Научная статья на тему 'Innovative safety systems for modern vehicles'

Innovative safety systems for modern vehicles Текст научной статьи по специальности «Строительство и архитектура»

CC BY
345
63
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
СИСТЕМА БЕЗОПАСНОСТИ / АВАРИЙНОСТЬ / ЗАТРАТЫ / ДОРОЖНО-ТРАНСПОРТНЫЕ ПРОИСШЕСТВИЯ / АВТОПИЛОТИРУЕМЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА / SECURITY SYSTEM / ACCIDENT RATE / COSTS / TRAFFIC ACCIDENTS / AUTOPILOT VEHICLES

Аннотация научной статьи по строительству и архитектуре, автор научной работы — Evtukov S.S., Golov E.V., Ivanov N.A.

The paper considers the innovative security system of modern vehicles V2X (Vehicle-to-Everytning), its possible use and partial implementation on public roads, as well as the sub-system Vehicle-toEverytning: Vehicle-to-Infrastructuret (V2I), Vehicle-to-Vehicle (V2V,), Vehicle-to-network (V2N). This system is a promising direction for the study of engineers, programmers, communications workers from around the world. The purpose of this article is: to acquaint the reader with the V2X technology and to show the possible application of this technology on the territory of the Russian Federation on major highways with a dedicated road lane for the movement of autopilot vehicles. A new systematic approach to the organization of road safety in the future will significantly reduce accidents on public roads, the cost of eliminating the consequences of road traffic accidents, the cost of transporting goods and increase the capacity of existing road networks. The creation of such dedicated road lanes will initiate the gradual introduction of unmanned vehicles into the daily life of society, which will allow the Russian Federation to keep up with global trends and the prospect of significantly reducing road mortality by reducing the human factor's influence on the situation on public roads. The obtained data and experience in the exploitation of the above technologies on the dedicated road lane will allow in the future to modernize, change and improve the whole industry of autopilot vehicles around the world.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Инновационные системы безопасности современных транспортных средств

Рассматривается инновационная система безопасности современных транспортных средств V2X (Vehicle-to-Everytning), а также её подсистемы: автомобиль инфраструктура (Vehicle-to-Infrastructure, V2I), автомобиль автомобиль (V2V, Vehicle-to-Vehicle), автомобиль сеть (Vehicle-to-network, V2N). Данная система является перспективным направлением для изучения специалистами из разных стран мира. Целью данной статьи является ознакомление читателя с технологией V2X и возможным применением этой технологии на территории РФ на крупных магистралях с выделенной полосой для движения автопилотируемых транспортных средств. Новый системный подход к организации безопасности дорожного движения в перспективе позволит существенно снизить аварийность на дорогах общего пользования, затраты на устранение последствий дорожно-транспортных происшествий, стоимость перевозок грузов и повысить пропускную способность уже существующих дорожных сетей. Создание таких выделенных дорожных полос приведет к постепенному внедрению беспилотных транспортных средств в повседневную жизнь общества, что позволит Российской Федерации идти в ногу с глобальными тенденциями и перспективой значительного снижения смертности на дорогах за счет уменьшения влияния человеческого фактора на ситуацию на дорогах общего пользования. Полученные данные и опыт использования вышеуказанных технологий на выделенной полосе движения позволят в будущем модернизировать, изменить и усовершенствовать всю индустрию автопилотных транспортных средств по всему миру.

Текст научной работы на тему «Innovative safety systems for modern vehicles»

INNOVATIVE SAFETY SYSTEMS FOR MODERN VEHICLES

DOI 10.24411/2072-8735-2018-10283

Stanislav S. Evtukov,

Saint Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia, ese-89@yandex.ru

Egor V. Golov,

Saint Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia, egorgoloff@yandex.ru

Nikita A. Ivanov,

Saint Petersburg State University of Architecture and Civil

Engineering, St. Petersburg, Russia, Keywords: security system, accident rate, costs,

nikital9962323@gmail.com traffic accidents, autopilot vehicles.

The paper considers the innovative security system of modern vehicles V2X (Vehicle-to-Everytning), its possible use and partial implementation on public roads, as well as the sub-system Vehicle-to-Everytning: Vehicle-to-Infrastructuret (V2I), Vehicle-to-Vehicle (V2V,), Vehicle-to-network (V2N). This system is a promising direction for the study of engineers, programmers, communications workers from around the world. The purpose of this article is: to acquaint the reader with the V2X technology and to show the possible application of this technology on the territory of the Russian Federation on major highways with a dedicated road lane for the movement of autopilot vehicles. A new systematic approach to the organization of road safety in the future will significantly reduce accidents on public roads, the cost of eliminating the consequences of road traffic accidents, the cost of transporting goods and increase the capacity of existing road networks. The creation of such dedicated road lanes will initiate the gradual introduction of unmanned vehicles into the daily life of society, which will allow the Russian Federation to keep up with global trends and the prospect of significantly reducing road mortality by reducing the human factor's influence on the situation on public roads. The obtained data and experience in the exploitation of the above technologies on the dedicated road lane will allow in the future to modernize, change and improve the whole industry of autopilot vehicles around the world.

Information about authors:

Stanislav S. Evtukov, Ph.D., Associate Professor, Saint Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia Egor V. Golov, assistant Professor, Saint Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia Nikita A. Ivanov, student, Saint Petersburg State University of Architecture and Civil Engineering, St. Petersburg, Russia

Для цитирования:

Евтюков С.С., Голов Е.В., Иванов Н.А. Инновационные системы безопасности современных транспортных средств // T-Comm: Телекоммуникации и транспорт. 2019. Том 13. №6. С. 71-76.

For citation:

Evtukov S.S., Golov E.V., Ivanov N.A.(2019). Innovative safety systems for modern vehicles. T-Comm, vol. 13, no.6, pр. 71-76.

TRANSPORT

Introduction

Modern vehicles have an advanced passive safely system that provides reliable protection for the driver and passengers in the event of a traffic accident. But passive safety is not enough, because it is easier to prevent the occurrence of a traffic accident than to eliminate possible damage. To this end, the engineers of leading automotive companies in cooperation with leading IT companies each year introduce new technological solutions to provide drivers and passengers with active safely systems.

At the moment, modern cars are equipped with such active safety devices: anti-lock braking system or ABS, traction control or ASC, course stability or ESP, braking force distribution system or EBD, differential lock, lifting and lowering assistance system, parking sensors, car detection system "Blind zones", a preventive system of emergency braking [ 1 J,

The above active safety systems are constantly being improved, improved and modernized, thereby gradually reducing the number of accidents on public roads. Nevertheless, the situation remains dramatic, according to the World Health Organization, about 1.35 million people die annually as a result of road traffic accidents {186 thousand of them are children), more than 3 thousand people die every day and about 100 thousand are seriously injured. This indicator has remained almost unchanged since 2007 [2].

The main culprit in most road accidents is usually not the condition of the vehicle or the road, but the driver himself, who for various reasons did not follow the rules of the road, violated work and rest schedules or did not use the provided means of protection. In addition to common causes, there are many purely Individual factors that contribute to deliberate violation of the ruies and an increase in the number of accidents. This is the so-called "human factor". By the way, an analysis of transport incidents shows that up to 80% of them are related to the human factor [3].

Referring to the official statistics on road traffic accidents for January - December 2018 in the Russian Federation. A total of 168099 traffic accidents occurred during this period, which is 0.8% less than in the same period of 2017 [4].

In view of the above information, it becomes obvious that the measures taken to organize traffic are not enough to ensure safety on public roads, the trend towards a reduction in road mortality is changing too slowly, and the approach must be radically changed.

Based on the data that the human factor is the main cause of accidents, it is logical to consider options to reduce the significance of the driver error behind the driving wheel.

At the moment, attempts are being made to introduce autopilot systems for modern vehicles, but these systems do not work perfectly due to the limited functionality of the equipment and software installed on the vehicle. The sophisticated and constantly improving autopilot algorithms have one significant limitation, namely, the range and accuracy of onboard sensors, such as lidars, radars and video cameras. [5]

Innovative technologies and examples

of their implementation

In order to complement the onboard sensors, to expand the ability of the vehicle to navigate and even communicate with other participants on the road in the world are researching innovative technology Vehicle-to-Everything(V2X),

Vehiele-to-Everything (V2X) technology is an intelligent transport system that allows you to create a single network of vehicle-controlled and, most importantly, safe vehicle traffic, taking into account information provided by the vehicles themselves, transport and urban infrastructure facilities, weather stations, and traffic control centers.

The Vehicle-to-Everything (V2X) system consists of the following subsystems: Vehiele-to-lnfrastructure (V2I), Vehicle-to-Vehicle (V2V), Vehicle-to-network (V2N).

Vehicle-to-vehicle, V2V is a system of interaction of one vehicle with another by a wireless connection, which allows you to exchange the necessary information about the location of the vehicle, the speed of movement, the expected trajectory of movement. The scope of this technology is great. For example, sensors of blind zones are installed in the ear, but this sensor does not always work correctly, and in this situation V2V technology comes to the driver's help, which with great accuracy will notify the driver about the vehicle following him in the blind zone and prevent a possible dangerous situation on the road. Another example of application is that a car column moves at an equal speed at ail equal safe distance from each other (using V2V technology), the car recognizes a potentially dangerous situation ahead (an accident, an emergency stop in front of a vehicle) and a column going from behind is informed of the need for braking, the entire column and nearby cars stop. As well as help when changing lanes on the principle of a blind zone, but with a large number of parameters, a warning about the danger of overtaking, warning of a possible collision at intersections, warning of movement on the opposite lane, cooperative adaptive cruise control (convoy).

Fig. 1. The truck warns about going to overtake a passenger car about the dangers of such a maneuver

Vehicle-to-Infrastructure, V2I is a vehicle interaction system with road and transport infrastructure. This system assumes that vehicles can exchange information with road signs, billboards, traffic lights, road markings and other types of road and transport infrastructure. Wireless devices along public roads will be able to notify the on-board computer of the car and the driver about possible dangers, road works, speed limits, and prevent speeding violations, road marking instructions f6).

The use of Vehicle-to-Infrastructure, V2I in the concept of "smart intersection":

Within the framework of this concept, each vehicle constantly informs those around its exact GPS coordinates, and the computer at the intersection receives this information and calculates the speed with which each approaching vehicle must be followed so as not to encounter perpendicular flow, maintaining the maximum throughput of this intersection (Fig, 2).

72

T-Comm Tom 13. #6-2019

¥

Fig. 2, Model of "smart intersection"

The concept assumes that a "smart intersection" can provide such throughput, where instead of a thousand cars, only ten vehicles per hour will have to slow down to zero, and more oflen when the intersection is not high and medium loaded, the vehicles will not stop at all [7].

In early October 2018, the Japanese automaker Honda demonstrated the work of the "smart intersection", built on the basis of V2X communications under the working name Smart Intersection. The "smart intersection" prompted road users about the dangers at the intersection. A "smart intersection" was deployed in the US city of Marysville. Ohio, as part of a pilot project 33 Smart Mobility Corridor, aimed at expanding the functionality of automotive sensors in order to prevent accidents [8].

In 2007, in the United Slates of America there were about 2.4 million accidents related to intersections, which is 40% of all registered accidents and 21.5% of accidents on roads. Intersections represent a disproportionate share Of road safety issues and are a national, state, and local priority in the United States [9].

In the first nine months of 2018, 119 thousand road accidents occurred, and 105 thousand due to traffic violations, of which the most common was non-compliance with the order of travel at intersections (20 thousand cases - 17% of the total), the report says traffic Ministry of Russia.

Vehicle-to-Network, V2N is a system that collects and processes information in a single traffic control center from all vehicles, transport infrastructure, satellites and weather stations, giving all participants and organizers accurate and up-to-date information about the situation on public roads. Information received in a single traffic control center allows you to analyze and organize all processes occurring on public roads with the greatest degree of automation, safety and efficiency (Fig. 3).

According to the information provided by the Reuters news agency, the European Union approved the allocation of 1.75 billion euros from the state budgets of France, Germany, Italy and the UK for the development of the Connected Car technology and microelectronics related to the Internet thing (loT). The main

goal is to research and develop innovative technologies, chips and sensors that can be embedded in devices, automatic unmanned vehicles, commercial and industrial devices. The project is expected to stimulate research and development in the field of the Internet ofThings and "connected cars" [10].

Roads«» i _

Urm I ITS-05 180Z.11 p

^ * ^ r Communication

^t'V*

Traffic Management and Information

^^^ ^Bfc ^^ Long Rdr)g6

Cloud CelHilsr Ccmfnumcalton

Services Nelwortt

Fig. 3. Schematic diagram of the work of Vehicle-to-Network, V2N

Based on the information provided by the magazine "Vestnik GLONASS" in Russia, the implementation of a pilot project to develop V2V and V2X technologies on the M11 highway, which was scheduled to start at the end of 2018, has not yet begun. Meanwhile, by delaying the start of this project, Russia risks becoming a "white spot" on whose territory the advanced functions of modern cars will not work. This was stated to journalists by the president of the non-profit partnership "Promoting the development and use of navigation technologies" and co-head of the Avtonet scientific-technical activity working group Alexander Gurko [11],

Autonomous vehicles, "connected" and electric cars should go along die M11. GLONASS NP completed draft design and is ready to implement the project. In Russia, this will be the first pilot project to develop technologies V2V ("car-car"), V21 ("car-infrastructure"). In Europe, there are about 12 such pilots being implemented. Already a survey of a 15 kin section on the Ml 1 highway has been carried out, the corresponding infrastructure has been made in cooperation from a dozen companies from various segments. The test scenario that should be worked out in this project was approved: a warning to the driver about an obstacle ahead of traffic, a warning about road works, blind zones when turning at an intersection, speed when approaching an intersection. The "first day" scenario is standardized. Currently there is a standardization of other scenarios related to traffic management and road safety [12].

The purpose of this article is to acquaint the reader with the V2X technology and the application of this technology on major highways with a dedicated lane for the movement of autopilot vehicles.

Technologies and algorithms of autopilot vehicles are currently not perfect, but only go through the next stage of their formation and development. Therefore, at the initial stages of even partial introduction of V2X technology, it will be hard to avoid distrust and sound skepticism on the part of users and other road users. Based on this idea, it can be assumed that the introduction of the V2X system in well-regulated areas could reduce the level of mistrust of users and road users.

TRANSPORT

T-Comm Tom 13. #6-2019

An automatic checkpoint (AC) should be provided at the entrance and exit from the designated area for autopilot transport (of the "Western High-Speed Diameter" type). Vehicles (car, truck, bus) with autopilot function must be equipped with a special transponder, which would notify the system thai this vehicle is indeed autopilot and can be admitted to a dedicated road lane for autopilot vehicles.

In theory, such a project can be made more financially profitable. For example, for drivers of a vehicle that is equipped with autopilot technology, can be provided special conditions on a dedicated road lane. Such a privilege can serve as increased maximum speed on the selected road lane. Of course, in this case, the above-mentioned transponder will also serve as a means of fee collection from the driver of a vehicle with autopilot.

Thanks to monitoring CCTV cameras, an emergency commissioner is ensured at the designated site - a person authorized to travel to the areas of the designated lanes in case of emergency situations (vehicle breakdowns, cargo drops, etc.).

Also, for safety and continuity of traffic flow, it is necessary to provide pockets for emergency stop. In the event of the slightest malfunction of the vehicle, the autopilot or driver will bring the vehicle to the nearest emergency stop pocket [15],

To designate dedicated lanes for an autopilot vehicle (ATS), it is proposed to adopt the road signs below. The original version of the sign belongs to the design studio of Artem Lebedev [16]. The following images is a revised version for dedicated lanes for unmanned vehicles. (Fig. 5 and 6).

Fig. 5. Road sign "Attention, Dedicated ruad for AV"

Fig. 6. Road sign "End of a dedicated road section for AV"

Conclusion

In perspective, the described model of a dedicated road lane for autopilot transport can be used for test implementation and testing. A dedicated lane for autopilot vehicles will reduce risks when using the autopilot, reduce costs for shipping goods to logistics companies, and increase the comfort and safety of ordinary drivers.

The creation of such dedicated road lanes will initiate the gradual introduction of unmanned vehicles into the daily life of society, which will allow the Russian Federation to keep up with global trends and the prospect of significantly reducing road mortality by reducing the human factor's influence on the situation on public roads.

References

1. Tyul'kin E.V., Evtyukov S.A., Stepina P.A. (2017), Fizicheskaya model' frontal'nogo naezda avtomobilya na pesbekhoda [Physical model of the front car hitting the pedestrian]. Vestnik Grazhdanskih Jnzhenerov. No. 3(62), pp. 259-264.

2. World Health Organization (20! 9). URL: https://www.wlio.mt/ru (Accessed 10 April 2019).

3. Evtyukov S.S., Golov E.V. Rekonslrukciva dorozhno-transportnyh pro'tsshestvij [Reconstruction of traffic accidents], lz-datel'skij dom "Petropolis", Sankt-Peterburg. 204 p.

4. State Traffic Inspectorate (2019) - URL: 1Шр5://гибдд.рф/ (Accessed 10 April 2019).

5. Evtyukov S.A., Terent'ev A.V., Ginzburg G. (2017). Me-todologiya upravleniya racional'nym srokom sluzhby avtomobilya [Methodology for managing a rational car life]. Mir Transporta i Tekhnologicheskih Mashin. No. 1(56), pp. 3-10.

6. Evtyukov S.S., Kurakina E.V. (2014). Vliyanie parametrov dorogi na opredelenie skorosti dvizheniya pri ekspertnom issledovanii DTP [The influence of road parameters on the determination of the speed of movement during an expert study of an accident]. Vestnik Grazhdanskih Inzhenerov. No. 1(42), pp. 103-108.

7. Mixed Integer Linear Programming (MILP) for Optimal Scheduling of Autonomous Vehicle Intersection Crossing (20)9) -URL: http://www.alirezafayazi.com/projects.litml (Accessed (0 April 2019).

8. Creating new ideas (2019) - URL: http://www.hondaresearch.coni/research.php {Accessed 10 April 2019).

9» Federal Highway Administration (2019) - URL: https://safety.fhwa.dot.gov/intersection (Accessed 10 April 2019).

10. European Commission. Press Release Database (2019) - URL: http://europa.eu/rapid/press-release_STATEMENT-18-6866_en.htm (Accessed 10 April 2019).

I 1. EURASIA News. The human factor is the basis of traffic safety (2019) - URL: http://www.cav.ru/publl.php?publid=2017-05a23 (Accessed 10 April 2019).

12. Interindustry Journal of Navigation Technologies. GLONASS Bulletin {2019) - URL: vestnik-glonass.ru/~ZOgud {Accessed 10 April 2019).

13. A V TO DOR Toll roads (2019) - URL: https://avtodor-tr.ru/ru/platnye-uchastki/m 11/ (Accessed 10 April 2019).

14. Kurakina E.V. (2017). Povyshenie effektivnosti nazemnyh transportno-tekhnologicheskih mashin v zimnih usloviyah [Improving the efficiency of ground transport and technological machines in winter conditions/. Vestnik Grazhdanskih Inzhenerov. No.2(6l), pp. 205-212.

15. Kurakina E.V. (2019), Issledovanie parametrov tormozheniya trailsportnyli sredstv [Investigation of vehicle braking parameters}. Vestnik Grazhdanskih Inzhenerov. No.2(43), pp. 127-134.

16. Artemy Lebedev Art-Smdio {2019) - URL: https://www.aniebedev.nl/ (Accessed 10 April 2019),

T-Comm Vol.I3. #6-20I9

TRANSPORT

ИННОВАЦИОННЫЕ СИСТЕМЫ БЕЗОПАСНОСТИ СОВРЕМЕННЫХ ТРАНСПОРТНЫХ СРЕДСТВ

Евтюков Станислав Сергеевич, Санкт-Петербургский государственный архитектурно-строительный университет,

г. Санкт-Петербург, Россия, ese-89@yandex.ru Голов Егор Викторович, Санкт-Петербургский государственный архитектурно-строительный университет,

г. Санкт-Петербург, Россия, egorgoloff@yandex.ru Иванов Никита Антонович, Санкт-Петербургский государственный архитектурно-строительный университет,

г. Санкт-Петербург, Россия, nikita19962323@gmail.com

Аннотация

Рассматривается инновационная система безопасности современных транспортных средств V2X (Vehicle-to-Everytning), а также её подсистемы: автомобиль - инфраструктура (Vehicle-to-Infrastructure, V2I), автомобиль - автомобиль (V2V, Vehicle-to-Vehicle), автомобиль - сеть (Vehicle-to-network, V2N). Данная система является перспективным направлением для изучения специалистами из разных стран мира. Целью данной статьи является ознакомление читателя с технологией V2X и возможным применением этой технологии на территории РФ на крупных магистралях с выделенной полосой для движения автопилотируемых транспортных средств. Новый системный подход к организации безопасности дорожного движения в перспективе позволит существенно снизить аварийность на дорогах общего пользования, затраты на устранение последствий дорожно-транспортных происшествий, стоимость перевозок грузов и повысить пропускную способность уже существующих дорожных сетей. Создание таких выделенных дорожных полос приведет к постепенному внедрению беспилотных транспортных средств в повседневную жизнь общества, что позволит Российской Федерации идти в ногу с глобальными тенденциями и перспективой значительного снижения смертности на дорогах за счет уменьшения влияния человеческого фактора на ситуацию на дорогах общего пользования. Полученные данные и опыт использования вышеуказанных технологий на выделенной полосе движения позволят в будущем модернизировать, изменить и усовершенствовать всю индустрию автопилотных транспортных средств по всему миру.

Ключевые слова: система безопасности, аварийность, затраты, дорожно-транспортные происшествия, автопилотируемые транспортные средства.

Литература

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

1. Тюлькин Е.В., Евтюков С.А., Степина П.А. Физическая модель фронтального наезда автомобиля на пешехода // Вестник „ Гражданских Инженеров. 2017. №3(62). С. 259-264. VZ

2. Всемирная организация здравоохранения [Электронный ресурс]. URL: https://www.who.int/ru.

3. Евтюков С.С., Голов Е.В. Реконструкция дорожно-транспортных происшествий (монография) // Издательский дом "Петрополис", Санкт-Петербург. 204 с.

4. Государственная инспекция дорожного движения [Электронный ресурс]. URL: Ы1^://гибдд.рф.

5. Евтюков С.А., Терентьев А. ., Гинзбург Г. Методология управления рациональным сроком службы автомобиля // Мир Транспорта и Технологических Машин. 2017. №1(56). С. 3-10.

6. Евтюков С.С., Куракина Е.В. Влияние параметров дороги на определение скорости движения при экспертном исследовании ДТП // Вестник Гражданских Инженеров. 2014. №1(42). С. 103-108.

7. Mixed Integer Linear Programming (MILP) for Optimal Scheduling of Autonomous Vehicle Intersection Crossing [Электронный ресурс]. - URL: http://www.alirezafayazi.com/projects.html.

8. Creating new ideas [Электронный ресурс]. - URL: http://www.hondaresearch.com/research.php.

9. Federal Highway Administration [Электронный ресурс]. - URL: https://safety.fhwa.dot.gov/intersection.

10. European Commission. Press Release Database [Электронный ресурс]. - URL: http://europa.eu/rapid/press-release_STATEMENT-l8-6866_en.htm.

11. ЕВРАЗИЯ Вести. Человеческий фактор - основа безопасности движения [Электронный ресурс]. - URL: http://www.eav.ru/publl.php?publid=20l7-05a23.

12. Межотраслевой журнал навигационных технологий Вестник ГЛОНАСС [Электронный ресурс]. - URL: vestnik-glonass.ru/~ZOgud.

13. АВТОДОР Платные дороги [Электронный ресурс]. - URL: https://avtodor-tr.ru/ru/platnye-uchastki/mll.

14. Куракина Е.В. Повышение эффективности наземных транспортно-технологических машин в зимних условиях // Вестник Гражданских Инженеров. 20l7. №2(6l). С. 205-2l2.

15. Куракина Е.В. Исследование параметров торможения транспортных средств // Вестник Гражданских Инженеров. 20l4. №2(43). С. l27-l34.

16. Студия Артемия Лебедева [Электронный ресурс]. - URL: https://www.artlebedev.ru.

Информация об авторах:

Евтюков Станислав Сергеевич, к.т.н., доцент, Санкт-Петербургский государственный архитектурно-строительный университет, г. Санкт-Петербург, Россия

Голов Егор Викторович, аспирант, Санкт-Петербургский государственный архитектурно-строительный университет, г. Санкт-Петербург, Россия Иванов Никита Антонович, студент, Санкт-Петербургский государственный архитектурно-строительный университет, г. Санкт-Петербург, Россия

T-Comm Уом 13. #6-2019

i Надоели баннеры? Вы всегда можете отключить рекламу.