Научная статья на тему 'INTEGRATED LOGISTICS SUPPORT FOR THE LIFE CYCLE OF BUILDING OBJECTS'

INTEGRATED LOGISTICS SUPPORT FOR THE LIFE CYCLE OF BUILDING OBJECTS Текст научной статьи по специальности «Строительство и архитектура»

CC BY
183
39
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
integrated logistical support / life cycle of a construction object / BIM technologies / information model / logistic analysis / интегрированная логистическая поддержка / жизненный цикл строительного объекта / BIM-технологии / информационная модель / логистический анализ

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Volodymir Marchuk, Henryk Dźwigoł

The role of integrated logistical support in the after-sales stages of the life cycle of construction sites is considered. It is shown that the effective management and operation of buildings and structures, their engineering equipment, is impossible without the analysis of logistical support, which is carried out at the design stage and is refined at the following stages of the life cycle of construction objects on the basis of accounting and analysis of operational information on the management of technical condition of construction. An information model of integrated logistic support for the life cycle of construction structures has been developed. It is shown that the core of the information model is an integrated information environment that contains information about the construction object, resources and processes, ensures that the data involved in the life cycle of the entity is stored and accessible. Data is added to the information environment by all participants throughout the lifecycle of the objects, allowing you to receive and analyze up-to-date project documentation and visualizations at any time. The stages of the life cycle of construction objects in an integrated information environment are analyzed.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Интегрированная логистическая поддержка жизненного цикла объектов строительства

Рассмотрены роль интегрированной логистической поддержки на после продажных стадиях жизненного цикла объектов строительства. Показано, что эффективное управление и эксплуатация зданий и сооружений, их инженерное оснащение, невозможно без проведения анализа логистической поддержки, осуществляемой на стадии проектирования и уточняется на последующих стадиях жизненного цикла строительных объектов на основании учета и анализа эксплуатационной информации по управлению техническим состоянием объектов строительства. Разработанная информационная модель интегрированной логистической поддержки жизненного цикла строительных сооружений. Показано, что ядром информационной модели является интегрированное информационное пространство, которое содержит сведения об объекте строительства, ресурсы и процессы, обеспечивает сохранение и доступность данных тем субъектам, которые принимают участие в жизненном цикле объекта. Данные добавляются в информационную среду всеми участниками в течение всего жизненного цикла объектов, что позволяет в любой момент времени получать актуальную проектную документацию и визуализации, а также ее анализировать. Проанализированы стадии жизненного цикла объектов строительства в интегрированном информационном пространстве.

Текст научной работы на тему «INTEGRATED LOGISTICS SUPPORT FOR THE LIFE CYCLE OF BUILDING OBJECTS»

UDC 65.014.1 DOI: https://doi.org/10.46783/smart-scm/2020-1-2

JEL Classification: C 51; F 15; L 11. Received: 10 April 2020

Marchuk V.Ye. Doctor of Engineering, Associate Professor, Professor of Logistics Department National Aviation University (Ukraine)

ORCID - 0000-0003-0140-5416 Researcher ID - S-6514-2018 Scopus author id: 56246790900

Henryk DZWIGOt PhD DSc, Associate professor, Professor - Organization and Management Silesian University of Technology in Gliwice (Poland)

ORCID - 0000-0002-2005-0078 Researcher ID - N-5498-2019 Scopus author id: -

INTEGRATED LOGISTICS SUPPORT FOR THE LIFE CYCLE OF

BUILDING OBJECTS

Volodymir Marchuk, Henryk Dzwigol. «Integrated logistics support for the life cycle of building objects». The role of integrated logistical support in the after-sales stages of the life cycle of construction sites is considered. It is shown that the effective management and operation of buildings and structures, their engineering equipment, is impossible without the analysis of logistical support, which is carried out at the design stage and is refined at the following stages of the life cycle of construction objects on the basis of accounting and analysis of operational information on the management of technical condition of construction. An information model of integrated logistic support for the life cycle of construction structures has been developed. It is shown that the core of the information model is an integrated information environment that contains information about the construction object, resources and processes, ensures that the data involved in the life cycle of the entity is stored and accessible. Data is added to the information environment by all participants throughout the lifecycle of the objects, allowing you to receive and analyze up-to-date project documentation and visualizations at any time. The stages of the life cycle of construction objects in an integrated information environment are analyzed.

Keywords: integrated logistical support, life cycle of a construction object, BIM technologies, information model, logistic analysis.

Володимир Марчук, Henryk Dzwigot. «1нтегрована лог'ктична тдтримка життевого циклу об'ект'!в буд'вництва». Розглянуто роль iнтегрованоï лог'1стичноï п'1дтримки на тсля продажних стадiях життевого циклу об'eктiв будiвництва. Показано, що ефективне управлiння i експлуата^я буд'тель i споруд, ïx '¡нженерне оснащення, неможлива без проведення анал'зу лог'1стичноï пдтримки, яка здйснюеться на стадп проектування i уточняеться на наступних стад'ях життевого циклу буд'тельних об'ектiв на постав! обл'щ та анал'ву експлуата^йноУ iнформац'п з управлння технчним станом об'ектiв буд'1вництва. Розроблена iнформацйна модель iнтегрованоï логстичноï п'1дтримки життевого циклу буд'тельних споруд. Показано, що ядром iнформацiйноï модел'1 е iнтегроване нформа^йне середовище, яке м'стить в'1домост'1 про об'ект буд'тництва, ресурси i процеси, забезпечуе збереження i доступшсть даних тим суб'ектам, що беруть участь у життевому циклу об'екту. Дан додаються в нформа^йне середовище уама

учасниками протягом всього життевого циклу o6'eKmie, що дозволяв в будь-який момент часу отримувати актуальну проектну документа^ю i в'вуал'вацП, а також TT анал'вувати. Проанал'зовано стадп життевого циклу об'екmiв будiвницmва в iнmегрованому iнформацiйному середовищi.

Кпючов'1 слова: Ытегрована лопстична тдтримка, життевий цикл будiвельного об'екту, BIM-технологп, шформацшна модель, лопстичний аналiз.

Владимир Марчук, Henryk Dzwigot. «Интегрированная логистическая поддержка жизненного цикла объектов строительства». Рассмотрены роль интегрированной логистической поддержки на после продажных стадиях жизненного цикла объектов строительства. Показано, что эффективное управление и эксплуатация зданий и сооружений, их инженерное оснащение, невозможно без проведения анализа логистической поддержки, осуществляемой на стадии проектирования и уточняется на последующих стадиях жизненного цикла строительных объектов на основании учета и анализа эксплуатационной информации по управлению техническим состоянием объектов строительства. Разработанная информационная модель интегрированной логистической поддержки жизненного цикла строительных сооружений. Показано, что ядром информационной модели является интегрированное информационное пространство, которое содержит сведения об объекте строительства, ресурсы и процессы, обеспечивает сохранение и доступность данных тем субъектам, которые принимают участие в жизненном цикле объекта. Данные добавляются в информационную среду всеми участниками в течение всего жизненного цикла объектов, что позволяет в любой момент времени получать актуальную проектную документацию и визуализации, а также ее анализировать. Проанализированы стадии жизненного цикла объектов строительства в интегрированном информационном пространстве.

Ключевые слова: интегрированная логистическая поддержка, жизненный цикл строительного объекта, BIM-технологии, информационная модель, логистический анализ.

Research Justification. Today, the construction projects' life cycle processes are undergoing major changes related to the rapid development of innovative technologies that allow to optimize the processes of buildings and structures' design, construction and operation, to solve complex problems of construction project management, to provide information support among all participants in the life cycle. The life cycle of construction sites is inextricably linked to the logistical support for managing the business processes of design, supply, construction, transportation, warehousing and after sale of facilities. This reinforces the need to develop and implement logistical approaches to managing the business processes of construction sites at all stages of the life cycle.

Publications review and analyzing unresolved issues. To date, the formation of logistic activity of construction industry enterprises and their participation in the life

cycle of construction objects is characterized by the presence of unjustified high logistics costs, direct material and financial losses, which lead to instability of their financial volatility. Especially for the stage of the construction facilities operation, which is the longest stage in the life cycle, and can last up to 50 years or more, and the costs may exceed five to seven times the nominal value of initial investment and three times the cost of construction [1].

It becomes evident that modern innovative tools need to be used to reduce the logistical costs of the construction life cycle. Today's tool is BIM (Building Information Modeling), an information modeling and lifecycle support for construction projects. BIM technologies are treated as the development of Continuous Acquisition and Life Cycle Support (CALS) technologies for construction projects. CALS technologies combine the principles and technologies of product's life cycle

information support at all its stages, and an integrated information environment utilization, based on the open architecture usage, international standards, database management, electronic exchange of data between participants of the life cycle within their powers [2].

BIM technologies allow to combine information already owned by the organization with the new knowledge that emerges in the company when moving to BIM. It provides data exchange between existing enterprise systems and the BIM model. The information model becomes a data provider for procurement systems, scheduling, project management, internal ERP and other enterprise systems. BIM modeling for building objects offers the following main benefits that an organization receives, namely [10]:

- virtual model of the building;

- individual parameters of the object;

- quality project documentation;

- the ability to quickly identify inaccuracies and errors in projects, as well as their immediate elimination;

- experimental methods of object examination under given different conditions;

- management and control of the object at all stages of the life cycle;

- concurrent information model use of a building or structure by several contracting organizations to perform their work;

- possibility of repair works, reconstruction of objects in accordance with operational requirements.

BIM technology demonstrates the ability to achieve high speed and quality of design and construction work, as well as significant cost savings.

Although the concept of BIM technology is relatively recent and constantly evolving, today it is a comparatively new type for buildings and structures 3D design. Unlike CAD, where systems based on simple lines and shapes are represented, BIM measurements of a building and all kinds of systems are made in the form of data based

on a single digital model, which includes three-dimensional objects whose characteristics and purpose are integrated synchronized [3].

Specialists of different companies and organizations (design, construction, operation) within the scope of their powers take part in the construction object's life cycle. Each participant in the life cycle introduces its conditions, changes and details in the information model of the building, which avoids gross mistakes during construction, reducing costs during operation. As a result, in the virtual model, in addition to the basic elements, a large number of objects (library elements) are created and supplemented. Thus, "archives" with various variants of building elements appear [4].

Basic information model formation allows to perform a preliminary logistic analysis of indicators, during which user can evaluate alternative measures to improve the performance and efficiency of the building. A virtual model of a construction object associated with an information database, in which each element of the model is assigned additional attributes.

The advantages of the virtual model include the consideration of all details, finished elements and nuances, clear structural and economic calculations, the materials library formation and analysis of the buildings behavior in emergencies [5]. Such libraries can contribute to the development of an accessible environment, since the basic elements have certain parameters and form. The model of such elements already contains technological nuances, details and other necessary information. At the project stage there will be no errors when creating ramps and other special elements, as it could be used the finished elements, adapted to the situation.

An integral part of a building information model is its Building Energy Modeling (BEM), which is widely used worldwide in the design of public and residential buildings [6, 7]. Currently, there are a large number of

software systems for energy modeling that can be used to solve a wide range of project tasks, as follows: development and selection of measures to improve the energy efficiency of buildings; estimation of recoupment of energy saving measures; selection of the optimal tariff for energy resources; determination of the operational cost (annual cost of energy) of the building; provide accurate values from solar radiation, including for modern buildings with complex architectural forms.

Implementation of BIM technologies is explained by the benefits from the use of this technology at different stages of the life cycle of a construction object, the submission of electronic documentation, simplification and reduction of construction costs, reconstruction, major repairs, increased control and supervision of construction, the ability to manage the project life cycle construction prior to its decommissioning. Thus, since 2016, the UK government [8], one of the leading countries in the use of BIM technologies, has mandated the use of BIM models, with the mandatory inclusion of digital data required for the operation phase of the building.

Effective management and operation of buildings and structures, their engineering equipment, is impossible without carrying out the analysis of logistical support at the design stage and their refinement at the next stages of the construction objects life cycle which is based on accounting and analysis of operational information for the technical condition control of the construction objects. Logistical support is not limited to the LC (life cycle) phase, as has been reported in many publications. Its mission is much broader, it affects all stages of the LC and aims to reduce logistics costs in the after-sales stages.

Problem statement. The purpose of the study is to analyze integrated logistics

support for construction sites, which is a set of management measures aimed at reducing logistics costs at the after sales stages of the life cycle.

Results of the study and their analysis.

Integrated logistical support is a set of management measures aimed at reducing logistics costs at the after-sales stages of the life cycle of construction sites.

It is carried out at all stages of the life cycle from the initial idea of the owner to the management, operation, maintenance and repair of objects and its subsequent decommissioning (dismantling). This involves the collection and comprehensive processing of all information about the object of construction (design, technological, operational, economic and other).

The level of detail is ensured by the fact that each life cycle participant, within his or her mandate, has access to the information about the object, which forms the fundamental basis for all decisions throughout the life cycle of the object.

The paper presents an information model of integrated logistics support for the life cycle of construction objects (Fig. 1), which is based on the conceptual model CALS [2]. The core of the information model is an integrated information environment that contains information about the construction object, resources and processes, ensures the storage and availability of data to those who involved in the life cycle of the object.

The data is added to the information environment by all participants throughout the life cycle of the objects, which allows to receive and analyze current project documentation and visualizations at any time. This is necessary for planning and managing business processes, designing, purchasing materials, coordinating work in different areas of the project, installation work, construction, operation, maintenance and repair.

Figure 1. Information model of integrated logistics support for the construction sites life

cycle

Integrated logistics support is one of the key concepts of the information model. It includes: logistical support analysis (logistic analysis), maintenance and repair planning, resource management, electronic maintenance and repair documentation. Logistic support analysis is carried out at all stages of the life cycle and is performed to ensure the necessary level of reliability of construction sites, as well as to establish requirements for: construction of construction facilities, placement of engineering and technical communications subject to regular maintenance, replacement and repair; technical systems and equipment; qualifications of service personnel; nomenclature, quantity and quality of resources (spare parts, supplies, etc.).

In the analysis of logistical support, an information flow is formed regarding the nomenclature and the required amount of resources to carry out and support the maintenance and repair of construction

objects. Logistic support analysis aims to reduce costs over the life cycle of construction projects.

The planning of maintenance and repair of objects is carried out at the design stage and is specified during the production and operation of the product.

In the integrated information environment of the information model, the life cycle stages of the construction objects are implemented, such as pre-design stage, design, construction, after sales (operation, maintenance and repair), dismantling of the objects function.

Pre-design stage is the initial stage at which ideas about the future object are formed. At this stage, the analysis and selection of the most appropriate solutions are performed, also it is needed to determine the functional purpose of the construction object, its appearance and other aspects. The result of the pre-design stage is a sketch of the object containing the basic technical

solutions that are needed to formulate a technical specification for the next stages of the life cycle. The sketch project allows to obtain a more complete and comprehensive assessment of the planned object and to identify immediately possible problems and shortcomings, which in the short term shortens the project development time at the design stage.

At the design stage, engineering and technical solutions are being developed, the reliability of structures and the possibility of their realization are determined. At this stage, one of the basic principles of integrated logistical support for CALS technology is being implemented - the principle of parallel engineering, which involves the execution of development and design processes while simulating the processes of building and operation of construction sites. Recommendations are being made for design changes to improve the maintenance of construction sites through functional analysis, as well as to analyze the construction of sites to test for spatial collisions, which eliminates most of the alterations in the construction process and avoids critical situations, that may occur during operation. On the basis of this information, they determine the need for resources, calculate the estimated cost of construction, prepare specifications for materials and equipment, elaborate units and specify other points.

The result of the design is a complete set of design documentation required for the installation and construction work. Most of the documentation is formed on the basis of an information model that reflects all the technical solutions needed to perform the construction work. Engineering systems and individual engineering elements reflect the calculated figures for the decisions taken (energy costs, pressure losses, electrical characteristics, etc.).

At the construction stage, building and assembly works are carried out in accordance with the basic set of working drawings (architectural model, model of engineering

systems, model of structures, master plan) with obligatory control over the construction process (quality of the works performed, compliance of the completed construction works with the working documentation, adherence to the calendar). With the help of visual planning and control, users could monitor the actual condition of construction objects, the flow of cash flows, moreover the necessary management information is obtained in real time, which helps not only to avoid mistakes in budgeting, but also allows to accomplish the set tasks precisely in time and with the slightest differences in estimates.

At the after-sales stage, the use of the results of logistic support analysis allows the owner to simulate different modes of operation of the object in the information model, to choose the best option based on the site needs, and to reduce the total cost of ownership. The safety of the construction sites during operation is ensured by the maintenance, periodic inspections and control tests, as well as checks of the foundation condition, building structures and systems of engineering and technical support through the implementation of routine preventive, routine repairs, sanitary maintenance of structures. All parameters, as well as the characteristics of building structures and systems of engineering and technical support, obtained during operation are recorded in the passport of the building, as well as recorded and stored in a single information model.

Thus, in addition to the obvious cost savings, it is possible to extend the life of the joint operation of construction sites due to the fact that all necessary information on the maintenance and repair of engineering and other equipment will be stored in a single model that can be accessed by life cycle participants within their authority, and timely repairs and maintenance minimize the likelihood of emergencies.

Conclusions. Integrated logistical support is one of the key concepts of the

information model, which is a set of management measures aimed at reducing the costs of after-sales stages of construction objects life cycle. The main process of integrated logistical support is logistic analysis, which, in addition to the obvious cost savings, allows to extend the life of construction objects by using data of a single model and the possibility of access within the

authority to all participants in the life cycle. The information obtained helps to reduce the occurrence of emergencies, reduce the number of errors, improve communication between project participants, reduce the use of resources and improve the quality of the construction object.

References

13. Selyutina L.G. Sistemnyiy podhod k resheniyu zadach v sfere proektirovaniya i upravleniya stroitelstvom / L.G. Selyutina // KANT. - 2015. - # 2 (15). -S. 71-72.

14. Sudov E.V., Levin A.I. Kontseptsiya razvitiya CALS-tehnologiy v promyishlennosti Rossii / NITs CALS-tehnologiy «Prikladnaya logistika». M.: Ministerstvo promyishlennosti, nauki i tehnologiy RF, 2002. - 131 s.

15. Informatsionnoe modelirovanie ob'ektov stroitelstva ili kak ponyat BIM? [Elektronniy resurs] - Rezhim dostupu: http://openbim.ru/events/news/20141208-1457.html.

16. Talapov V.V. Tehnologiya BIM: sut i osobennosti vnedreniya informatsi-onnogo modelirovaniya zdaniy / V.V. Talapov. - M.: DMK Press, 2015. - 410 s.

17. Eastman C., Teicholz P., Sacks R., Liston K. BIM Handbook: A Guide to Build—ing Information Modeling for Owners, Managers, Designers, Engineers and Contractors. John Wiley & Sons, Inc., 2011. - 611 p.

18. Reinhart C.F., Cerezo Davila C. Urban building energy modeling - a review of a nas—cent field. Building and Environment. 2016. - 97. - P. 196-202.

19. Ahn K.U., Kim Y.J., Park C.S., Kim I., Lee K. BIM interface for full vs. semi-automated building energy simulation. Energy and Buildings. 2014. - 68. - P. 671-678.

20. Natsionalnyiy otchet po BIM-tehnologiyam v Velikobritanii. [Elektronniy resurs] - Rezhim dostupu: https://www.thenbs.com/knowledge/national-bim-report-2017.

21. BIlik, A.S. VIM modelyuvannya. Oglyad mozhlivostey ta perspektivi v UkraYinI [Tekst] / A.S. BIlik, M.A. BelyaEv // Promislove budIvnitstvo ta InzhenernI sporudi. - 2015. - #2. - S. 9-15.

22. Building Information Modeling - tehnologii XXI veka. [Elektronniy resurs] - Rezhim dostupu: https://www.uscc.ua/ru/infocentr/stati-i-intervyu/building-information-modeling-tekhnologii-XXI-veka.html#share-pdf.

Список викорисганоУ л^ератури

13. Селютина Л.Г. Системный подход к решению задач в сфере проектирования и управления строительством / Л.Г. Селютина // KANT. - 2015. - № 2 (15). -С. 71 -72.

14. Судов Е.В., Левин А.И. Концепция развития CALS-технологий в промышлен—ности России / НИЦ CALS-технологий «Прикладная логистика». М.: Министерство про—мышленности, науки и технологий РФ, 2002. - 131 с.

15. Информационное моделирование объектов строительства или как понять BIM? [Електронний ресурс] - Режим доступу: http://openbim.ru/events/news/20141208-1457.html.

16. Талапов В.В. Технология BIM: суть и особенности внедрения информаци-онного моделирования зданий / В.В. Талапов. - М.: ДМК Пресс, 2015. - 410 с.

17. Eastman C., Teicholz P., Sacks R., Liston K. BIM Handbook: A Guide to Build-ing Information Modeling for Owners, Managers, Designers, Engineers and Contractors. John Wiley & Sons, Inc., 2011. - 611 p.

18. Reinhart C.F., Cerezo Davila C. Urban building energy modeling - a review of a nas-cent field. Building and Environment. 2016. - 97. - P. 196-202.

19. Ahn K.U., Kim Y.J., Park C.S., Kim I., Lee K. BIM interface for full vs. semi-automated building energy simulation. Energy and Buildings. 2014. - 68. - P. 671-678.

20. Национальный отчет по BIM-технологиям в Великобритании. [Електронний ресурс] - Режим доступу: https://www.thenbs.com/knowledge/national-bim-report-2017.

21. Бтик, А.С. В1М моделювання. Огляд можливостей та перспективи в УкраТы [Текст] / А.С. Бтик, М.А. Беляев // Промислове буфвництво та Ыженеры споруди. - 2015. -№2. - С. 9-15.

22. Building Information Modeling - технологии XXI века. [Електронний ресурс] - Режим доступу: https://www.uscc.ua/ru/infocentr/stati-i-intervyu/building-information-modeling-tekhnologii-XXI-veka.html#share-pdf.

i Надоели баннеры? Вы всегда можете отключить рекламу.