UDC 539.21:537.86
Doi: 10.31772/2587-6066-2019-20-1-112-118
For citation: Masyugin A. N., Fisenko O. B., Rybina U. I., Filippson G. Yu. [Interaction of magnetic and dielectric subsystes in a bismuth nodymic ferrite-granate]. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 1, P. 112-118. Doi: 10.31772/2587-6066-2019-20-1-112-118
Для цитирования: Масюгин А. Н., Фисенко О. Б., Рыбина У. И., Филиппсон Г. Ю. Взаимодействие магнитной и диэлектрической подсистем в висмут-неодимовом феррите-гранате // Сибирский журнал науки и технологий. 2019. Т. 20, № 1. С. 112-118. Doi: 10.31772/2587-6066-2019-20-1-112-118
INTERACTION OF MAGNETIC AND DIELECTRIC SUBSYSTES IN A BISMUTH NODYMIC FERRITE-GRANATE
A. N. Masyugin*, O. B. Fisenko, U. I. Rybina, G. Yu. Filippson
Reshetnev Siberian State University of Science and Technology 31, Krasnoyarsky Rabochy Av., Krasnoyarsk, 660037, Russian Federation E-mail [email protected]
Bismuth-substituted ferrite garnets possess magneto-optical (MO) properties and are used as spatial light modulators and indicators. The paper studies the influence of magnetic and electric fields on the structural characteristics of thin epitaxial films of bismuth-neodymium ferrite garnet (Bi: NIG) deposited on glass and gallium gadolinium garnet (GGG) substrates. Dynamic properties of polarization, relaxation in a magnetic and electric field are considered, which is an important task for getting a deep insight into the mechanisms of electromagnetic phenomena in solids.
Dependence of the magnetostriction coefficient on the magnetic field and dependence of a relative change in the length of the film on the electric field at different temperatures are obtained. A change in the sign of magnetostriction constants with respect to temperature was found. The electric polarization in a periodically applied electric field of 400 V / cm with a frequency of 10 MHz is determined for various magnetic field orientations of 12 kOe and in the absence of a magnetic field. Anisotropy ofpolarization in a magnetic field and a functional dependence of the polarization relaxation on time are found. These materials can be used as sensors of the magnetic field in a spacecraft.
Keywords: bismuth ferrite films, magneto elastic interaction, electric polarization, relaxation.
ВЗАИМОДЕЙСТВИЕ МАГНИТНОЙ И ДИЭЛЕКТРИЧЕСКОЙ ПОДСИСТЕМ В ВИСМУТ-НЕОДИМОВОМ ФЕРРИТЕ-ГРАНАТЕ
А. Н. Масюгин*, О. Б. Фисенко, У. И. Рыбина, Г. Ю. Филиппсон
Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева Российская Федерация, 660037, просп. им. газ. «Красноярский рабочий», 31
E-mail [email protected]
Висмут замещенные ферриты-гранаты обладают магнитооптическими (МО) свойствами и применяются в качестве пространственных модуляторов света, индикаторов. В работе исследуется влияние магнитного и электрического полей на структурные характеристики тонких эпитаксиальных пленок висмут-неодимового феррита-граната (Bi:NIG), нанесенных на подложки из стекла и галлий-гадолиниевого граната (GGG). Рассматриваются динамические свойства поляризации, релаксация в магнитном и электрическом полях, что является важной задачей для детального понимания механизмов электромагнитных явлений в твердых телах.
Получены зависимости коэффициента магнитострикции от магнитного поля и величины относительного изменения длины пленки от электрического поля при разных температурах. Найдена смена знака констант магнитострикции по температуре. Определена электрическая поляризация в периодически прикладываемом электрическом поле 400 В/см с частотой 10 мГц при различных ориентациях магнитного поля величиной 12 kOe и в отсутствии магнитного поля. Обнаружена анизотропия поляризации в магнитном поле и функциональная зависимость релаксации поляризации от времени. Данные материалы могут использоваться в качестве сенсоров магнитного поля в космических аппаратах.
Ключевые слова: пленки феррита висмута, магнитоупругое взаимодействие, электрическая поляризация, релаксация.
Introduction. Multiferroics attract interest both from the practical, and from the fundamental point of research of interaction mechanisms between magnetic and electric subsystems [1-5].
Unique combination of magnetic, optical and magneto-optical properties makes bismuth ferrite garnets an attractive material both for theoretical researches and for technological applications. These materials can be used as sensors of the magnetic field in spacecrafts and in writer-reader devices resistant to radioactive effects.
Bismuth-substituted ferrite garnets possess magneto-optical (MO) properties and are used as spatial modulators of light, indicators and also other MO of devices in the field of visible light [6-9]. It is established that the increase in replacement of bismuth leads to an increase of MO effects. Thus, for completely substituted Bi3Fe5O12 (BIG) the Faraday spinning effect reaches 25 °/micron for 530 nanometers of the light wavelength. Thereof the garnets substituted with a large amount of bismuth become an attractive material for MO applications. Magnetic ani-sotropy of films depends on a substrate, the constant of film grating has 0.2 % change when filming on a Gd3Ga5O12 substrate in directions (111) and (100) [10]. Also, in Bi:NIG films Seebeck spin effect was found [11] which can be used in new thermoelectric devices applying the spin current generated by a temperature gradient.
In Bi3Fe5O12 applying the method of ferromagnetic resonance with the electric field modulation linear magneto-electric effect with maximum under 450 K was found, mechanism of which has not been determined, however, it has a direct connection with bismuth ions presence [12]. In this regard, the research of interrelation between magnetic and electric properties, having been carried out earlier in a number of connections, [13-16] is relevant for bismuth ferrite garnets as well.
Materials and research methods.
Epitaxial films Nd^FesO^ (450 nm)/Nd2Bi: Fe4Ga1O12 (90 nm) were examined on the glass substrate and Nd0.5Bi2.5Fe5Oi2 (450 nm) - on single-crystalline substrate GGG, grown in crystallographic direction (111). Films were produced applying the method of metal-organic compound decomposition of solution (MOD) [17] at the Technological University of Nagaoka (Japan). The process of film formation consisted of the following stages: applying solution on the metal-organic compounds blended so as to meet Stoichiometry requirements to a film structure on the centrifuge at 3000 rot/min within 60 sec. ^ drying under 100 °C within 10 minutes ^ pre-burning under 450 °C within 10 minutes in the open air ^ repeating the processes from putting metal-organic solution on the centrifuge before preliminary burning so as to obtain the required film thickness ^ burning at 650°C for 1 hour in the open air. As a buffer layer on a non-directional glass substrate the film Nd2Bi1Fe4Ga1O12 was formed in advance with 90 nm thickness. Schematic diagram of the process MOD is shown in fig. 1.
Values of constants electro- and magnet- strictions were defined as a relative film deformation under the influence of electric and magnetic fields dL = (R (H;E) -R (H = 0; E = 0)) / R (H = 0; E = 0)), where R (H;E) -strain gage resistance in electric or magnetic field, R (H = 0; E = 0) - strain gage resistance without external
fields. The ZFLA-3-11 strain gage was used. Polarization was defined as a pyroelectric charge (Q) divided into the area of contact (A) P = Q/A. Charge was measured applying the Keithley 6517B electrometer.
Results and discussions. Interaction of a magnetic and elastic subsystem can be implemented as a result of the single-ion mechanism, spin-orbit interaction and deformation dependence of exchange on the distance. The latter mechanism is found in the field of magnetic phase transition. Film magnetostriction constants on glass and GGG depending on the external magnetic field directed perpendicular to a film are measured. In fig. 2 and 3 temperature dependences of magnetostriction coefficient in magnetic field of 12 kOe for two films applied on different substrates are presented.
For a film on glass in the range of room temperatures the nonlinear dependence 1 is observed (N). Lower than 310 K a magnetostriction constant in magnetic field of H = 12 kOe changes the sign. At a temperature of 200 K the maximum film compression is observed. When cooling from 200 K the constant magnetostriction value decreases and at 80K falls dramatically. A small anisotropy of magnetostriction is observed, so that film lengthening in the magnetic field, perpendicularly applied to a film, exceeds the film lengthening in the direction of the field. Under the film rotation relative magnetic field film lengthening reaches a maximum at coal 24 °. Lower than 280 K a minimum and a maximum of magnetostriction is reached at 30 ° respectively and perpendicular to the film.
The film on GGG substrate at T > 300 K linearly expands in magnetic field and contracts below room temperature. With the temperature decrease magnetostriction changes the sign, passes through a minimum at T = 160 K and similarly to glass practically does not depend on temperature at further cooling (fig. 3). Change of magnetic field orientation hardly influences the magnetostriction constant.
The film electrostriction value Bi: NIGNA on a glass substrate was measured in electric field up to 400 V / cm. The film slightly expands in the external electric field at T = 80 K. Above T = 120 K the film contracts not linearly and reaches the maximum size of compression in fields of 300-400 V/cm at T > 200 K. At temperatures above room there are two competing mechanisms: the first is connected with the film contraction, the second -with expansion. Magnetostriction in this area of temperatures changes the sign. Film deformation does not depend on the electric field sign. Electrostriction under absolute value increases at temperature rise, passes through a maximum at 200 K and decreases under a further temperature rise up to 360 K.
Polarization of Bi:NIG films is measured in the electric field of 400 V/cm amplitude with a frequency of 10 MHz in the form of a rectangular impulse under various magnetic field orientations. In fig. 4 and 5 dependences of polarization on time are represented at different temperatures for both films.
Over time electric polarization of the film on glass smoothly grows in external electric field. At switching off the field, polarization falls abruptly and changes the sign from positive value to negative below room temperature.
At temperatures over 300 K residual polarization coincides with external electric field by sign (fig. 4).
The time dependence of film polarization on garnet qualitatively differs from films on glass (fig. 5). Under switched off electric field residual polarization remains positive and smoothly increases over time.
Observed effects are explained by charged defects on the film-substrate interface which are compensated by the shift of oxygen ions along certain directions in crystal.
External electric field removes degeneration in the direction of polarization, leads to turning of the local dipolar moments across the field and to the formation of residual polarization. In films on glass there are two interfaces and double electric layer is formed causing the polarization sign change after switching off the field.
In films on glass and on garnets the anisotropy of electric polarization in magnetic field which is caused by magnetoelectric effect is observed.
/
Organic solvent
Organometallic compound
Substrate
0
Organometallic solution application in a centrifuge
О
Substrate
Divine -100-200^C
О
C0j+hl;0 _ * •
Substrate
Preliminary annealing -45 0-55 ETC
it
o-O-
The resulting film
Subsirale
Annealing in air
~б00-850°С
Repeat to obtain the required thickness
Fig. 1. Sketch flowchart MOD Рис. 1. Эскизная схема технологического процесса MOD
4
■12 J-1-'-4-,-.-,
100 200 300 400
Т, К
Fig. 2. Dependence of the magnetostriction coefficient on temperature in Bi: NIG on a glass substrate
Рис. 2. Зависимость коэффициента магнитострикции от температуры в Bi:NIG на подложке из стекла
100 200 300 400 TV к
Fig. 3. Dependence of the magnetostriction coefficient on temperature in Bi: NIG on a GGG substrate
Рис. 3. Зависимость коэффициента магнитострикции от температуры в Bi:NIG на подложке из GGG
0,024
0,022-
i 0,000-
CN , F
о -0,022-
- О
1 *
Q- -0,044-
-0,066-
■ 1
• 2
A 3
▼ 4
♦ 5
4 6
200
50
100 150
t, s
200
100 t, s
200
100 150
t, s
200
Fig. 4. Polarization of Bi: NIG film on glass over time: a - at temperatures t = 120° KH = 0 (1), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles ф = 90° (2), ф = 180° (3), ф = 360° (4); b - at temperatures t = 200° KH = 0 (1, 6), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles ф = 0° (2), ф = 90° (3), ф = 180° ( 4), ф = 360° (5); c - at temperatures t = 280° KH = 0 (1, 6), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles ф = 0° (2), ф = 90° (3), ф = 180° ( 4), ф = 360° (5); d - at temperatures t = 360° K H = 0 (3), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles ф = 90° (1), ф = 360° (2)
Рис. 4. Поляризация пленки Bi:NIG на стекле от времени: а - при температурах t = 120° KH = 0 (1), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах ф = 90° (2), ф = 180° (3), ф = 360° (4); b - при температурах t = 200° KH = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах ф = 0° (2), ф = 90° (3), ф = 180° (4), ф = 360° (5); с - при температурах t = 280° KH = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах ф = 0° (2), ф = 90° (3), ф = 180° (4), ф = 360° (5); d - при температурах t = 360° KH = 0 (3), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах ф = 90° (1), ф = 360° (2)
0
20С
t, s
20С
t, s
t, s
Fig. 5. Polarization of Bi: NIG film on GGG over time: а - at temperatures t = 120° KH = 0 (1, 6), in magnetic fields H = 12 kO when the magnetic field is oriented relative to the surface normal at angles 9 = 0° (2), 9 = 90° (3), 9 = 180° ( 4), 9 = 360° (5); b - at temperatures t = 160° KH = 0 (1, 6), in magnetic fields H = 12 kO when the magnetic field is oriented relative to the surface normal at angles 9 = 0° (2), 9 = 90° (3), 9 = 180° ( 4), 9 = 360° (5); c - at temperatures t = 280° KH = 0 (1, 6), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles 9 = 0° (2), 9 = 90° (3), 9 = 180° ( 4), 9 = 360° (5); d - at temperatures t = 320° KH = 0 (1, 6), in magnetic fields H = 12 kOe when the magnetic field is oriented relative to the surface normal at angles 9 = 0° (2), 9 = 90° (3), 9 = 180° ( 4), 9 = 360° (5)
Рис. 5. Поляризация пленки ВгМЮ на GGG от времени: а - при температурах t = 120° КН = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах ф = 0° (2), ф = 90° (3), ф = 180° (4), ф = 360° (5); Ь - при температурах t = 160° КН = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах ф = 0° (2), ф = 90° (3), ф = 180° (4), ф = 360° (5); с - при температурах t = 280° КН = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах ф = 0° (2), ф = 90° (3), ф = 180° (4), ф = 360° (5); d - при температурах t = 320° КН = 0 (1, 6), в магнитных полях H = 12 кЭ при ориентации магнитного поля относительно нормали поверхности при углах ф = 0° (2), ф = 90° (3), ф = 180° (4), ф = 360° (5)
Magnetic field orientation angle is defined relative to a film surface normal. Dependence of polarization relaxation on time cannot be described by one functional dependence like an exponent, a logarithm or a power function. Change of electric polarization in magnetic field, under switching on and off electric field of E = 400 V/cm, reaches 40 % and depends on the direction of magnetic field relative to the film
Conclusion. Contraction of films below room temperature has been found in magnetic and electric fields. Magnetostriction sign change under temperature rise in films on glass and on garnet has been revealed. Residual electric polarization after external electric field switching off has been observed. The anisotropy of polarization in external magnetic field has been found which indicates magnetoelectric interaction in bismuth ferrite films.
Acknowledgments. The study was carried out with the financial support of the Russian Foundation for Basic Research, the Government of the Krasnoyarsk Territory, the Krasnoyarsk Regional Science Foundation under the scientific project No. 18-42-240001: "Inversion of the sign of the components of the magnetoelectric tensor on the temperature in bismuth-filled garnet ferrite films replaced by neodymium financial support number 18-32-00079 mol_a.
Благодарности. Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта № 18-42-240001: «Инверсия знака компонент магнитоэлектрического тензора по температуре в пленках висмутового феррита-граната, замещенного неодимом». Работа частично выполнена при финансовой поддержке № 18-32-00079 mo^.
References
1. Udod L. V., Aplesnin S. S., Sitnikov M. N., Mo-lokeev M. S. Dielectric and electrical properties of polymorphic bismuth pyrostanate Bi2Sn2O7. Physics of the Solid State. 2014, Vol. 56, Iss. 7, P. 1315-1319.
2. Aplesnin S. S., Sitnikov M. N. Magnetotransport effects in a paramagnetic state in GdxMn1-xS. JETP Letters. 2014, Vol. 100, Iss. 2, P. 95-101.
3. Aplesnin S. S., Ostapenko A. A. Kretinin V. V. et al. [Dielectric Properties of Bi1-xLaxFeO3 Thin Films]. VestnikSibGAU. 2014, No. 3 (55), P. 192-197 (In Russ.).
4. Aplesnin S. S., Udod L. V., Sitnikov M. N. et al. Bi2(Sno.95Cr0.05)2O7 : Structure, IR specture, and dielectric properties. Ceramics International. 2016, Vol. 42, P. 5177-5183.
5. Aplesnin S. S., Sitnikov M. N. Magneto capacitive effect in GdxMn1-xS. Physics of the Solid State. 2016, Vol. 58, Iss. 6, P. 1112-1117.
6. Yamakita J., Lou G., Nishikawa M., Kato T., Iwata S., Ishibashi T. Magnetic properties of bismuth-substituted neodymium iron garnet films on Gd3Ga5O12(100) substrates determined by ferromagnetic resonance measurements. Japanese Journal of Applied Physics. 2018, Vol. 57, P. 09TC01. Doi: 10.7567/JJAP.57.09TC01.
7. Veis M., Liskova E., Antos R. et al. Polar and longitudinal magneto-optical spectroscopy of bismuth substituted yttrium iron garnet films grown by pulsed laser deposition. Thin Solid Films. 2011, Vol. 519, Iss. 22, P. 8041-8046. Doi: 10.1016/j.tsf.2011.06.007.
8. Chern M.-Y., Liaw J.-S. Study of BixY3 xFesO^ Thin Films Grown by Pulsed Laser Deposition. Japanese Journal of Applied Physics. 1997, Vol. 36, Part 1, No. 3A, P. 1049-1053. Doi: 10.1143/JJAP.36.1049.
9. Aplesnin S. S., Khar'kov A. M. Magnetic and Dynamic Properties of SmxMn1-xS Solid Solutions. Physics of the Solid State. 2013, Vol. 55, No. 1, P. 81-87.
10. Michimasa Sasaki, Gengjian Lou, Qi Liu. Nd0.5Bi2.5Fe5- yGayO12 thin films on Gd3Ga5O12 substrates prepared by metal-organic decomposition. Japanese Journal of Applied Physics. 2016, Vol. 55, P. 055501.
11. Asada H., Kuwahara A., Sueyasu K. et al. Longitudinal Spin Seebeck Effect in Bi-substituted Neodymium Iron Garnet on Gadolinium Gallium Garnet Substrate Prepared by MOD Method. Physics Procedia. 2015, Vol. 75, P. 932-938. Doi: 10.1016/j.phpro.2015.12.128.
12. Popova E., Shengelaya A., Daraselia D. et al. Bismuth iron garnet Bi3Fe5O12: A room temperature mag-netoelectric material. Applied Physics Letters. 2017, Vol. 110, P. 142404.
13. Aplesnin S. S., Sitnikov M. N., Romanova O. B., Pichugin A. Yu. Magnetoelectric and magnetoresistive properties of the CexMn1-xSsemiconductors. Physica Status Solidi(B). 2016, Vol. 253, Iss. 9, P. 1771-1781.
14. Aplesnin S. S., Sitnicov M. N., Panasevich A. M., Galyas A. I., Demidenko O. V., Yanushkevich K. I. Magnetic and Magnetoresistive Properties of GdxMn1- xSeSeienides. Bulletin of the Russian Academy of Sciences: Physics. 2016, Vol. 80, No. 11, P. 1306-1309.
15. Aplesnin S. S., Kretinin V. V., Panasevich A. M., Yanushkevich K. I. Magnetic capacitance of the
GdxBi1-xFeO3 thin films. Physics of the Solid State. 2017, No. 59(4), P. 667-673. Doi: 10.21883 / FTT.2017.04.44265.094.
16. Aplesnin S. S., Udod L. V., Sitnikov M. N. et al. Magnetic, Dielectric and Transport Properties of bismuth pyrostanate Bi2(Sn0.9Mn0.1)2O7. Physics of the Solid State. 2017, Vol. 59, No. 11, P. 2268-2273.
17. Ishibashi T., Mizusawa A., Nagai M. et al. Characterization of epitaxial (Y,Bi)3(Fe,Ga)5O12 thin films grown by metal-organic decomposition method. Japanese Journal of Applied Physics. 2005, Vol. 97, Iss. 1, P. 013516. Doi: 10.1063/1.1827339.
Библиографические ссылки
1. Диэлектрические и электрические свойства полиморфного пиростаната висмута Bi2Sn2O7 / Л. В. Удод, С. С. Аплеснин, М. Н. Ситников [и др.] // Физика твердого тела. 2014. Т. 56, вып. 7. C. 1267-1271.
2. Аплеснин С. С., Ситников М. Н. Магни-тотранспортные эффекты в парамагнитном состоянии в GdxMn1-xS // Письма в ЖЭТФ. 2014. Т. 100, вып. 2. C. 104-110.
3. Диэлектрические свойства тонких пленок Bi1-xLaxFeO3 / С. С. Аплеснин, А. А. Остапенко, В. В. Кретинин [и др.] // Вестник СибГАУ. 2014. № 3 (55). C. 192-197.
4. Bi2(Sn0.95Cr0.05)2O7 : Structure, IRspecture, and dielectric properties / S. S. Aplesnin, L.V. Udod, M. N. Sitnikov [et al.] // Ceramics International. 2016. Vol. 42. P. 5177-5183.
5. Аплеснин С. С., Ситников М. Н. Магнитоемко-стный эффект в GdxMn1-xS // Физика твердого тела. 2016. Т. 58, вып. 6. C. 1112-1117.
6. Magnetic properties of bismuth-substituted neo-dymium iron garnet films on Gd3Ga5O12(100) substrates determined by ferromagnetic resonance measurements / J. Yamakita, G. Lou, M. Nishikawa [et at.] // Japanese Journal of Applied Physics. 2018. Vol. 57. P. 09TC01. Doi: 10.7567/JJAP.57.09TC01.
7. Polar and longitudinal magneto-optical spectros-copy of bismuth substituted yttrium iron garnet films grown by pulsed laser deposition / M. Veis, E. Liskova, R. Antos [et al.] // Thin Solid Films. 2011. Vol. 519, Iss. 22. P. 8041-8046. Doi:10.1016/j.tsf.2011.06.007.
8. Chern M.-Y., Liaw J.-S.. Study of BixY3 xFesO^ Thin Films Grown by Pulsed Laser Deposition // Japanese Journal of Applied Physics. 1997. Vol. 36, Part 1, No. 3A. P. 1049-1053. Doi: 10.1143/JJAP.36.1049.
9. Аплеснин С. С., Харьков А. М. Магнитные и динамические свойства твердых растворов SmxMnj-xS // Физика твердого тела. 2003. Т. 59, вып. 1. С. 69-74.
10. Sasaki M., Lou G., Liu Q. Ndo.5Bi2.5Fe5- yGayO12 thin films on Gd3Ga5Oi2 substrates prepared by metal-organic decomposition // Japanese Journal of Applied Physics. 2016. Vol. 55. P. 055501.
11. Longitudinal Spin Seebeck Effect in Bi-substituted Neodymium Iron Garnet on Gadolinium Gallium Garnet Substrate Prepared by MOD Method / H. Asada, A. Kuwahara, K. Sueyasu [et al.] // Physics Procedia. 2015. Vol. 75. P. 932-938. Doi: 10.1016/j.phpro.2015.12.128.
12. Bismuth iron garnet Bi3Fe5Oi2: A room temperature magnetoelectric material / E. Popova, A. Shengelaya, D. Daraselia [et al.] // Appl. Phys. Lett. 2017. Vol. 110. P. 142404.
13. Magnetoelectric and magnetoresistiveproperties of the CexMn1_xSsemiconductors / S. S. Aplesnin, M. N. Sitnikov [et al.] // Physica Status Solidi (B). 2016. Vol. 253, Iss. 9. P. 1771-1781.
14. Magnetic and Magnetoresistive Properties of GdxMn1- xSeSeienides / S. S. Aplesnin, M. N. Sitnikov [et al.] // Bulletin of the Russian Academy of Sciences: Physics. 2016. Vol. 80, No. 11. P. 1306-1309.
15. Магнитоемкость тонких пленок GdxBi1-xFeO3 / C. C. Аплеснин, В. В. Кретинин, А. М. Панасевич
[и др.] // Физика твердого тела. 2017. №. 4. С. 653-659, Doi: 10.21883/FTT.2017.04.44265.094.
16. Магнитные, Диэлектрические и транспортные свойства пиростаната висмута Bi2(Sn0.9Mn0.1)2O7 / С. С. Аплеснин, Л. В. Удод, М. Н. Ситников [и др.] // Физика твердого тела. 2017. Т. 59, вып. 11. С. 2246-2251.
17. Characterization of epitaxial (Y,Bi)3(Fe,Ga)5O12 thin films grown by metal-organic decomposition method / T. Ishibashi, A. Mizusawa, M. Nagai [et al.] // Japanese Journal of Applied Physics. 2005. Vol. 97, Iss.1. P. 013516. Doi: 10.1063/1.1827339.
© Masyugin A. N., Fisenko O. B., Rybina U. I., Filippson G. Yu., 2019
Masyugin Albert Nikolaevich - graduate student; Reshetnev Siberian State University of Science and Technology. E-mail: [email protected].
Fisenko Olga Borisovna - graduate student; Reshetnev Siberian State University of Science and Technology. E-mail: [email protected].
Rybina Ulyana Ilinishna - a student of the Institute of Space Technology, group A17-01; Reshetnev Siberian State University of Science and Technology. E-mail: [email protected].
Filippson Gleb Yuryevich - a student of the Institute of Space Technology, group A17-01; Reshetnev Siberian State University of Science and Technology. E-mail: [email protected].
Масюгин Альберт Николаевич - аспирант; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: [email protected].
Фисенко Ольга Борисовна - аспирант; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: [email protected].
Рыбина Ульяна Ильинишна - студент института космической техники, группа А17-01; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: mail: [email protected].
Филиппсон Глеб Юрьевич - студент института космической техники, группа А17-01; Сибирский государственный университет науки и технологий имени академика М. Ф. Решетнева. E-mail: [email protected].