьим сывороточным альбумином. Вестн. Моск. Ун-та. Сер. 2. Химия. 1998. Т. 39. № 4. С. 268-271.

30. Peters T. All about albumin: biochemistry, genetics and medical applications. San Diego: Acad. Press. 1996. 456 p.

31. Ahmed L., Xia J., Dubin P., Kokufuta E. Stoichiometry and mechanism of complex formation protein-polyelectrolyte coacer-vation. J. Macromol. Sci. Part A: Pure Appl. Chem. 1994. V. 31. N 1. P. 17-29. DOI: 10.1080/10601329409349714.

20. Rinodo M. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 2006. V. 31 (7). P. 603-632. DOI: 10.1016/j.prog-polymsci.2006.06.001.

21. Saburova E.A., Dybowska Yu.N., Sivozhelezov S.V., Elfimova

L.I Electrostatic contribution to the interaction of some proteins with polyelectrolytes. Biofizik. 2005. V. 50 (3). P. 423-433 (in Russian).

22. Eisenbart E. Biomaterials for tissue engineering. Adv. Eng. Mat. 2007. V. 9. P. 1051-1060. DOI: 10.1002/adem.200700287.

23. Asimakopoulos Th., Staikos G. Comlexation of bovine serum albumin with cationic polyelectrolyte at pH 7.40 - Formation of soluble complexes. Eur. Polym. J. 2015. V. 71. P. 567-574. DOI: 10.1016/j.eurpolymj .2015.08.022.

24. Othman M., Aschi A., Gharbi A. Polyacrylic acids-bovine serum albumin complexation: Structure and dynamics. Mat. Sci. Eng. 2015. V. 58. P. 316-323 DOI: 10.1016/j.msec.2015.08.057.

25. Milyaeva O., Gochev G., Loglio G., Miller R., Noskov B. Influence of polyelectrolyte on dynamic surface properties of fibrinogen solutions. Col. Sur. A: Physicochem. Eng. Aspects. 2017. V. 532. P. 108-115. DOI: 10.1016/j.colsurfa.2017.06.002.

26. Cherkasov A.N. Rapid analysis of ultrafiltration. Membr. Struct., Separ. Sci. and Technol. 2005. V. 40. N 14. P. 2775-2801.

27. Jakubke H.-D., Jeschkeit H. Aminosäuren, Peptide, Proteine. Berlin: Akademie-Verlag. 1982. 457 p.

28. Fedotov Yu.A., Smirnova N.N. Aromatic polyamides with ion-ogenic groups: synthesis, properties and applications. Plast. Massy. 2008. N 8. P. 18-21 (in Russian).

29. Skobeleva V.B., Zinchenko A.V., Rogacheva V.B., Zezin A.B. Interaction of polyamine with bovine serum albumin. Vestn. Mosk. Univ. Ser. 2. Khimiya. 1998. V. 39. N 4. P. 268-271 (in Russian).

30. Peters T. All about albumin: biochemistry, genetics and medical applications. San Diego: Acad. Press. 1996. 456 p.

31. Ahmed L., Xia J., Dubin P., Kokufuta E. Stoichiometry and mechanism of complex formation protein-polyelectrolyte coacer-vation. J. Macromol. Sci. Part A: Pure Appl. Chem. 1994. V. 31. N 1. P. 17-29. DOI: 10.1080/10601329409349714.

Поступила в редакцию (Received) 20.06.2018 Принята к опубликованию (Accepted) 22.05.2019

i Надоели баннеры? Вы всегда можете отключить рекламу.