Научная статья на тему 'INTEGRATION OF THE MKDV EQUATION WITH NONSTATIONARY COEFFICIENTS AND ADDITIONAL TERMS IN THE CASE OF MOVING EIGENVALUES'

INTEGRATION OF THE MKDV EQUATION WITH NONSTATIONARY COEFFICIENTS AND ADDITIONAL TERMS IN THE CASE OF MOVING EIGENVALUES Текст научной статьи по специальности «Математика»

CC BY
49
13
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
GELFAND-LEVITAN-MARCHENKO INTEGRAL EQUATION / SYSTEM OF DIRAC EQUATIONS / JOST SOLUTIONS / SCATTERING DATA

Аннотация научной статьи по математике, автор научной работы — Khasanov Aknazar Bekdurdiyevich, Hoitmetov Umid Azadovich, Sobirov Shekhzod Quchqarboy Ugli

In this paper, we consider the Cauchy problem for the non-stationary modified Korteweg-de Vries equation with an additional term and a self-consistent source in the case of moving eigenvalues. Also, the evolution of the scattering data of the Dirac operator is obtained, the potential of which is the solution of the loaded modified Korteweg-de Vries equation with a self-consistent source in the class of rapidly decreasing functions. Specific examples are given to illustrate the application of the obtained results.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «INTEGRATION OF THE MKDV EQUATION WITH NONSTATIONARY COEFFICIENTS AND ADDITIONAL TERMS IN THE CASE OF MOVING EIGENVALUES»

Izvestiya Instituía Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta

2023. Volume 61. Pp. 137-155

MSC2020: 37K15

© A. B. Khasanov, U. A. Hoitmetov, Sh. Q. Sobirov

INTEGRATION OF THE MKDV EQUATION WITH NONSTATIONARY COEFFICIENTS AND ADDITIONAL TERMS IN THE CASE OF MOVING EIGENVALUES

In this paper, we consider the Cauchy problem for the non-stationary modified Korteweg-de Vries equation with an additional term and a self-consistent source in the case of moving eigenvalues. Also, the evolution of the scattering data of the Dirac operator is obtained, the potential of which is the solution of the loaded modified Korteweg-de Vries equation with a self-consistent source in the class of rapidly decreasing functions. Specific examples are given to illustrate the application of the obtained results.

Keywords: Gelfand-Levitan-Marchenko integral equation, system of Dirac equations, Jost solutions, scattering data.

DOI: 10.35634/2226-3594-2023-61-08

Introduction

When integrating nonlinear evolutionary equations of mathematical physics, the main and difficult problem is to obtain exact solutions to nonlinear equations, including nonlinear wave, soliton, etc. Over the past few decades, many efficient methods have been developed to find such solutions for many integrable equations, such as the Korteweg-de Vries (KdV) equation and its various generalizations, various types of nonlinear Schrodinger equations, etc.

One of such integrable nonlinear equations is the following modified Korteweg-de Vries (mKdV) equation [1]:

Ut ± 6u Ux + Uxxx = 0.

This equation can be applied in many areas, such as the propagation of ultrashort solitons with a small number of optical cycles in nonlinear media [2, 3], anharmonic lattices [4], Alfven waves [5], ion-acoustic solitons [6-8], lines transmission through the Schottky barrier [9], thin oceanic jets [10,11], internal waves [12,13], thermal impulses in solids [14], etc. To calculate the exact solutions of the mKdV equation, many methods have been created, for example, the bilinear approach of Hirota [15], the Wronskian technique [16-18] can be mentioned. There are also a lot of results about the mKdV equation [19-25] due to its simple expression and rich physical application. In recent works by Vanneeva [26], one can find exact solutions of the mKdV equation with variable coefficients

Ut + u2ux - g(t)uxxx + h(t)u = 0.

In this paper, we consider the following system of equations

2 N

ut + p(t)(6u2ux + uxxx) + q(t)ux = ^2 ®k(t)(/fcigfcl - Ik2gk2) ,

k= 1 ( )

L(t)/k = Ck /k, L(t)gk = Ck gk, k = 1, 2,..., 2 N,

where L{t) = i ( d,x , u(x^,t)\ ak{t) (k = 1,2N), are given continuously

\—u{x,t) — J

differentiable functions.

The system of equations (0.1) is considered under the initial condition

u(x, 0) = uo(x), x E R, (0.2)

where the initial function u0(x) (—to < x < to) has the following properties: 1)

prx

/ (1 + |x|)|u0(x)| dx < to; (0.3)

( — —UoixY

2) the operator L(0) = il dx, , has exactly 2N simple eigenvalues £i(0), £2(0),

\-u0{x)

..., 6N (0).

In the problem under consideration, fk = (/k1,/k2) is the eigenfunction of the operator L(t) corresponding to the eigenvalue £k, and gk = (gk1,gk2)T is the solution of the equation

Lgk = Cfc9k, for which

W{fk, 9k} = fki9k2 ~ fk29ki = Uk(t) t^ 0, k = 1, 2N, where uk (t) are the initially given continuous functions of t, satisfying the conditions

un(t) = -uk(t)min = -ik, Re jj uk{r) dr j > -lm{&(0)}, k = l,N, (0.4)

for all non-negative values of t. For definiteness, we assume that in the sum in the right-hand side of (0.1), the terms with Im£k > 0, k = 1, N, come first.

Let us assume that the function u(x, t) has the required smoothness and rather quickly tends to its limits at x ^ ±to, i. e.,

/+°°((1 + \x\)\u(x,t)\ + dx < 00 > k=l,2,3. (0.5)

The main purpose of this work is to obtain representations for the solution u{x,t), fk(x,t), gk(x, t), k = 1, 2N, of problem (0.1)—(0.5) in the framework of the inverse scattering method for the operator L(t).

§ 1. Preliminaries

Consider the following system of Dirac equations

Vlx + i&i = Uo(x)v2, (11)

V2x — i£,V 2 = —Uo(x)vi,

on the entire axis (—to < x < to), with the potential u0(x) satisfying the condition (0.3).

It can be seen that using operator L(0) and the vector function v = (v1; v2), the system (1.1) can be rewritten as

Lv = £v. (1.2)

t

The system of equations (1.1) has Jost solutions with the following asymptotics

Im£ = 0, x ^ —œ;

<P(x,£) ~ (0) ^

$(x,£) - (—J

$(x,£) - g)

(1.3)

Im £ = 0, x ^ œ.

For real £, pairs of vector functions and are pairs of linearly independent solutions

to the system of equations (1.1). Therefore, the following relations take place

> = a(£ )$ + b(£ ( ^ = -a(£ )p + b(£ )<p,

and < _ (1.4)

= -a(£ + b(£ U = a(£ V + b(£ )p,

where a(£) = , b(£) = . The following equalities are true

|a(£ )|2 + |b(£ )|2 = 1, a(£ ) = a(-£), b(£ ) = b(-£). The coefficients a(£) and b(£) are continuous for Im £ = 0 and satisfy the asymptotic equalities:

a(£ ) = 1 + O(£-1), b(£ ) = O(£-1), |£ The Unction tp(x, £) can be represented as follows (see [27, p. 33])

"X

^(x,£)=^0j + J K(x,s)Ssds, (1.5)

fK1(x s)\

where K(x, s) = ( k (x's w ' In representation (1.5), the kernel K(x, s) does not depend on £ and the equality

u(x) = -2Ki(x,x) (1.6)

holds. The function a(£) (a(£)) continues analytically to the upper (lower) half-plane and has a finite number of zeros £k (£fc) there, where £k (£fc) is an eigenvalue of the operator L(0), so that the following equality is true

<p(x, £k) = Ck $(x, £k) (p(x, £k) = Ck p(x, ak)), k =1, 2,...,N.

Definition 1.1. The set of values jr+(£) = £k, Ck, k = 1,2,..., iV j is called the scattering data for the operator L(0).

The components of the kernel K(x,y) in representation (1.5) for y > x are solutions to the Gelfand-Levitan-Marchenko system of integral equations

/><x

K2(x,y)+ Ki(x,s)F(s + y) ds = 0,

J x

/><x

-K1(x,y) + F(x + y) + / K2(x, s)F(s + y) ds = 0,

where

1 r ^ N

F(x) - j r+(£)e^ Qe«'*.

Note that the following vector functions

... / , n=l,N, (1.7)

are solutions to the equations L(0)hn = £nhn. Therefore, the following formula is valid:

aa(£n)

In addition, the functions hn (x) have the following asymptotics,

hn ~ — Cn ^^ ei?nx, x ^—to; hn ~ ^ e-i?nX, x ^ to. (1.8)

According to (1.8), we get the following equality

w{tpn,hn} = tpnihn2 - fn2hni = -Cn, n=l,N.

The following lemmas are true.

fyjx £)\ -

Lemma 1.1. If Y(x,£) = (y (x'£) 1 is a solution of equation (1.2), then Y(x,£) = y2(x, —£ )

( £^ satisfies the equation Lv = — £v.

Lemma 1.2. If vector functions Y = ( yi(x'£ ) | and Z = ( Zi(x'n) | are solutions of

\y2(x,£ y \Z2(x,n)J

equations LY = £Y and LZ = rqZ, then their components satisfy the equalities

d

^(yi^l + V2Z2) = + v)(yiZi - V2Z2), d

- V2Zl) = - rn){yiZ2 + V2Zl).

The validity of both lemmas is proved by a direct verification. The following theorem is true.

Theorem 1.1 (see [28, §6.2, p. 353]). The scattering data of the operator L uniquely determine L.

§ 2. Evolution of scattering data

Let potential u(x, t) in the system of equations LY = £Y be a solution to the equation

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ut + p(t) (uxxx + 6u2ux) = G(x, t)' (2.1)

2 N

where G(x,t) = —q(t)ux(x,t) + ^ ak(t)(fki9ki — /k2gk2). The operator

k=1

A = (t)f —4i£3 + 2iu2£ 4u£2 + 2iux£ — 2u3 — uxx ^ (2 2)

A = p(t) I —4u£2 + 2iux £ + 2u3 + uxx 4i£3 — 2iu2£ ) (^2)

satisfies the following Lax relation

[L,A] ^ LA - AL = i ( _ ° . P(t)(-6u2ux - uxxx) ) (2.3)

V p(t)(-6u2Ux - Uxxx) 0 J

Therefore, equation (2.1) can be rewritten as

Lt + [L, A] = iR, (2.4)

where R = ^ G . Differentiating the equality

Ly = £y

with respect to t, we obtain

Lt y + Lyt = £yt, which, according to (2.4), can be rewritten in the form

(L - £)(yt - Ay) = -iRy.

Using the method of variation of constants, we can write

yt - Ay = B(x)j + D(x)<p. (2.5) Then, to determine B (x) and D(x), we obtain

MBx j + MDx y = -Ry, (2.6)

where M = ( ^ ^ .To solve equation (2.6), it is convenient to introduce the following

notation y = (y^J, t = (j^. According to (2.3) and the definition of the Wronskian, the following equalities are valid:

jT My = - Mj = a, jT Mj = My = 0.

Multiplying (2.6) by yT and jjT we obtain

B, = D, = (2.7)

aa

According to (2.2), as x ^ -to, we have

- - Ay ^ ( ^ )(1) ^ = f41'^) ^^,

therefore, based on (2.5), we obtain

D(x) ^ 4i£3p(t), B(x) ^ 0, x ^-to.

Hence, from (2.7) we can determine

1 rx ~ 1 fx

D(x) = — / ipTR<pdx + 4i£3p(t), B(x) = - ^Rydx. a Ja J

Thus, equality (2.5) has the following form:

<pt-A<p=(^J ^Updxy+^J + (2.8)

According to (1.4), equality (2.8) can be rewritten in the following form

ati + btip - A^aijj + = Q J t^Rpdx^jip + J tjjTR>^dx + 4i£3p(t)^j (aijj + hp

Passing in the last equality to the limit as x ^ and taking into account (2.2), we obtain

f x ~r at = — / V R^ dx,

J—x

1 /"x b i'x ~ bt = - ^Rf dx-- :tpTRtp dx + 8i£3p(t)b.

a J—x a </ —x

Therefore, at Im £ = 0 we have

= «iVOr* _ ^

x

= 8*£3p(i)r+ - - / + dr. (2.9)

Lemma 2.1. If vector-function p = ^i(x £)^ is a solution to the system of equations (1.1), then its components satisfy the following equality

x

I G{<p\ + <p%) dx = -Hamo E + Hq(t)amO- (2.10)

J-x k=i £ £k

Proof. Let the potential u(x, t) in the system of equations (0.1) be a solution to the equation

ut + p(t) (6u2ux + uxxx) = G(x, t) '

where G rather quickly tends to zero at x ^ ±to.

According to Lemma 1.1 and the first of the conditions (0.4), the right-hand side in the equation (0.1) can be rewritten in the form

2N N

(t)(fkigki — fk2gk^ = 2 ak(t)(fkigki — fk2gk^ .

k=i k=i,

Im £fc >0

According to Lemma 1.2, we have the following equality

ak (t)(/kigki — /k2gk2)(P? + ) = = «k (t)/kigki^2 + «k (t)/kigkip2 — «k (t)/k2gk2^? — «k (t)/k2gk2^2 = ak (t)

2

■ [(/fcl^l - fk2'-P2){gkl'-Pl + 9k2^2) + (fkl'-fil + fk2'-P2}{gkl'-Pl - 9k2f2)] +

+ [(/fcl¥>2 - fk2^Pl)(gk2^Pl + 9k\<f2) ~ (/fcl^2 + fk2^Pl)(gk2^Pl ~ Qkl^)] - ak^ d [UkWi + fk2^p2){gki^pi + ^2^2)] +

—2i(£ + £fc) dx

The following asymptotics are valid: for x ^ -to,

<P

gk

itkx

and, for x ^ +to,

y

gk

Uk (t)e

(ae %(-x I he)ix

1\ Uk{t) gkX

0 cke '

j -

jk j

be

ae%^x Ck 0

(2.11)

,-iik x

yk - Ck{ ^ e*kx

(2.12)

Integrating the last equation from -to to +to, and then using the asymptotics (2.11), (2.12), we obtain the following equalities:

®k (t)

d

[(fkiyi + fk2y2)(gkiyi + gk2y2)] dx

-2i(£ + £k) J—O dx -2i(£ + £k) V Ck ) 2i(£ + £k)

ak (t)

d

21 (£ - £k) J—O dx

-f [(<Plfk2 - <P2fkl)(<Pigk2 - f2gkl)] dx =

2i(£ - £k)

2i(£ - £k)

The following integral is calculated in the same way:

q(t)ux(y\ + y2) dx = -q(t) (yi + y2) du =

' — O J — O

/OO /»<O

^y2 + y2)' dx = 2q(t) (uyiyi + uy2y2) dx

-O J —O

/O

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

[( y2 + i£y2)yi + (yi + i£yi)y/2] dx =

O

= 2q(t) [ yiy2 + i£yiy2 + yiyZ + i£yiy2] dx = 2i£q(t) (yiy2dx =

= 2i£q(t) ]im (yiy2)

Consequently, we obtain the equality (2.10)

R

— R

2i£q(t)a(£ )b(£).

N

I + ^ d® = J] + ^mcm).

—O k=i £ £k

According to equalities (2.9) and (2.10), we have the following equation:

dr+ ~dt

£2 - £k

k=i

r+ (Im £ = 0).

Differentiating the equality yn = Cnjn with respect to t, we get the following relation

dy ~dt

dy

+

? = ?r

d£n _ dCn , r dt dt%lJn+ n dt

+ Cn

? = ?n

dj d£

?=?r

d£n dt '

1

0

0

1

0

r^J

1

O

O

O

O

—O

—O

which, according to (1.7), can be rewritten in the form

d<Pn dCn &ipn d£n

w = ^n + cn— - a(£n)hn—, (2.13)

dyn dy

where

Similarly to the case of a continuous spectrum, taking into account (2.7), in the case of a discrete spectrum, we obtain the following equality:

9iPn -A<pn=(—^- [ dx) hn+i^- [ hTnRyn dx + 4i£3np(t)) <pn, (2.14)

dt \ Cn J — O J \Cn J —O /

where hn = (^j'2^ . According to (2.13), the last equality can be rewritten in the following form:

dcn , . n d%l)n .(c,d£n

x

dt ^ ' " dt ' dt 1

— / dx ) hn + ( I h^Rtpn dx + 4i£%p(t) ) Cnx\)n.

Cn J-tx I \ Cn

Passing in this equality to the limit as x ^ +to, taking into account (1.8) and (2.2), we obtain the following equalities:

Thus, we have the following identities

dC ( (O \

= (8 i£3p(t) ~ J GMnl + hn2rtpn2) dx) Cn,

d£n -J'Zo G(y2ni + yn2) dx

(2.15)

dt Cnà(£n)

It remains to note that, according to the identity

2i f+x à(£n) = -yr / <~Pniyn2dx, Cn J — x

the last equality can be rewritten as

d£n = IZo + dx

dt 2i f+tz yn\Vn2 dx

(2.16)

Lemma 2.2. If the vector-functions <yn(x,£n ) = ( ^ni (x'£n M , xUn (x,£n) = \ (x'£n )

\<fn2 (x,£ny r \^n2 (x,£n)

lhn (x £n)\

and hn (x, £n) = I h11 ( ' £ ) ) are the solutions of the equation Lv = £n v, then their components

\hn2 (x, £n) J

satisfy the equalities

/tx

G(hni^ni + hn2^n2) dx = ian(t)Pn(t)wn(t) + 2i£nq(t), (2.17)

•t

/oo px

G(yh\ + ^2) dx = —2^n(t)an(t) yni^n2 dx. (2.18)

-x J — x

Proof. Firstly, to prove the lemma, we write the following equality:

p+x p+x

/ G(hnx-0m + hn2-n2) dx = —q(t) / ux (x' t)(h ni -ni + hn2 —n2 ) dx +

N

r» + œ

(2.19)

+ 2^ ak(t) / (fki9ki - fk29k2)(h

k=i "-x At £k = £n, according to Lemma 1.2, we have

ak(/kigki — /k2gk2) (hni—ni + hn2—n2) = ak/"kigkihni—ni + ak/"kigkihn2—n2 —

- Ctkfk2gk2hniripni ~ akfk2gk2hn2i)n2 = 0./ffc , ^ t~ [(^i/fci + hn2fk2)(ijjnigki + Vv^fci)] +

—2i(£n + £k) dx

+ £ )~dx [(hnlfk2 ~ hn2fkl){^nigk2 - V^fcl)] •

Let's integrate the above equality over x from —to to +to:

^ y- [(^nl/fcl + hn2fk2)(lpnigkl + 1pn2gk2)] dx +

-2i(Ç„ + Çk ) J—œ dx

œ œ

+ s [ -J- [(^ni/fc2 - hn2fki)(tjjnigk2 - Ipn2gki)] dx =

2i(Çn — Çk^—œ dx

lim [(/ini/fci + hn2fk2)(tljnigki + ^2^2)] I^R +

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

. /. \ vrai,/ ki 1 <"n2j k2M Yniy ki 1 Yn2y k2 ; d

+ \ lim [(^«i/fc2 - hn2fki)(tjjnigk2 + Vv^fci)] =

2i(Çn - Çk) L R

iim C«tn-&)R _ ç ¿«tn-MRUkjt)c-j(

- £fc)

Therefore, for £k = £n we have

/x

(/kigki — /k2gk2)(hni-ni + hn2-n2) dx = 0.

■x

If £k = £n, then

Q-nit) (/ralfi'ral ~ fn29n2) {h-nl^nl + hn21pn2) ^^ ^

(h

igni + hn2gn2)(/ni—ni + /n2—n2^ —

[("0ni/n2 — r4)n2fni){hnign2 + hn2gni) + (ipnifn2 + ^n2fni){hnign2 — hn2gni)~\ =

-Cn^ni^n2an(t)

+ vn(t)gni g„2 - + Vn{t)gn2 J gn\

. / J. \ f'ni I '■'n^yyni I ¿/'/¿2 \ . / J. \

a(Çn) / WÇn)

= -Cn^ni^n2^y\an(t)un(t). (2.20)

Let us integrate equality (2.20) with respect to x:

/"œ fin (t)

/ (/niâ'ni - fn2gn2)ihnYtpni + hn2r(pn2) dx = --^—ran(t)ujn(t) / C^raiVv^ dx = J — œ <a(Çra) ./—œ

œ

ttt r-- / (Pni<fn2dx = --an(t)pn(t)un(t). (2.21)

<a(Çra) J — œ 2

œ

0

Let us calculate the following integral using equality (1.1) and asymptotics (1.3), (1.8):

/OO PO

ux(hm jm + hn2 jn2) dx = -q(t) (hm + hm jn2) du =

O —O

/O

(uh'n1 jn1 + uhm jln1) dx +

O

/O

(uh'n2 jn2 + uhn2 jn2) dx =

O

/O

{(-jn2 + i£njn2 )h'n1 + ( hn2 + i£n hn2 ) jnj dx +

O

O ( ) + q(t) (h'n2 (j,n1 + i£n ) + jn2 (hni + i£nhni ^ dx =

—O

O(

O O

i£nq(t) ((hni jn2)' + (hn2 jni)') dx = i£nq(t) (hm jn2 + hn2 jni)|°

—O

1

= i£nq(t)(e-*"x ■ e^x - (~Cne*"x • ^-e"*"*)) =

Using the last equality and equalities (2.21), we obtain identity (2.17). Now, we derive the equality (2.18). At £k = £n, according to Lemma 1.2, we have

/O

(fkigki - fk2gk2)(y2ni + yn2) dx =

O

ak^ ^ -y- [(fklfnl + tpn2fk2){tpnigkl + Pn29n2)] dx +

-2i(£n + £k) J—O dx

O

O

+ rw?fc^ N [ T~ \(fk2<fnl - tpn2fkl){tpnigk2 - Vn29nl)] dx =

2i(£n - £k) J—o dx

-ak (t) = ——-— lim

2i(£n + £k)

+ lim

2i(£n - £k)

(fkiyni + yn2fk2)(ynigki + yn2 gn2)

R n

—RJ

+

(fk2yni - yn2fki)(ynigk2 - yn2gki)

R i

— R-i

0.

If £k = £n, then

O

an(t) (fnigni - fn2gn2)(yni + yn2) dx

—O

O

an (t) f° d r

/ -J- [{jnlVnl + (Pn2jn2) \'~PnlQnl + <~Pn29n2) \ dx ~ 4i£n J — O dx

an(t)

2

an(t)

—O

O

2

an (t)

[(fniyn2 - ynifn2)(ynign2 + yn2gni)] dx -[(fn2yni + yn2fni)(ynign2 - yn2gni^ dx =

2yniyn2(fnign2 - fn2gni) dx = -an(t)Un(t) yniyn2 dx.

ni n2 ni n2 n2 ni n n

2 —O —O

So, we got this equality

/OO /»O

(fnigni - fn2gn2)(y2ni + yn2) dx = -an(t)un(t) yniyn2 dx. (2.22)

O —O

—O

O

In a similar way, it can be shown that

/+O

q(t)ux(y2n± + yn2 )dx = 0. (2.23)

O

Using equalities (2.22) and (2.23), we obtain

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

/OO po

G{tp2nl + y22) dx = -2uin(t)an(t) / tpni<fn2 dx. □

O —O

Substituting equality (2.17) into the right side of equality (2.15), we obtain the following expression:

dG

-7T = i8i£nP(t) + ian(t)/3n(t)ujn(t) - 2i£nq(t)]Cn, n=l,N. dt

According to equalities (2.16) and (2.18), we can calculate the evolution of the eigenvalue

= ian(t)un(t), n=l,N.

dt

Thus, we have proved the following theorem.

Theorem 2.1. If the functions u(x,t), fk(x,t), gk(x,t), k = 1,N, are a solution to the problem (0.1)-(0.5), then the scattering data of the operator L(t) with the potential u(x, t) satisfy the following differential equations

ian(t)u}n(t), n=l,N,

dr+ ~dt

dCn ~dt

d£n dt

N

/~v, ltl/,1, I t 1

r+ (lmf = 0),

- tT

k=i

= [HnP(t) + ianit)f3n{t)ujn{t) - 2i£nq(t)] Cn, n=l,N.

The obtained equalities completely determine the evolution of the scattering data, which makes it possible to apply the inverse scattering method to solve problem (0.1)-(0.5).

Example2.1. Consider the following Cauchy problem

27(6u2ux + uxxx) (3 - 3i(t2 + t)2)ux

Ut + (i + l)(2i3 + 3^ + 3)3 + (t+1)^ + 3^ + 3) = 2{t + 1){fn9n ~ fl29l2)>

L(t)fi = £ifi, L(t)gi = £igi,

u(x, 0) = —-—, Ui{t) = fngi2 - fngn = t. ch x

It is easy to find the scattering data for the operator L(0):

|r+(0) = 0, 6(0) = Cx( 0) = i}. According to Theorem 2.1, the evolution of scattering data is as follows

£i(t) = iY (t), r+ (t) = 0, Ci (t) = ie^,

where

t3 t2 1 7(t) = I+ 2" + 2' Mi) = 21n(t+1).

Applying the inverse problem method, we obtain the following relations

_6(2t3 + 3t2 + 3 )2{t + i^e-d+^+t2)*_

~ (213 + 312 + 6) (416 + 1215 + 9i4 + 12i3 + 18i2 + 9 + 9(t + i)4e-(2+2t2+ft3)*)

(36i3 + 54i2 + 54) (t + l)2e"(f+ir+2i2):c

f12{x,t) = e 2 _

(2i3 + 3i2 + 6) (4i6 + 12i5 + 9 i4 + 12i3 + 18i2 + 9 + 9(t +

r-x

Jo

. , 873(t)e27(t)x - 27(t)(t + 1)4e—27(t)x + 472(t)e2Y(t)x + (t + 1)4e—2Y(t)x

=-8fimF-x

x

o

| ¿(27(t) + l)(472(t) + {t + l)4e-4^x)

872(i)(i + l)2e-(27(i)+^)x -472(t)(t +1)2

u(x, t) =

where

A(x,t)

a(x, t)

(2y2(t) - 0.5)e2Y(t)x + (t + 1)2 ch(27(t)x - 2 ln(t + 1))

(613 + 9t2)(t + l)2 - (fi3 + t2 + 2) (213 + 3i2 + 2)2e^t3+2t2+2>

(213 + 3i2 + 2)2e(ti3+2i2+2)x + 9(t + l)2 -ef (2i3 + 3i2 + 6) ((2i3 + 3i2 + 3)2 + 9 (t + ife-^+2f2+2)x)

3(2 i3 + 3 i2 + 3)2 + 54(t + i)4e-(ft3+2t2+2)* § 3. Loaded mKdV equation with source

Consider the following equation:

2N

2

Ut + P(u(xo,t))(6u2Mx + Uxxx) + Q(u(xi,t))ux = ^Bk(u(X2,t))(/ki9ki - fk29k2), (3.1)

k=i

where P(y), Q(z) and Bk(s), k = 1' 2N, are polynomials in y, z and s, respectively. The equation (3.1) is not a particular case of the equation (0.1), because the coefficients in the equation (3.1) depend on the value of the solution on a manifold of lower dimension. Such equations are called loaded equations.

In the work [29], Nakhushev gave the most general definition of loaded equations and gave a detailed classification of various types of loaded equations. Among the works devoted to loaded equations, the works [30-38] should be singled out.

If in the problem (0.1)-(0.5) instead of the equation (0.1) we consider the equation (3.1), then the following theorem holds.

Theorem 3.1. If functions u(x, t), fk(x, t), gk(x,t), k = 1, N, are a solution to the problem (3.1), (0.2)-(0.5), in the class offunctions (0.5), then the scattering data of the operator L(t) with potential u(x' t) change according to t as follows

^- = iBn(u(x2,t))un(t), n=l,N, dt

dr+

It

8 iÇ*P(u(x0, t)) + 2* £ Mu(x^))uk(t) _ 2mu(xut))

k=i Ç2 - Çk

dCn _ i~o „•

~df

r+ (Im Ç = 0),

[8t£3P(u(x0, t)) + iBn(u(x2, t))pn(t)u)n(t) - 2t£nQ(u(x1,t))] Cn, n = TJf.

Example 3.1. Consider the following Cauchy problem

Ut + 6u2ux + uxxx + a(t)u(1,t)ux = 2p(t)u(0,t)(fngn — fngn),

Lfi = 6fi> Lgi = 6gi,

where

0) = —-L, Ui{t) = fugi2 - /12^11 = t, ch x

^ (t + 1)2 ((3t4 + 8t3 + 6t2 + 6)2e-10t + 36e10t) pit) =-

a(t) =

—2(3t4 + 8t3 + 6t2 + 6)2 (10 - 873(i) + z(i2 + i)2) (472(i)e-10i+2^) + e10i-2^)

-1673(i) t4 2t3 t2 1

As in Example 2.1, the scattering data of the operator L(0) have the form:

{r+(0) = 0, 6(0) = Cx( 0) = i}. According to Theorem 3.1, we have

£i(t) = iY (t), r+(t) = 0, Ci(t) = ie^(t),

where

p(t) = % f y 3(r) dr + if rp(r )u(0,T )u1(r ) dr + 2 / y (t )a(r )u(1,r) dr. (3.2) Jo ,/0 ,/0

Consequently, F(x,t) = e—7(t)x+M(t). Solving the system of integral equations of Gelfand-Levitan-Marchenko, one can obtain

4Y 2(t)e^(t)—Y(t)(x+y) = 472(t) + e2^t)-4j(t)x ■

Using the last equality and formula (1.6), we obtain the following:

-4Y 2(t)

u(xf) = 1 \

(272(i) - I)e-/i(t)+27(t)s + ch(27(i)x - pit))'

If we set x = 0 and x =1 in the last equality, then taking into account (3.2), we have the following problem

p [b) 07 [b) e2M(t)+472(t) e2M(t)+472(i)e4T(t) '

^(0) = 0.

Solution of this problem has the form p(t) = 10t. As a result, the solution of the considered problem is expressed as follows:

—4Y 2(t)

u(x, t)

fii(x,t)

(272(i) - I)e-10i+2-rW- + ch(27(i)x - 101)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

87 2(t)e-(27(t)+0.5)x+10t

(2j(t) + 1)(4y 2(t) + e-4Y(t)x+20t)

47 (t)e-4Y(t)x-0.5x+20t

Z12^) e 2 (27(i) + l)(472(i) + e-47(i)-+20i)'

x

0

8Y3(t)e27(t)x-i0t — 2Y(t)e-2Y(i)x+i°i + 4Y2(t)e27(t)x-i0i + e-27(i)x+i0i

9l2{x>t) =-sW)-x

2

' fo A(s,t) ds / ,

Jo 872(i)e-(27(t) + |);c+101

where

A(Xt) = -21(t)-l +_tm_ arx t)=-ef(27(t) + l)(472(t) + e-^)^)

[X,l) >{l) i +4^(^47(^-201 + 1' 472(i) + 2e-47(i)x+20i

REFERENCES

1. Wadati M. The exact solution of the modified Korteweg-de Vries equation, Journal of the Physical Society of Japan, 1972, vol. 32, no. 6, pp. 1681-1681. https://doi.org/10.1143/JPSJ.32.1681

2. Leblond H., Sanchez F. Models for optical solitons in the two-cycle regime, Physical Review A, 2003, vol. 67, issue 1, 013804. https://doi.org/10.1103/PhysRevA.67.013804

3. Leblond H., Mihalache D. Models of few optical cycle solitons beyond the slowly varying envelope approximation, Physics Reports, 2013, vol. 523, issue 2, pp. 61-126. https://doi.org/10.1016/j.physrep.2012.10.006

4. Ono H. Soliton fission in anharmonic lattices with reflectionless inhomogeneity, Journal of the Physical Society of Japan, 1992, vol. 61, no. 12, pp. 4336-4343. https://doi.org/10.1143/JPSJ.61.4336

5. Kakutani T., Ono H. Weak non-linear hydromagnetic waves in a cold collision-free plasma, Journal of the Physical Society of Japan, 1969, vol. 26, no. 5, pp. 1305-1318.

https://doi.org/10.1143/JPSJ.26.1305

6. Konno K., Ichikawa Y. H. A modified Korteweg-de Vries equation for ion acoustic waves, Journal of the Physical Society of Japan, 1974, vol. 37, no. 6, pp. 1631-1636.

https://doi.org/10.1143/JPSJ.37.1631

7. Watanabe Sh. Ion acoustic soliton in plasma with negative ion, Journal of the Physical Society of Japan, 1984, vol. 53, no. 3, pp. 950-956. https://doi.org/10.1143/JPSJ.53.950

8. Lonngren K. E. Ion acoustic soliton experiment in a plasma, Optical and Quantum Electronics, 1998, vol. 30, pp. 615-630. https://doi.org/10.1023/A:1006910004292

9. Ziegler V., Dinkel J., Setzer C., Lonngren K. E. On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line, Chaos, Solitons and Fractals, 2001, vol. 12, issue 9, pp. 1719-1728. https://doi.org/10.1016/S0960-0779(00)00137-5

10. Cushman-Roisin B., Pratt L., Ralph E. A general theory for equivalent barotropic thin jets, Journal of Physical Oceanography, 1993, vol. 23, issue 1, pp. 91-103. https://doi.org/10.1175/1520-0485(1993)023<0091:AGTFEB>2.0.C0;2

11. Ralph E.A., Pratt L. Predicting eddy detachment for an equivalent barotropic thin jet, Journal of Nonlinear Science, 1994, vol. 4, issue 1, pp. 355-374. https://doi.org/10.1007/BF02430638

12. Grimshaw R., Pelinovsky E., Talipova T., Kurkin A. Simulation of the transformation of internal solitary waves on oceanic shelves, Journal of Physical Oceanography, 2004, vol. 34, issue 12, pp. 2774-2791. https://doi.org/10.1175/JP02652.1

13. Grimshaw R. Internal solitary waves, Environmental stratified flows, New York: Springer, 2002, pp. 1-27. https://doi.org/10.1007/0-306-48024-7_1

14. Tappert F. D., Varma C. M. Asymptotic theory of self-trapping of heat pulses in solids, Physical Review Letters, 1970, vol. 25, issue 16, pp. 1108-1111. https://doi.org/10.1103/PhysRevLett.25.1108

15. Hirota R. Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, Journal of the Physical Society of Japan, 1972, vol. 33, no. 5, pp. 1456-1458. https://doi.org/10.1143/jpsj.33.1456

16. Satsuma J. A Wronskian representation of N-soliton solutions of nonlinear evolution equations, Journal of the Physical Society of Japan, 1979, vol. 46, no. 1, pp. 359-360.

https://doi.org/10.1143/JPSJ.46.359

17. Nimmo J. J. C., Freeman N. C. The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form, Journal of Physics A: Mathematical and General, 1984, vol. 17, no. 7, pp. 1415-1424. https://doi.org/10.1088/0305-4470/17/7/009

18. Gesztesy F., Schweiger W. Rational KP and mKP-solutions in Wronskian form, Reports on Mathematical Physics, 1991, vol. 30, issue 2, pp. 205-222. https://doi.org/10.1016/0034-4877(91)90025-I

19. Khasanov A. B., Urazbayev G. U. Method for solving the mKdV equation with a self-consistent source, Uzbek Mathematical Journal, 2003, no. 1, pp. 69-75 (in Russian).

20. Urazbayev G. U. On the modified KdV equation with a self-consistent source corresponding to multiple eigenvalues, Reports of the Academy of Sciences of the Republic of Uzbekistan, 2005, no. 5, pp. 11-14 (in Russian).

21. Mamedov K. A. On the integration of the modified Korteweg-de Vries equation with a source of integral type, Reports of the Academy of Sciences of the Republic of Uzbekistan, 2006, no. 2, pp. 24-28 (in Russian).

22. Demontis F. Exact solutions of the modified Korteweg-de Vries equation, Theoretical and Mathematical Physics, 2011, vol. 168, issue 1, pp. 886-897. https://doi.org/10.1007/s11232-011-0072-4

23. Mamedov K. A. Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues, Russian Mathematics, 2020, vol. 64, issue 10, pp. 66-78. https://doi.org/10.3103/S1066369X20100072

24. Wu Jianping, Geng Xianguo. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation, Communications in Nonlinear Science and Numerical Simulation, 2017, vol. 53, pp. 83-93. https://doi.org/10.1016/j.cnsns.2017.03.022

25. Zhang Guoqiang, Yan Zhenya. Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions, Physica D: Nonlinear Phenomena, 2020, vol. 410, 132521. https://doi.org/10.1016/j.physd.2020.132521

26. Vaneeva O. Lie symmetries and exact solutions of variable coefficient mKdV equations: An equivalence based approach, Communications in Nonlinear Science and Numerical Simulation, 2012, vol. 17, issue 2, pp. 611-618. https://doi.org/10.1016/j.cnsns.2011.06.038

27. Ablowitz M. J., Sigur H. Solitons and the inverse scattering transform, Philadelphia, SIAM, 1981.

28. Dodd R. K., Eilbeck J. C., Gibbon J. D., Morris H. C. Solitons and nonlinear wave equations, London: Academic Press, 1982.

29. Nakhushev A. M. Uravneniya matematicheskoi biologii (Equations of mathematical biology), Moscow: Vysshaya Shkola, 1995.

30. Nakhushev A. M. Loaded equations and their applications, Differentsial'nye Uravneniya, 1983, vol. 19, no. 1, pp. 86-94 (in Russian). https://www.mathnet.ru/eng/de4747

31. Kozhanov A.I. Nonlinear loaded equations and inverse problems, Computational Mathematics and Mathematical Physics, 2004, vol. 44, no. 4, pp. 657-678. https://zbmath.org/?q=an:1114.35148

32. Hasanov A. B., Hoitmetov U. A. On integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing functions, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 2021, vol. 47, no. 2, pp. 250-261. https://doi.org/10.30546/2409-4994.47.2.250

33. Hoitmetov U. A. Integration of the loaded KdV equation with a self-consistent source of integral type in the class of rapidly decreasing complex-valued functions, Siberian Advances in Mathematics, 2022, vol. 33, no. 2, pp. 102-114. https://doi.org/10.1134/S1055134422020043

34. Khasanov A. B., Hoitmetov U. A. Integration of the general loaded Korteweg-de Vries equation with an integral type source in the class of rapidly decreasing complex-valued functions, Russian Mathematics, 2021, vol. 65, issue 7, pp. 43-57. https://doi.org/10.3103/S1066369X21070069

35. Khasanov A. B., Hoitmetov U. A. On complex-valued solutions of the general loaded Korteweg-de Vries equation with a source, Differensial Equations, 2022, vol. 58, issue 3, pp. 381-391. https://doi.org/10.1134/S0012266122030089

36. Hoitmetov U. Integration of the loaded general Korteweg-de Vries equation in the class of rapidly decreasing complex-valued functions, Eurasian Mathematical Journal, 2022, vol. 13, no. 2, pp. 43-54. https://doi.org/10.32523/2077-9879-2022-13-2-43-54

37. Khasanov A. B., Hoitmetov U. A. On integration of the loaded mKdV equation in the class of rapidly decreasing functions, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya «Matem-atika», 2021, vol. 38, pp. 19-35. https://doi.org/10.26516/1997-7670.2021.38.19

38. Hoitmetov U. A. Integration of the sine-Gordon equation with a source and an additional term, Reports on Mathematical Physics, 2022, vol. 90, issue 2, pp. 221-240. https://doi.org/10.1016/S0034-4877(22)00067-2

Received 30.12.2022 Accepted 17.04.2023

Aknazar Bekdurdiyevich Khasanov, Doctor of Physics and Mathematics, Professor, Department of Differential Equations, Samarkand State University, University boulvard, 15, Samarkand, 140104, Uzbekistan. ORCID: https://orcid.org/0000-0003-2571-5179 E-mail: [email protected]

Umid Azadovich Hoitmetov, Candidate of Physics and Mathematics, Department of Applied Mathematics and Mathematical Physics, Urgench State University, ul. Khamida Alimdjana, 14, Urgench, 220100, Uzbekistan.

ORCID: https://orcid.org/0000-0002-5974-6603 E-mail: [email protected]

Shekhzod Quchqarboy ugli Sobirov, PhD student, Department of Applied Mathematics and Mathematical Physics, Urgench State University, ul. Khamida Alimdjana, 14, Urgench, 220100, Uzbekistan. ORCID: https://orcid.org/0000-0003-0405-3591 E-mail: [email protected]

Citation: A. B. Khasanov, U. A. Hoitmetov, Sh. Q. Sobirov. Integration of the mKdV Equation with nonsta-tionary coefficients and additional terms in the case of moving eigenvalues, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2023, vol. 61, pp. 137-155.

А. Б. Хасанов, У. А. Хоитметов, Ш. К. Собиров

Интегрирование уравнения мКдФ с нестационарными коэффициентами и дополнительными членами в случае движущихся собственных значений

Ключевые слова: интегральное уравнение Гельфанда-Левитана-Марченко, система уравнений Дирака, решения Йоста, данные рассеяния.

УДК: 517.957

DOI: 10.35634/2226-3594-2023-61-08

В данной работе рассматривается задача Коши для нестационарного модифицированного уравнения Кортевега-де Фриза с дополнительным членом и с самосогласованным источником в случае движущихся собственных значений. Получена эволюция данных рассеяния оператора Дирака, потенциал которого является решением нагруженного модифицированного уравнения Кортевега-де Фриза с самосогласованным источником в классе быстроубывающих функций. Приведены конкретные примеры, иллюстрирующие применение полученных результатов.

СПИСОК ЛИТЕРАТУРЫ

1. Wadati M. The exact solution of the modified Korteweg-de Vries equation // Journal of the Physical Society of Japan. 1972. Vol. 32. No. 6. P. 1681. https://doi.org/10.1143/JPSJ.32.1681

2. Leblond H., Sanchez F. Models for optical solitons in the two-cycle regime // Physical Review A. 2003. Vol. 67. Issue 1. 013804. https://doi.org/10.1103/PhysRevA.67.013804

3. Leblond H., Mihalache D. Models of few optical cycle solitons beyond the slowly varying envelope approximation //Physics Reports. 2013. Vol. 523. Issue 2. P. 61-126. https://doi.org/10.1016/j.physrep.2012.10.006

4. Ono H. Soliton fission in anharmonic lattices with reflectionless inhomogeneity // Journal of the Physical Society of Japan. 1992. Vol. 61. No. 12. P. 4336-4343. https://doi.org/10.1143/JPSJ.61.4336

5. Kakutani T., Ono H. Weak non-linear hydromagnetic waves in a cold collision-free plasma // Journal of the Physical Society of Japan. 1969. Vol. 26. No. 5. P. 1305-1318.

https://doi.org/10.1143/JPSJ.26.1305

6. Konno K., Ichikawa Y. H. A modified Korteweg-de Vries equation for ion acoustic waves // Journal of the Physical Society of Japan. 1974. Vol. 37. No. 6. P. 1631-1636. https://doi.org/10.1143/JPSJ.37.1631

7. Watanabe S. Ion acoustic soliton in plasma with negative ion // Journal of the Physical Society of Japan. 1984. Vol. 53. No. 3. P. 950-956. https://doi.org/10.1143/JPSJ.53.950

8. Lonngren K. E. Ion acoustic soliton experiment in a plasma // Optical and Quantum Electronics. 1998. Vol. 30. P. 615-630. https://doi.org/10.1023/A:1006910004292

9. Ziegler V., Dinkel J., Setzer C., Lonngren K. E. On the propagation of nonlinear solitary waves in a distributed Schottky barrier diode transmission line // Chaos, Solitons and Fractals. 2001. Vol. 12. Issue 9. P. 1719-1728. https://doi.org/10.1016/S0960-0779(00)00137-5

10. Cushman-Roisin B., Pratt L., Ralph E. A general theory for equivalent barotropic thin jets // Journal of Physical Oceanography. 1993. Vol. 23. Issue 1. P. 91-103. https://doi.org/10.1175/1520-0485(1993)023<0091:AGTFEB>2.0.CO;2

11. Ralph E. A., Pratt L. Predicting eddy detachment for an equivalent barotropic thin jet // Journal of Nonlinear Science. 1994. Vol. 4. Issue 1. P. 355-374. https://doi.org/10.1007/BF02430638

12. Grimshaw R., Pelinovsky E., Talipova T., Kurkin A. Simulation of the transformation of internal solitary waves on oceanic shelves // Journal of Physical Oceanography. 2004. Vol. 34. Issue 12. P. 2774-2779. https://doi.org/10.1175/JPO2652.1

13. Grimshaw R. Internal solitary waves // Environmental stratified flows. New York: Springer, 2002. P. 1-27. https://doi.org/10.1007/0-306-48024-7_1

14. Tappert F. D., Varma C. M. Asymptotic theory of self-trapping of heat pulses in solids // Physical Review Letters. 1970. Vol. 25. Issue 16. P. 1108-1111. https://doi.org/10.1103/PhysRevLett.25.1108

15. Hirota R. Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons // Journal of the Physical Society of Japan. 1972. Vol. 33. No. 5. P. 1456-1458. https://doi.org/10.1143/jpsj.33.1456

16. Satsuma J. A Wronskian representation of N-soliton solutions of nonlinear evolution equations // Journal of the Physical Society of Japan. 1979. Vol. 46. No. 1. P. 359-360. https://doi.org/10.1143/JPSJ.46.359

17. Nimmo J. J. C., Freeman N. C. The use of Backlund transformations in obtaining N-soliton solutions in Wronskian form // Journal of Physics A: Mathematical and General. 1984. Vol. 17. No. 7. P. 1415-1424. https://doi.org/10.1088/0305-4470/17/7/009

18. Gesztesy T., Schweiger W. Rational KP and mKP-solutions in Wronskian form // Reports on Mathematical Physics. 1991. Vol. 30. Issue 2. P. 205-222. https://doi.org/10.1016/0034-4877(91)90025-I

19. Хасанов А. Б., Уразбоев Г. У. Метод решения уравнения мКдФ с самосогласованным источником // Узбекский матемематический журнал. 2003. № 1. С. 69-75.

20. Уразбоев Г. У. О модифицированном уравнении КдФ с самосогласованным источником, соответствующим кратным собственным значениям // Доклады Академии наук РУз. 2005. № 5. С. 11-14.

21. Мамедов К. А. Об интегрировании модифицированного уравнения Кортевега-де Фриза с источником интегрального типа // Доклады Академии наук РУз. 2006. № 2. С. 24-28.

22. Демонтис Ф. Точные решения модифицированного уравнения Кортевега-де Фриза // Теоретическая и математическая физика. 2011. Т. 168. № 1. С. 35-48. https://doi.org/10.4213/tmf6662

23. Мамедов К. А. Интегрирование уравнения мКдФ с самосогласованным источником в классе функций конечной плотности, в случае движущихся собственных значений // Известия высших учебных заведений. Математика. 2020. № 10. С. 73-85. https://doi.org/10.26907/0021-3446-2020-10-73-85

24. Wu Jianping, Geng Xianguo. Inverse scattering transform and soliton classification of the coupled modified Korteweg-de Vries equation // Communications in Nonlinear Science and Numerical Simulation. 2017. Vol. 53. P. 83-93. https://doi.org/10.1016/j.cnsns.2017.03.022

25. Zhang Guoqiang, Yan Zhenya. Focusing and defocusing mKdV equations with nonzero boundary conditions: Inverse scattering transforms and soliton interactions // Physica D: Nonlinear Phenomena. 2020. Vol. 410. 132521. https://doi.org/10.1016/j.physd.2020.132521

26. Vaneeva O. Lie symmetries and exact solutions of variable coefficient mKdV equations: An equivalence based approach // Communications in Nonlinear Science and Numerical Simulation. 2012. Vol. 17. Issue 2. P. 611-618. https://doi.org/10.1016/j.cnsns.2011.06.038

27. Абловиц М., Сигур Х. Солитоны и метод обратной задачи. М.: Мир, 1987.

28. Додд Р., Эйлбек Дж., Гиббон Дж., Моррис Х. Солитоны и нелинейные волновые уравнения. М.: Мир, 1988.

29. Нахушев А. М. Уравнения математической биологии. М.: Высшая школа, 1995.

30. Нахушев А. М. Нагруженные уравнения и их приложения // Дифференциальные уравнения. 1983. T. 19. № 1. С. 86-94. https://www.mathnet.ru/rus/de4747

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

31. Кожанов А. И. Нелинейные нагруженные уравнения и обратные задачи // Журнал вычислительной математики и математической физики. 2004. T. 44. № 4. С. 694-716. https://www.mathnet.ru/rus/zvmmf862

32. Hasanov A. B., Hoitmetov U. A. On integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing functions // Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan. 2021. Vol. 47. No. 2. P. 250-261. https://doi.org/10.30546/2409-4994.47.2.250

33. Hoitmetov U. A. Integration of the loaded KdV equation with a self-consistent source of integral type in the class of rapidly decreasing complex-valued functions // Siberian Advances in Mathematics. 2022. Vol. 33. No. 2. P. 102-114. https://doi.org/10.1134/S1055134422020043

34. Хасанов А. Б., Хоитметов У.А. Интегрирование общего нагруженного уравнения Кортевега-де Фриза с интегральным источником в классе быстроубывающих комплекснозначных функций // Известия высших учебных заведений. Математика. 2021. № 7. С. 52-66. https://doi.org/10.26907/0021-3446-2021-7-52-66

35. Хасанов А. Б., Хоитметов У. А. О комплекснозначных решениях общего нагруженного уравнения Кортевега-де Фриза с источником // Дифференциальные уравнения. 2022. Т. 58. № 3. P. 385-394.

36. Hoitmetov U. Integration of the loaded general Korteweg-de Vries equation in the class of rapidly decreasing complex-valued functions // Eurasian Mathematical Journal. 2022. Vol. 13. No. 2. P. 43-54. https://doi.org/10.32523/2077-9879-2022-13-2-43-54

37. Хасанов А. Б., Хоитметов У. А. Об интегрировании нагруженного уравнения мКдВ в классе быстроубывающих функций // Известия Иркутского государственного университета. Серия «Математика». 2021. Т. 38. С. 19-35. https://doi.org/10.26516/1997-7670.2021.38.19

38. Hoitmetov U. A. Integration of the sine-Gordon equation with a source and an additional term // Reports on Mathematical Physics. 2022. Vol. 90. Issue 2. P. 221-240. https://doi.org/10.1016/S0034-4877(22)00067-2

Поступила в редакцию 30.12.2022

Принята к публикации 17.04.2023

Хасанов Акназар Бекдурдиевич, д. ф.-м. н., профессор, кафедра дифференциальных уравнений, Самаркандский государственный университет, 140104, Узбекистан, г. Самарканд, Университетский бульвар, 15.

ORCID: https://orcid.org/0000-0003-2571-5179 E-mail: [email protected]

Хоитметов Умид Азадович, к. ф.-м. н., доцент, кафедра прикладной математики и математической физики, Ургенчский государственный университет, 220100, Узбекистан, г. Ургенч, ул. Х. Алимджа-на, 14.

ORCID: https://orcid.org/0000-0002-5974-6603 E-mail: [email protected]

Собиров Шехзод Кучкарбой угли, аспирант, кафедра прикладной математики и математической физики, Ургенчский государственный университет, 220100, Узбекистан, г. Ургенч, ул. Х. Алимджа-на, 14.

ORCID: https://orcid.org/0000-0003-0405-3591 E-mail: [email protected]

Цитирование: А. Б. Хасанов, У. А. Хоитметов, Ш. К. Собиров. Интегрирование уравнения мКдФ с нестационарными коэффициентами и дополнительными членами в случае движущихся собственных значений // Известия Института математики и информатики Удмуртского государственного университета. 2023. Т. 61. С. 137-155.

i Надоели баннеры? Вы всегда можете отключить рекламу.