Научная статья на тему 'Ингаляционные антибиотики в лечении тяжелой нозокомиальной пневмонии'

Ингаляционные антибиотики в лечении тяжелой нозокомиальной пневмонии Текст научной статьи по специальности «Клиническая медицина»

CC BY
119
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Общая реаниматология
Scopus
ВАК
Область наук
Ключевые слова
НОЗОКОМИАЛЬНАЯ ПНЕВМОНИЯ / NOSOCOMIAL PNEUMONIA / АНТИБИОТИКОТЕРАПИЯ / ANTIBIOTIC THERAPY / ИНГАЛЯЦИОННЫЕ АНТИБИОТИКИ / INHALED ANTIBIOTICS / РЕЗИСТЕНТНОСТЬ / RESISTANCE

Аннотация научной статьи по клинической медицине, автор научной работы — Кузовлев Артем Николаевич, Мороз В.В., Голубев А.М., Половников С.Г.

Нозокомиальная пневмония самая частая нозокомиальная инфекция в отделениях реаниматологии. Рациональная антибактериальная терапия основа лечения нозокомиальной пневмонии. В настоящее время остро стоит проблема резистентности возбудителей нозокомиальной пневмонии к большинству рекомендованных для ее лечения антибиотиков. Использование ингаляционных антибиотиков в комбинации с системными препаратами является эффективным и безопасным методом лечения тяжелой нозокомиальной пневмонии. В данном обзоре литературы приведена подробная характеристика современных возможностей ингаляционной антибиотикотерапии нозокомиальной пневмонии, описания препаратов, преимущества и недостатки этого метода лечения. Несмотря на недостаточную доказательную базу, в условиях современной полирезистентности микроорганизмов и отсутствия перспектив создания новых антибиотиков использование иналяционных антибиотиков является важной альтернативой в лечении тяжелой нозокомиальной пневмонии, вызванной полирезистентной грам-отрицательной флорой.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по клинической медицине , автор научной работы — Кузовлев Артем Николаевич, Мороз В.В., Голубев А.М., Половников С.Г.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Inhaled Antibiotics in the Treatment of Nosocomial Pneumonia

Nosocomial pneumonia is the most common nosocomial infection in intensive care units. Rational antibiotic therapy is the basis for the treatment of nosocomial pneumonia. There is currently a challenge of the pathogens of nosocomial pneumonia being resistant to most of the antibiotics recommended for its treatment. Inhaled antibiotics used in combination with systemic drugs are an effective and safe treatment for nosocomial pneumonia. This review of literature characterizes the current possibilities of inhaled antibiotic therapy for nosocomial pneumonia in detail and describes medicaments and the advantages and disadvantages of this treatment option. Despite insufficient evidence in circumstances where the microorganisms are polyresistant and where the design of novel antibiotics shows no promise, the use of inhaled antibiotics is an important alternative in the treatment of severe nosocomial pneumonia caused by polyresistant gram-negative bacteria

Текст научной работы на тему «Ингаляционные антибиотики в лечении тяжелой нозокомиальной пневмонии»

Inhaled Antibiotics in the Treatment of Nosocomial Pneumonia

A. N. Kuzovlev, V. V. Moroz, A. M. Golubev, S. G. Polovnikov

V. A. Negovsky Research Institute of General Reanimatology, Russian Academy of Medical Sciences, Moscow

Nosocomial pneumonia is the most common nosocomial infection in intensive care units. Rational antibiotic therapy is the basis for the treatment of nosocomial pneumonia. There is currently a challenge of the pathogens of nosocomial pneumonia being resistant to most of the antibiotics recommended for its treatment. Inhaled antibiotics used in combination with systemic drugs are an effective and safe treatment for nosocomial pneumonia. This review of literature characterizes the current possibilities of inhaled antibiotic therapy for nosocomial pneumonia in detail and describes medicaments and the advantages and disadvantages of this treatment option. Despite insufficient evidence in circumstances where the microorganisms are polyresistant and where the design of novel antibiotics shows no promise, the use of inhaled antibiotics is an important alternative in the treatment of severe nosocomial pneumonia caused by polyresistant gram-negative bacteria. Key words: nosocomial pneumonia, antibiotic therapy, inhaled antibiotics, resistance.

Nosocomial pneumonia

Nosocomial pneumonia (NP) — is a disease associated with a formation of new focal and infiltrative changes on the chest X-ray 48 hrs after the hospitalization along with the clinical data confirming their infectious nature (fever, purulent sputum or purulent discharge from the tracheo-bronchial tree, leukocytosis, etc.), excluding infections which were incubated on the admission [1].

Nosocomial pneumonia — is the most prevalent intensive care unit infection. The high prevalence of NP is

Correspondence to:

Artem Nikolaevich Kuzovlev E-mail: artem kuzovlev@mail.ru

due to the widespread and irrational use of antibiotics and artificial pulmonary ventilation. The Russian National data confirm that NP incidence in surgical patients is 6% after elective surgery and 15% after emergency surgery. The incidence of ventilator-associated pneumonia is 22% after elective surgery in ventilation longer than 2 days and 34,5% after emergency abdominal surgery; up to 55% in acute respiratory distress syndrome. Every day in intensive care unit stay increases the risk of NP by 3%. Nosocomial pneumonia significantly deteriorates the course of any disease, increase the duration of intensive care unit stay by 4,3—6,1 days and mortality. The attributable mortality of NP is between 5,8 to 27% [2—5].

The pathogenesis of NP in critically ill patients is based on an imbalance between the lung protective mechanisms and microbial aggression. The lung can be infected either exogenously or endogenously. Aspiration of pharyn-

geal, esophageal and stomach contents is the leading factor in NP pathogenesis. The risk of aspiration significantly increases in conscious impairment, dysphagia, deterioration of pharyngeal reflexes and intestinal peristalsis, in intubated patients. Tracheal intubation makes a way for bacterial migration into lungs. Bacterial biofilms formation occurs inside the tracheal tubes. Microbes in the biofilms are protected against antibiotics and immune system. Translocation of opportunistic microbes from the intestines is the other important pathogenetic factor of NP. Exogenous acquisition of NP may occur from the air, medical gases, respiratory devices, microbiota of medical personnel and other patients etc. [6—8]

The proved methods of NP prophylaxis in the intensive care unit include the 300 elevation of head, an early removal of nasogastric tubes, a continuous subglottic aspiration and a regular oral cleaning with watery chlorhexidine [8].

The key etiological agents of NP are cassociations of multiresistant gram-negative (Pseudomonas aeruginosa, Acinetobacter spp., Klebsiella pneumonia) and grampositive (Staphylococcus aureus) strains. The spectrum of NP agents differs among the intensive care units. Associations of 3—4 multiresistant strains of Pseudomonas aeruginosa (70—80%), Acinetobacter bau-manii/calcoaceticus (70—90%), Klebsilella pneumonia (30—40%), Proteus mirabilis (20—25%) were detected in our investigation; gram-positive strains were detected in 10—15% of patients (Staphylococcus aureus MRSA, Enterococcus faecalis, Enterococcus faecium) [9—13].

Rational antibiotic therapy is the background of NP treatment. Intravenous carbapenems, cephalosporins III— IV generations, protected anti-pseudomonal penicillines, aminoglycosides, fluoroquinolones, glycopeptides and their

combinations are recommended for NP treatment [9]. Early start of antibiotics improves outcomes, but the mortality and microbial resistance still remain extremely high. The problem of microbial resistance to the majority of antibiotics is of great significance. Pseudomonas aeruginosa, Acinetobacter spp., Burkholderia spp., Stenotrophomonas spp., have a natural property to form biolayers, which protect them against the immune system and antibiotics. There are currently no perspectives of producing new classes of antibiotics [8—9].

In view of the abovementioned special regimens of antibiotic therapy are recommended: increase of doses, continuous infusions, etc. Randomized controlled trial shows that continuous infusion of piperacillin/tazobactam and carbapenems decreases the mortality in NP. The main pitfall of intravenously administered antibiotics is their bad penetration into the lungs, which leads to the sputum concentrations lower than bectericidial. Increasing daily doses of antibiotics is related to a risk of selection of multiresis-tant strains, side-effects and superinfection. Theferore inhaled antibiotics (IA) as an adjunct to systemic ones present a good treatment modality [7, 9, 14—15].

Inhaled antibiotics

The inhaled root has long been used to administer various medicines: antibiotics, antifungals, antimycobacte-rials, immune supressors, insulin, vaccines, nitrous oxide, interferones, furosemide, in genotherapy of some diseases. Ehrmann S. et al. showed that 99% of German doctors use some inhaled preparations, 43% of them use nebulizers (55% — jet, 44% — ultrasound, 14% — mesh nebulizers). Eighty percent of them use inhaled colistin in their daily practice, and 30% use inhaled antibiotics minimum 2 times a year [16].

Inhaled antibiotics in modern medicine [22]

Antibiotic

Area of implementation

Dosage

AMINOGLYCOSIDES Amikacin Gentamycin Tobramycin

BETA-LACTAMES Aztreonam Cefotaxim, caftazidim

ANTIFUNGALS Аmfotericin B

Аmfotericin B lipid complex Аmfotericin B liposomal OTHERS Colistin

Pentamidin

Exacerbation of bronchoectatic disease, mycobacterial infections.

Exacerbation of bronchoectatic disease.

Cystic fibrosis — prophylaxis and treatment of exacerbations.

Treatment of nosocomial pneumonia.

Continuous therapy of bronchoectatic disease.

Continuous therapy in cystic fibrosis. Treatment of nosocomial pneumonia.

Continuous therapy of bronchoectatic disease.

Prophylaxis of invasive aspergillosis in oncohematology

and in solid organ transplantation.

Prophylaxis of invasive aspergillosis in oncohematology.

Prophylaxis of invasive aspergillosis in oncohematology.

Cystic fibrosis — prophylaxis and treatment of exacerbations. Treatment of nosocomial pneumonia.

Continuous therapy of bronchoectatic disease Prophylaxis of Pneumocystis spp. pneumonia in HIV patients

500 mg BID 80 mg BID 300 mg BID

80 mg BID

75 mg TID for 28 days 250 mg BID — 500 mg 4/day

20—25 mg/day

For ventilated patients — 50 mg/day 50 mg/day

For ventilated patients — 100 mg/day 12,5 mg

2 times/week for 2 days 1—2 million IU BID

300 mg/month

Inhaled colistin, tobramycin, cephalosporins, amphotericin B, pentamydin have been used for prophylaxis and treatment of various infections for more than 50 years now. Modern nebulizers help to administer nearly 50—70% of IA dose directly into the infection focus. It is noteworthy that in this case the local sputum concentration of antibiotics is significantly higher that after the intravenous administration, which is important when treating multiresistant strains and preventing the formation of resistance. Inhaled administration of antibiotics is related to less systemic tox-icity and a profound action on biolayers [17—22].

Inhaled colistin and inhaled aminoglycosides are the most frequently used IA in pulmonology and intensive care medicine [11—13, 23—39]. Aminoglycosides are the most suitable antibiotics for inhalation because they are bactericidial and concentration-dependant (high concentration for a short period of time) [29—32]. Also inhaled fluoroquinolones [40], cephalosporines [41], liposomal aminoglycosides [42]; aztreonam [43], combinations (fosfomycin/tobramycin, colitin/tobramycin, ciprofloxacin/colistin) [44—45] are used. Inhaled fos-fomycin is active against both gram-negatives and grampositives, but it is strongly recommended to combine it with other antibiotics to prevent a rapid resistance formation [46]. It is inexpedient to use inhaled beta-lac-tames, because they are concentration-dependant antibiotics, and therefore multiple inhalations will be required (e.g. every 3 hrs for ceftazidime). Carbapenems when inhaled induce allergic reaction: inhaled doripenem study was stopped at stage one due to this reason [20—21, 47]. Table deals with the currently used IA [22].

The majority of IA are used to treat acute and chronic pseudomonal infection in cystic fibrosis and bron-choectatic disease. Chronic preudomonal infection in cystic fibrosis increases mortality. Inhaled tobramycin (IT), colistin (50—75 mg BID-TID), aztreonam (75 mg TID within 28 days) and other antibiotics are used for continuous treatment of infectious complications of cystic fibrosis both in- and out-hospital. A 28-day course of IT is proved to be effective in eradication of Pseudomonas aeruginosa in cystic fibrosis (300 mg/day within 28 days, then 28-days break). But the recent meta-analysis shows that there are currently no evident data to support IA use in cystic fibrosis. Moreover, the increase of the prevalence of colistin and aminoglycoside resistant strains of Pseudomonas aeruginosa and gram-positive microbes is detected in cystic fibro-sis patients [27—30, 32—33, 36, 48].

There were no randomized multicenter trials of IA use in NP. Several small trials proved that IA in combination with systemic antibiotics decrease the symptoms of NP, facilitate weaning from ventilator, decrease the sputum microbes titer. There are also some data on IA efficacy in nosocomial tracheobronchitis. Lu Q. et al. showed the same efficacy of systemic and inhaled ceftazidime and amikacin, but a lower rate of resistance formation in IA groups. It is noteworthy that IA in this study were used as a monotherapy (ceftazidime 15 mg/kg every 3 hrs., amikacin 25 mg/kg/day). Several cases of exhalation filter obstruction

were detected [41]. The same group of authors proved later the same efficacy of inhaled colistin and combination of intravenous beta-lactames and aminoglycosides in NP patients caused by Pseudomonas aeruginosa and Acinetobacter baumanii [49]. Korbila I. et al. showed more rapid NP resolution in combination of inhaled and intravenous forms of colistin [23]. Arnold H. et al. in the retrospective trial showed a higher survival in NP patients treated with IT [31]. All the abovementioned trials showed a low threshold of resistance emergence and low incidence of side effects in IA use.

Our data on the inhaled tobramycin use in septic patients with NP proved its efficacy and safety: decrease of systemic inflammation and acute respiratory insufficiency signs 2,3±1,2 after the treatment onset. Eradication of microbes in sputum was detected in 28% of patients, in other patients a decrease of microbial titer to 103-4 CFU/ml was detected. Deescalation of antibiotic therapy was possible in 20% of patients treated with IT. It is noteworthy that 20% of patients were in vitro resistant to tobramycin, but it was clinically effective, probably due to a local superconcentration. Treatment with IT was associated with an increase of sensitivity of microbes to antibiotics they were prior resistant to (40% of patients). This is probably due to IT effects on biolayers. Positive chest X-ray dynamics was detected in 60% of patients 9,0±2,5 days after the treatment onset. The treatment with IT made it possible to wean 30% of patients on the day 5,2±1,7. Hearing loss and tinnitus was detected only in 2 patients in our study. There were no cases of bronchospasm or kidney dysfunction in our study, which is in accordance with the other trials [11—13].

Only special preparations for inhalation and modern nebulizers must be used for an effective treatment with IA. The preparation for inhalation use should not contain some conservatives and should not be hyperosmolar, should be pH neutral and contain chlorides to prevent bronchospasm and cough [22]. Mesh nebulizers are most suitable for IA administration. This type of nebulizers forms 2.1 [im particles and provides a delivery of 5—70% of drug dose into the lungs; temperature of preparation remains constant during the aerosol formation; the air flow minimally affects the ventilation parameters; constant humidification of air can be continued. Instillation of antibiotics through the intubation or tracheostomic tube is ineffective and must never be used [22].

Inhaled antibiotics are not used as a monotherapy without the systemic antibiotics, because their absorbtion into the blood is low (2—4%) and not sufficient to treat the concomitant extrapulmonary infections and moreover insufficient to reach the alveoli [19—22, 50]. But we have a clinical experience of an effective monotherapy with IT in a patient with severe allergic reaction to systemic antibiotics. Currently it is not recommended to use IA for the NP prophylaxis [22, 50—51].

Use of IA is related to some problems. The penetration of IA into the obstructed airways is deteriorated. A possible inactivation of IA in sputum should be taken into account. This effect is mostly profound in aminoglycosides.

A 25-fold increase over the minimal inhibitory concentration is required to overcome this inactivation. Changes of physico-chemical properties of IA during the aerosol formation due to heating, cooling, vibration, etc. (more profound in jet nebulizers), local and systemic toxic effects, bron-choconstrictive effects of conservatives should be noted. The bronchospasm is mostly induced by the inhaled colistin. Only special preparations for inhalation must be used to prevent these complications. Inhaled antibiotics and nebulizers are expensive, their use is associated with the environment pollution and resistance formation [22, 50].

Formation of microbial resistance is still a problem, but as it has been mentioned, the rate of resistance forma-

References

1. Matkevich V.A., Luzhnikov EA., Ilyashenko K.K., Petrov S.N., Nikulina V.P., Evdokimova N.V. Vliyanie kishechnogo lavazha na razvitie pnevmonii u bolnykh s ostrymi otravleniyami psikhofarmakologicheskimi sredstvami. [Impact of intestinal lavage on the development of pneumonia in patients with acute poisonings by psychopharmacological agents]. Obshchaya Reanimatologiya. 2011; 7 (2): 20—24. [In Russ.]

2. Smelaya T.V., Salnikova L.E., Moroz V.V., Golubev A.M., Zarzhetsky Yu.V., Rubanovich A.V. Genetichesky polimorfizm i chastota razvitiya oslozh-nenii pri pnevmonii razlichnogo genezisa. [Genetic polymorphism and the rate of development of complications in pneumonia of varying genesis]. Obshchaya Reanimatologiya. 2011; 7 (2): 10—16. [In Russ.]

3. Khubutiya M.Sh, Shabanov A.K., Chernenkaya T.V., Godkov M.A., Dorfman A.G. Infektsionnye legochnye oslozhneniya v reanimatsii i intensivnoi terapii u postradavshikh s sochetannoi travmoi. [Infectious pulmonary complications in intensive care unit victims with concomitant injury]. Obshchaya Reanimatologiya. 2011; 7 (4): 24—27. [In Russ.]

4. Chuchalin A.G. (red.). Nozokomialnaya pnevmoniya u vzroslykh. Natsionalnye rekomendatsii. [Nosocomial pneumonia in adults. National guidelines]. Moscow: Pfaizer; 2009: 92. [In Russ.]

5. Bekaert M, Timsit J.F., Vansteelandt S., Depuydt P., Vesin A., Garrouste-Orgeas M, Decruyenaere J., Clec'h C., Azoulay E., Benoit D.; Outcomerea Study Group. Attributable mortality of ventilatorassociated pneumonia: a reappraisal using causal analysis. Am. J. Respir. Crit. Care Med. 2011; 184 (10): 1133-1139. http://dx.doi.org/10.1164/rccm.201105-08670C. PMID: 21852541

6. Karpun N.A., Moroz V.V., Klimova G.M. Profilaktika nozokomial-nykh infektsii dykhatelnykh putei. [Prevention of nosocomial infections of the respiratory tract]. Obshchaya Reanimatologiya. 2007; 3 (3): 100—104. [In Russ.]

7. Shabanov A.K., Khubutiya M.Sh., Bulava G.V., Beloborodova N.V., Kuzovlev A.N., Grebenchikov O.A., Kosolapov D.A., Shpitonkov M.I. Dinamika urovnya prokaltsitonina pri razvitii nozokomialnoi pnev-monii u postradavshikh s tyazheloi sochetannoi travmoi v otdelenii reanimatologii. [Time course of changes in the level of procalcitonin in the development of nosocomial pneumonia in victims with severe concomitant injury in an intensive care unit]. Obshchaya Reanimatologiya. 2013; 9 (5): 11—18. [In Russ.]

8. Moroz V.V., Smelaya T.V., Golubev A.M., Salnikova L.E. Genetika i med-itsina kriticheskikh sostoyanii: ot teorii k praktike. [Genetics and medicine of critical conditions: from theory to practice]. Obshchaya Reanimatologiya. 2012; 8 (4): 5—12. [In Russ.]

9. Golubev A.M., Smelaya T.V., Moroz V.V., Popov A.A., Tolbatov AA., Medunetskaya S.V. Vnebolnichnaya i nozokomialnaya pnevmoniya: kliniko-morfologicheskie osobennosti. [Community-acquired and nosocomial pneumonia: Clinical and morphological features]. Obshchaya Reanimatologiya. 2010; 6 (3): 5—14. [In Russ.]

10. Chuchalin A.G. (red.). Respiratornaya meditsina. Rukovodstvo. [Respiratory medicine. A manual]. Moscow: GEOTAR-Media; 2007: 757. [In Russ.]

11. Valencia M, Torres A. Ventilator-associated pneumonia. Curr. Opin. Crit. Care. 2009; 15 (1): 30—35. http://dx.doi.org/10.1097/MCC. 0b013e3283220e78. PMID: 19186407

12. Gilbert D.N., Moellering R.C., Eliopoulos G.M., Chambers H.F., SaagM.S. The Sanford guide to antimicrobial therapy 2012. Antimicrobial Therapy Inc.; 2012: 232.

13. Koulenti D, Lisboa T., Brun-Buisson C., Krueger W., Macor A., Sole-ViolanJ., Diaz E., Topeli A., DeWaele J., Carneiro A., Martin-Loeches I., Armaganidis A., RelloJ.; EU-VAP/CAP Study Group. Spectrum of practice in the diagnosis of nosocomial pneumonia in patients requiring

tion is lower in IA than in intravenous antibiotics. The informativity of sputum microbiology decreases in IA use: the absence of microbes in sputum does not mean their absence in distal parts of tracheobronchial tree and in alveoli. There are currently no inhaled anti-gram-positive antibiotics [22, 50].

Thus, the use of IA in combination with the intravenous administration is an efficient and safe treatment modality for severe NP caused by gram-negative strains. In spite of low evidence for this treatment method, the current situation of high microbial resistance and no perspectives of new antibiotics development rises the significance of this treatment modality.

mechanical ventilation in European intensive care units. Crit. Care Med. 2009; 37 (8): 2360—2368. http://dx.doi.org/10.1097/CCM. 0b013e3181a037ac.PMID: 19531951

14. Moroz V.V., Kuzovlev A.N., Polovnikov S.G., Stets V.V., Varvarin V.V. Ingalyatsionnyi tobtamitsin v lechenii tyazhelykh nozokomialnykh pnevmonii. [Inhaled tobramycin in the treatment of severe nosocomial pneumonias]. Obshchaya Reanimatologiya. 2012; 8 (2): 5—10. [In Russ.]

15. Polovnikov S.G., Kuzovlev A.N., Ilyichev A.N. Opyt ispolzovaniya ingaly-atsionnogo tobramitsina v lechenii tyazheloi nozokomialnoi pnevmonii. [Experience with inhaled tobramycin in the treatment of severe nosocomial pneumonia]. Pulmonologiya. 2011; 2: 109—112. [In Russ.]

16. Kuzovlev A., Polovnikov S., Stec V., Varvarin V. Efficacy of inhaled tobramycin in severe nosocomial pneumonia. Crit. Care. 2012; 16 (Suppl 1): P71. http://dx.doi.org/10.1186/cc10678.

17. Tamma P.D., Putcha N., Suh Y.D., Van Arendonk K.J., Rinke M.L. Does prolonged beta-lactam infusions improve clinical outcomes compared to intermittent infusions? A metaanalysis and systematic review of randomized, controlled trials. BMC Infect. Dis. 2011; 11: 181. http://dx.doi.org/10.1186/1471-2334-11-181. PMID: 21696619

18. Falagas M.E., Tansarli G.S., Ikawa K., Vardakas K.Z. Clinical outcomes with extended or continuous versus short-term intravenous infusion of car-bapenems and piperacillin/tazobactam: A systematic review and meta-analysis. Clin. Infect. Dis. 2013; 56 (2): 272-282. http://dx.doi.org/10. 1093/cid/cis857. PMID: 23074314

19. Ehrmann S., Roche-Campo F., Sferrazza Papa G.F., Isabey D., Brochard L., Apiou-Sbirlea G.; REVA Research Network. Aerosol therapy during mechanical ventilation: an international survey. Intensive Care Med. 2013; 39 (6): 1048—1056. http://dx.doi.org/10.1007/s00134-013-2872-5. PMID: 23525741

20. PalmerL.B. Aerosolized antibiotics in the intensive care unit. Clin. Chest Med. 2011; 32 (3): 559—574. http://dx.doi.org/10.1016/j.ccm. 2011.05.012. PMID: 21867823

21. Tolker-Nielsen T., H0iby N. Extracellular DNA and F-actin as targets in antibiofilm cystic fibrosis therapy. Future Microbiol. 2009; 4 (6): 645—647. http://dx.doi.org/10.2217/fmb.09.38. PMID: 19659420

22. Dhand R. The role of aerosolized antimicrobials in the treatment of ventilator-associated pneumonia. Respir. Care. 2007; 52 (7): 866—884. PMID: 17594731

23. Ioannidou E., Siempos I., Falagas M. Administration of antimicrobials via the respiratory tract for the treatment of patients with nosocomial pneumonia: a meta-analysis. J. Antimicrob. Chemother. 2007; 60 (6): 1216—1226. http://dx.doi.org/10.1093/jac/dkm385. PMID: 17934205

24. Hudson R., Olson Blair B. Inhaled antibiotics for Gram-negative respiratory infections. Future Med. Chem. 2011; 3 (13): 1663—1677. http://dx.doi.org/10.4155/fmc.11.114. PMID: 21942255

25. Le J., Ashley E.D., Neuhauser M.M., Brown J., Gentry C., Klepser M.E., Marr A.M., Schiller D., Schwiesow J.N., Tice S., VandenBussche H.L., Wood G.C.; Society of Infectious Diseases Pharmacists Aerosolized Antimicrobials Task Force. Consensus summary of aerosolized antimicrobial agents: application of guideline criteria. Insights from the Society of Infectious Diseases Pharmacists. Pharmacotherapy. 2010; 30 (6): 562—584. http://dx.doi.org/10.1592/phco.30.6.562.PMID: 20500046

26. Korbila I., Michalopoulos A., Rafailidis P.I., Nikita D., Samonis G., Falagas M.E. Inhaled colistin as adjunctive therapy to intravenous col-istin for the treatment of microbiologically documented ventilator-associated pneumonia: a comparative cohort study. Clin. Microbiol. Infect. 2010; 16 (8): 1230—1236. http://dx.doi.org/10.1111/j.1469-0691.2009.03040.x. PMID: 19732088

27. Michalopoulos A., Fotakis D., Virtzili S., Vletsas C., Raftopoulou S., Mastora Z., Falagas M.E. Aerosolized colistin as adjunctive treatment of ventilator-associated pneumonia due to multidrug-resistant Gram-negative bacteria: a prospective study. Respir. Med. 2008; 102 (3): 407—412.

http://dx.doi.org/10.1016/j.rmed.2007.10.011. PMID: 18060758

28. Michalopoulos A., Papadakis E. Inhaled anti-infective agents: emphasis on colistin. Infection. 2010; 38 (2): 81—88. http://dx.doi.org/ 10.1007/s15010-009-9148-6. PMID: 20191398

29. Avdeyev S.N., Karchevskaya NA., Chuchalin A.G. Opyt ispolzovaniya ingalyatsionnogo tobramitsina pri nozokomialnoi pnevmonii. [Experience with inhaled tobramycin in nosocomial pneumonia]. Lechebnoe Delo. 2009; 2: 80—88. [In Russ.]

30. Amelina E.L., Chuchalin A.G. Ingalyatsionnyi tobramitsin v lechenii sinegnoinoi infektsii u bolnykh mukovistsidozom. [Inhaled tobramycin in the treatment of Pseudomonas aeruginosa in patients with cystic fibrosis]. Pulmonologiya. 2009; 5: 120—126. [In Russ.]

31. Belousov Yu.B, Zyryanov S.K., Sokolov A.V. Effektivnost i bezopasnost rastvora tobramitsina dlya ingalyatsii v lechenii sinegnoinoi infektsii pri mukovistsidoze. [Efficacy and safety of tobramycin solution for inhalations in the treatment of Pseudomonas aeruginosa infection in cystic fibrosis]. Pulmonologiya. 2010; 2: 114—119. [In Russ.]

32. Kapranov N.I., Kashirskaya N.Yu., Rodionovich A.M., Amelina E.L., Chuchalin A.G, Gembitskaya T.E., Chermensky A.G., Orlov A.V., Varoli G., Monici Preti P. Klinicheskoe znachenie spetsialnoi aerozolnoi formy tobramitsina v lechenii khronicheskogo bronkholegochnogo protsessa u bolnykh mukovistsidozom. [Clinical value of special tobramycin aerosol formulation in the treatment of a bronchopulmonary process in patients with cystic fibrosis]. Pulmonologiya. 2008; 3: 20—27. [In Russ.]

33. Chermensky A.G, Gembitskaya T.E. Ispolzovanie ingalyatsionnogo tobramitsina u bolnykh mukovistsidozom. [Use of inhaled tobramycin in patients with cystic fibrosis]. Terapevtichesky Arkhiv. 2010; 82 (8): 76—78. [In Russ.]

34. Arnold H., Sawyer A., Kollef M. Use of Adjunctive aerosolized antimicrobial therapy in the treatment of Pseudomonas aeruginosa and Acinetobacter baumannii ventilator-associated pneumonia. Respir. Care. 2012; 57 (8): 1226—1233. http://dx.doi.org/10.4187/respcare.01556. PMID: 22349038

35. Chuchalin A., Amelina E., Bianco F. Tobramycin for inhalation in cystic fibrosis: beyond respiratory improvements. Pulm. Pharmacol. Ther. 2009; 22 (6): 526—532. http://dx.doi.org/10.1016/j.pupt.2009.06.001. PMID: 19616111

36. Drobnic M.E., Sune P., Montoro J.B., Ferrer A., Orriols R. Inhaled tobramycin in non-cystic fibrosis patients with bronchiectasis and chronic bronchial infection with Pseudomonas aeruginosa. Ann. Pharmacother. 2005; 39 (1): 39—44. http://dx.doi.org/10.1345/aph. 1E099. PMID: 15562142

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

37. Hallal A., Cohn S.M., Namias N., Habib F., Baracco G., Manning RJ., Crookes B., Schulman C.I. Aerosolized tobramycin in the treatment of ventilator-associated pneumonia: a pilot study. Surg. Infect. (Larchmt). 2007; 8 (1): 73—82. http://dx.doi.org/10.1089/sur.2006.051. PMID: 17381399

38. Greally P., Whitaker P., Peckham D. Challenges with current inhaled treatments for chronic Pseudomonas aeruginosa infection in patients with cystic fibrosis. Curr. Med. Res. Opin. 2012; 28 (6): 1059—1067. http://dx.doi.org/10.1185/03007995.2012.674500. PMID: 22401602

39. Hoiby N. Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC Med. 2011; 9: 32. http://dx.doi.org/10.1186/1741-7015-9-32. PMID: 21463524

40. Ghannam D.E., Rodriguez G.H., Raad I.I., Safdar A. Inhaled aminoglycosides in cancer patients with ventilator-associated Gram-negative bacterial pneumonia: safety and feasibility in the era of escalating drug resistance. Eur. J. Clin. Microbiol. Infect. Dis. 2009; 28 (3): 253—259. http://dx.doi.org/10.1007/s10096-008-0620-5. PMID: 18752007

41. Ratjen F., Munck A., Kho P., Angyalosi G.; ELITE Study Group. Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax. 2010; 65 (4): 286—291. http://dx.doi.org/10.1136/thx.2009.121657. PMID: 19996339

42. Ramsey B.W., Pepe M.S., Quan J.M., Otto K.L., Montgomery A.B., Williams-Warren J., Vasiljev K.M., Borowitz D., Bowman C.M., Marshall B.C.,

Marshall S., Smith A.L. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. N. Engl. J. Med. 1999; 340

(1): 23-30. http://dx.doi.org/10. 1056/NEJM199901073400104. PMID: 9878641

43. Geller D.E., Flume P.A., Staab D., Fischer R., Loutit J.S., Conrad D.J.; Mpex 204 Study Group. Levofloxacin inhalation solution (MP—376) in patients with cystic fibrosis with Pseudomonas aeruginosa. Am.J. Respir. Crit. Care Med. 2011; 183 (11): 1510—1516. http://dx.doi.org/10.1164 /rccm.201008-12930c. PMID: 21471106

44. Lu Q., Yang J., Liu Z., Gutierrez C., Aymard G., Rouby J.J.; Nebulized Antibiotics Study Group. Nebulized ceftazidime and amikacin in ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2011; 184 (1): 106—115. http://dx.doi.org/ 10.1164/rccm.201011-18940C. PMID: 21474643

45. Okusanya O.O., Bhavnani S.M., Hammel J., Minic P., Dupont LJ., Forrest A., Mulder GJ., Mackinson C., AmbroseP.G., Gupta R. Pharmacokinetic and pharmacodynamic evaluation of liposomal amikacin for inhalation in cystic fibrosis patients with chronic pseudomonal infection. Antimicrob. Agents Chemother. 2009; 53 (9): 3847—3854. http://dx.doi.org/ 10.1128/AAC.00872-08. PMID: 19451281

46. Wainwright C.E., Quittner A.L., Geller D.E., Nakamura C., WooldridgeJ.L., Gibson R.L., Lewis S., Montgomery A.B. Aztreonam for inhalation solution (AZLI) in patients with cystic fibrosis, mild lung impairment, and P.aeruginosa. J. Cyst. Fibros. 2011; 10 (4): 234—242. http://dx.doi.org/ 10.1016/j.jcf.2011.02.007. PMID: 21441078

47. Trapnell B.C., McColley S.A., Kissner D.G., Rolfe M.W., Rosen J.M., McKevitt M., Moorehead L., Montgomery A.B., Geller D.E.; Phase 2 FTI Study Group. Fosfomycin/tobramycin for inhalation (FTI): efficacy results of a phase 2 placebo-controlled trial in patients with cystic fibro-sis and Pseudomonas aeruginosa. Am. J. Respir. Crit. Care Med. 2012; 185

(2): 171—178. http://dx.doi.org/10.1164/rccm.201105-09240C. PMID: 22095545

48. Herrmann G., Yang L., Wu H., Song Z., Wang H., Hßiby N., Ulrich M., Molin S., Riethmüller J., Döring G. Colistin-tobramycin combinations are superior to monotherapy concerning the killing of biofilm Pseudomonas aeruginosa. J. Infect Dis. 2010; 202 (10): 1585—1592. http://dx.doi.org/10.1086/656788. PMID: 20942647

49. MacLeod D.L., Barker L.M., Sutherland J.L., Moss S.C., Gurgel J.L., Kenney T.F., Burns J.L., Baker W.R. Antibacterial activities of a fos-fomycin/tobramycin combination: a novel inhaled antibiotic for bronchiectasis. J. Antimicrob. Chemother. 2009; 64 (4): 829-836. http://dx.doi.org/10.1093/jac/dkp282. PMID: 19679597

50. Hilas O., Ezzo D.C., Jodlowski T.Z. Doripenem (doribax), a new car-bapenem antibacterial agent. Pharm. Ther. 2008; 33 (3): 134-180. PMID: 19750153

51. Ryan G., Jahnke N., Remmington T. Inhaled antibiotics for pulmonary exacerbations in cystic fibrosis. Cochrane Database Syst Rev. 2012; 12: CD008319. http://dx.doi.org/10.1002/14651858.CD008319.pub2. PMID: 23235659

52. Lu Q., Luo R., Bodin L., Yang J., Zahr N., Aubry A., Golmard J.L., Rouby JJ.; Nebulized Antibiotics Study Group. Efficacy of high-dose nebulized col-istin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Anesthesiology. 2012; 117 (6): 1335-1347. http://dx.doi.org/10.1097/ALN. 0b013e31827515de. PMID: 3132092

53. Moroz V.V., Kuzovlev A.N., Karpun N.A., Khoroshilov S.E., Polovnikov S.G. Ingalyatsionnye antibiotiki v lechenii nozokomialnoi pnevmonii. Metodicheskie rekomendatsii. [Inhaled antibiotics in the treatment of nosocomial pneumonias. Guidelines]. Moscow: izd-vo NIIOR RAMN; 2013: 20. [In Russ.]

54. Chan E.Y., Ruest A., Meade M.O., Cook D.J. 0ral decontamination for prevention of pneumonia in mechanically ventilated adults: systematic review and meta-analysis. BMJ. 2007; 334 (7599): 889. http://dx. doi.org/10.1136/bmj.39136.528160.BE. PMID: 17387118

Submited 19.08.13

i Надоели баннеры? Вы всегда можете отключить рекламу.