Научная статья на тему 'ИНФОРМАЦИОННОЕ МОДЕЛИРОВАНИЕ БЕТОНА: ОБЗОР СОВРЕМЕННОГО СОСТОЯНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ'

ИНФОРМАЦИОННОЕ МОДЕЛИРОВАНИЕ БЕТОНА: ОБЗОР СОВРЕМЕННОГО СОСТОЯНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ Текст научной статьи по специальности «Строительство и архитектура»

CC BY
11
3
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
конструирование структур / синтез материалов с заданными свойствами / цифровизация строительного материаловедения / цифровая модель бетона / информационная платформа / design of structures / synthesis of materials with specified properties / digitalization of building materials science / digital model of concrete / information platform

Аннотация научной статьи по строительству и архитектуре, автор научной работы —

Публикация относится к проблемам цифровизации строительного материаловедения. Показана актуальность разработки цифровой модели бетона для решения оптимизационных задач конструирования и синтеза его структуры, уточнения методик расчета строительных конструкций, совершенствования технологии их изготовления. Анализируется эволюция информационного моделирования бетона в контексте этапов развития системно-строительного материаловедения и технологии. Приводится обзор основных современных методов компьютерного моделирования структуры бетона в отечественных и зарубежных научных исследованиях. Отмечается, что эти методы не учитывают всю сложность строения бетона. В статье бетон представлен как конгломератный композит с иерархически организованной структурой размерностью от 10-10 до 10-1 м. Он обладает минимум 5-6 масштабными уровнями и тремя типами конструкции подструктур. Подструктуры отличаются по своему масштабу, генезису и механике проявления свойств. Первый тип подструктуры характерен для макро-, мезои микромасштабного уровней. Принимается в виде двухкомпонентной «конструкции» из пространственно непрерывной матрицы и детерминировано-стохастически распределённых в ней дискретных включений. Второй тип относится к субмикро-, ультрамикром наномасштабным уровням. Полагается в виде «микромасштабной пространственной конструкции» новообразований цементирующего вещества из консолидированных индивидуальных кристаллических разностей. Третий тип соответствует атомно-молекулярному строению новообразований цементирующего вещества. Дается характеристика каждого типа подструктуры по: масштабу компонентов; особенностям формирования; механике проявления свойств; критериям конструирования; средствам синтеза. Формулируется предположение о специфичности моделирования каждого из трех типов подструктур бетона и их интегрирования в единую цифровую модель. Ставится задача разработки информационной платформы такой модели. Платформа должна включать: базу теоретических знаний; базу эмпирических данных; базу аналитических, численных и статистических моделей; алгоритмы конструирования и синтеза структур; критерии оптимизации и граничные условия; техническое задание на компьютерное моделирование бетона

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по строительству и архитектуре , автор научной работы —

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

INFORMATION MODELING OF CONCRETE: CURRENT STATUS AND DEVELOPMENT PROSPECT S

The publication relates to the problems of digitalization of building materials science. The relevance of developing a digital model of concrete for solving optimization problems of design and synthesis of its structure, clarifying methods for calculating building structures, and improving the technology of their production is shown. The evolution of information modeling of concrete is analyzed in the context of the stages of development of system-building materials science and technology. A review of the main modern methods of computer modeling of concrete structure in domestic and foreign scientific research is provided. It is noted that these methods do not take into account the complexity of the structure of concrete. In the article, concrete is presented as a conglomerate composite with a hierarchically organized structure with dimensions from 10-10 to 10-1 m. It has a minimum of 5-6 scale levels and three types of substructure design. Substructures differ in their scale, genesis and mechanics of manifestation of properties. The first type of substructure is characteristic of the macro-, mesoand micro-scale levels. It is accepted in the form of a two-component “construction” of a spatially continuous matrix and discrete inclusions deterministically and stochastically distributed in it. The second type refers to the submicro-, ultra-microand nanoscale levels. It is believed to be in the form of a “microscale spatial structure” of new formations of a cementing substance from consolidated individual crystalline differences. The third type corresponds to the atomic-molecular structure of new formations of the cementing substance. The characteristics of each type of substructure are given according to: the scale of the components; features of formation; mechanics of properties manifestation; design criteria; means of synthesis. An assumption is made about the specificity of modeling each of the three types of concrete substructures and their integration into a single digital model. The task is to develop an information platform for such a model. The platform should include: a theoretical knowledge base; empirical data base; database of analytical, numerical and statistical models; algorithms for designing and synthesizing structures; optimization criteria and boundary conditions; terms of reference for computer modeling of concrete.

Текст научной работы на тему «ИНФОРМАЦИОННОЕ МОДЕЛИРОВАНИЕ БЕТОНА: ОБЗОР СОВРЕМЕННОГО СОСТОЯНИЯ И ПЕРСПЕКТИВЫ РАЗВИТИЯ»

International Journal for Computational Civil and Structural Engineering, 19(4) 95-115 (2023)

DOI:10.22337/2587-9618-2023-19-4-95-115

INFORMATION MODELING OF CONCRETE: CURRENT STATUS AND DEVELOPMENT PROSPECTS

Aleksey I. Makeev

Voronezh State Technical University, Voronezh, RUSSIA

Abstract: The paper addresses the challenges posed by the digitization of building materials science. It highlights the importance of developing a digital model of concrete for optimizing the design and synthesis of its structure and improving the technology used in its production. It is demonstrated how this model will enable building experts to better calculate and clarify methods for creating sturdy and efficient structures. The paper also examines the evolution of information modeling of concrete within the context of the various stages of development in system-building materials science and technology.

A review is presented of the primary contemporary techniques used in computer modeling of concrete structures in both domestic and foreign scientific research. It is worth noting that these methods fail to consider the intricate composition of concrete. The article explains that concrete can be characterized as a conglomerate composite that boasts a hierarchically organized structure with dimensions ranging from 10-10 to 10-1 meters. It is comprised of no fewer than 5-6 distinct scale levels and three distinct types of substructure design. Substructures vary in scale, origin, and manifestation of properties. The first type of substructure is observed at macro, meso, and micro scales. It is composed of a two-component structure consisting of a spatially continuous matrix and deterministically and stochastically distributed discrete inclusions. The second type of substructure pertains to the sub-micro, ultra-micro, and nanoscale levels. It is believed that the cementing substance takes the form of a microscale spatial structure resulting from the consolidation of individual crystalline differences. The third type corresponds to the atomic-molecular structure ofnewly formed cementing substance.

The characteristics of each substructure type are presented based on the component scale, formation features, mechanics of property manifestation, design criteria, and means of synthesis. A default assumption is made regarding the unique modeling ofthe three concrete substructure types and their consolidation into a unified digital model. The objective is to create an information platform for this purpose. The platform should consist of a knowledge base rooted in theory, an empirical database, a database consisting of analytical, numerical, and statistical models, algorithms for the purpose of designing and synthesizing structures, optimization criteria and boundary conditions, and specific terms ofreference for computer modeling ofconcrete.

Keywords: design ofstructures, synthesis ofmaterials with specifiedproperties, digitalization ofbuilding materials science, digital model ofconcrete, information platform

ИНФОРМАЦИОННОЕ МОДЕЛИРОВАНИЕ БЕТОНА: ОБЗОР СОВРЕМЕННОГО СОСТОЯНИЯ И ПЕРСПЕКТИВЫ

РАЗВИТИЯ*

А.И. Макеев

Воронежский государственный технический университет, г. Воронеж, РОССИЯ

Аннотация: Публикация относится к проблемам цифровизации строительного материаловедения. Показана актуальность разработки цифровой модели бетона для решения оптимизационных задач конструирования и синтеза его структуры, уточнения методик расчета строительных конструкций, совершенствования технологии их изготовления. Анализируется эволюция информационного моделирования бетона в контексте этапов развития системно-с^оительного материаловедения и технологии.

* Содержание статьи было частично доложено на VIII международном симпозиуме «Актуальные проблемы компьютерного моделирования конструкций и сооружений», 17-21 мая 2023 г., Тамбов

Приводится обзор основных современных методов компьютерного моделирования структуры бетона в отечественных и зарубежных научных исследованиях. Отмечается, что эти методы не учитывают всю сложность строения бетона. В статье бетон представлен как конгломератный композит с иерархически организованной структурой размерностью от Ю"10 до 10"1 м. Он обладает минимум 5-6 масштабными уровнями и тремя типами конструкции подструктур. Подструктуры отличаются по своему масштабу, генезису и механике проявления свойств. Первый тип подструктуры характерен для макро-, мезо- и микромасштабного уровней. Принимается в виде двухкомпонентной «конструкции» из пространственно непрерывной матрицы и детерминировано-стохастически распределённых в ней дискретных включений. Второй тип относится к субмикро-, ультрамикро-и наномасштабным уровням. Полагается в виде «микромасштабной пространственной конструкции» новообразований цементирующего вещества из консолидированных индивидуальных кристаллических разностей.Третий тип соответствует атомно-молекулярному строению новообразований цементирующего вещества.

Дается характеристика каждого типа подструктуры по:масштабу компонентов; особенностям формиро-вания;механике проявления свойств;критериям конструирования;средствам синтеза. Формулируется предположение о специфичности моделирования каждого из трех типов подструктур бетона и их интегрирования в единую цифровую модель. Ставится задача разработки информационной платформы такой модели. Платформа должна включать:базу теоретических знаний;б^у эмпирических данных; базу аналитических, численных и статистических моделей;мгоритмы конструирования и синтеза структур; критерии оптимизации и граничные условия;техническое задание на компьютерное моделирование бетона.

Ключевые слова: конструирование структур, синтез материалов с заданными свойствами, цифровизация строительного материаловедения, цифровая модель бетона, информационная платформа

INTRODUCTION

Currently, the methods of design and calculation of structures, buildings and facilities rely on computer modeling of their stress-strain state, loads and impacts. Information technologies are used in experimental and field studies [1,2]. The transition to computer modeling of construction objects, in our opinion, forms a favorable situation for the involvement of material scientists in this process. Their task is to design optimal structures of concretes with specified properties. Structure construction is a speculative, virtual procedure of "filling" the volume of the designed building structure that takes into account its configuration, peculiarities of reinforcement, etc., with structural elements forming the material. The outcome is the creation of a spatial and geometric "structure design" capable of maximizing the use of force structural bonds under the conditions of destructive impact of the operating environment on the building structure. Based on the results of the design, a set of control actions is assigned during the synthesis of the structure. This is a chemical-technological procedure for the implementa-

tion of the compiled project of spatial-geometric "structure design" in the production process of a building product [3]. However, the opportunities for interaction and mutual understanding between specialists in the calculation of building structures ("mechanics") and material scientists have been limited so far. They were confronted with the "watershed" between the used concepts, methods, passing through the scale boundary of 10-1 m in the "space and world" of construction science. Objectively, it turned out that "mechanics" deal with bodies on the scale of 10-1 m and larger. The material structure of such a body (structure) is modeled as a continuous homogeneous iso-tropic medium with some averaged "effective" characteristics [4]. The degree of compliance of these characteristics with the real values predetermines the predictive value of the calculation results. The potential deviations are compensated by the assignment of overestimated material reserve coefficients. Material scientists "work" with structured solids, which are a complex construction of elements with dimensions from 10-1 to 10-10 meters. In most cases, such a structure is perceived as a "black box" - an

experimental-statistical model relevant in a strictly limited factor space [5]. The lack of adequate models limits the possibilities of designing and subsequent synthesis of concrete structure with a given level of quality. It is known that the method of designing concrete mixture composition for concrete of a given strength was developed in the late 19th century. Nevertheless, the efficiency of concrete property management is still much lower than that of metals or polymers. This is clearly demonstrated by the difference in the values of the reserve coefficients of the compared materials.

In our opinion, a digital model of concrete can overcome the "barrier" between mechanics and material scientists. It should, first, describe identification universals and qualitative-quantitative attributes of concrete structure at all its scale levels. Secondly, it should reveal cause-and-effect links and relations in the system "technology" - "composition, structure, state" - "properties at the moment of production and unfolded in time in the operational environment". The usage of a digital model of concrete in the design and calculation of building structures is aimed at clarifying the real pattern of their stress-strain state [6]. In system-structural materials science, the numerical model is intended for the development of fundamental principles of design and formation of an arsenal of means for synthesizing optimal concrete structures with predetermined characteristics. This model is most relevant for obtaining variable structures of new generation concretes (construction composites): super dense, especially high-strength, ultra-lightweight, ultra-resistant to the action of the operating environment, etc. Applied goal of the digital model of concrete is to solve the problems of optimization design of concrete composition and structure depending

on the operating conditions in building structures. The result of this is the assignment of rational modes and parameters of manufacturing of structures. In the future, the digital twin of concrete (reinforced concrete) structures should be integrated into BIM-technologies. Here it will manage the automated manufacturing process of the product, and then monitor its condition during operation with the forecast of residual resource.

Let us consider the evolution of system-structural concrete science in the context of digital approach.

EVOLUTION OF CONCRETE INFORMATION MODELING

Optimization of the structure and technology of concrete lies in the context of the system-wide task of creating a methodology and a comprehensive quality management system for industrial products. The development of solutions for quality management is based on a quantitative description of the phenomena of substance and energy transformations in the procedures of production. The highest form of such description is an information model of phenomena, for the creation of which it is necessary to formalize the transition from the real sides and relations of the object to their symbolic designation. In turn, formalization is feasible only after appropriate identification (recognition for display in human consciousness [7, 8]).

Academician of RAACS E.M. Chernyshov carried out a retrospective analysis of the "parallel" chronology of the development of basic scientific knowledge in the field of concrete science [9] and the stages of development of the methodology of the quantitative approach [10]. Table 1 presents the results of the analysis.

Table 1. Stages of development ofinformation modeling of concrete and basic scientific knowledge ofconcrete science

Stage Period Content of the stage Personalities, schools

I the first third of the nineteenth century -first third of the 20th century The formation of the paradigm of quantitative approach, the emergence and development of the science of processes and devices of engineering technologies as a field of scientific and applied knowledge [11-13]. Introduction of physical and mathematical analogies; physical analog modeling; modeling based on the theory of similarity [1416]. F.A. Denisov, V. Badger, N.D. Zelinsky, A.A. Kirov, V.L. Kirpichov, A.K. Krupsky, V. Luis, W. McAdams, W. McCabe, D.I. Mendeleev, I.A. Tish-chenko, W. Walker, etc.

Obtaining the first scientific data on the influence of technology on concrete properties and processes of its structural formation [17-20]. D. Abrams, I.P. Alexandrin, A.A. Baikov, N.A. Bele-lyubsky, N.M. Belyaev, I. Bolome, 0. Graf, N.A. Zhitkevich, V.A. Kind, I.G. Malyuga, E. Freysine, R. Fere, E.G. Cheliyev, A.R. Shulyachenko, V.V. Ewald and etc.

II first third of the XX century - middle of the XX century. Establishment of fundamental principles of the general theory of systems [21-23]. Formation of the methodology of system analysis of engineering and technology objects. Application of mathematical modeling for solving engineering problems [24]. N.A. Belov, A.A. Bog-danov, L. Bertalanffy, W. Ross-Eshby, T. Kotarbinski, M. Petrovic, A. Espinas, et al.

Identification of regular relations in the system "formulation-technological factors" -"composition, structure, state, properties" of concrete. The beginning of the formation of the structural approach in concrete science [25-281. V.V. Mikhailov, N.A. Popov, B.G. Skramtaev, A.E. Sheikin, V.N. Jung et al.

III second half of the 20th century Implementation of the cybernetic approach to systems as an object of control according to the "black box" principle [29-31]. Development of probabilistic-statistical methods of active planning and design of experi-- mental-statistical models in construction materials science and technology [35-37]. Y.P. Adler, P. Ahnazarova, N. Wiener, V.A. Voznesen-sky, V.V. Kafarov, R. Fischer, et al. Kafarov, R. Fischer, etc.

Development of the foundations of system-structural building materials science with active use of the provisions of natural science disciplines [38-42]. Qualification of concrete as a composite material, experimental study of its composition and struc- I.N. Akhverdov, Y.M. Ba-zhenov, J. Bernal, I.I. Bernay, P.I. Bozhenov, S.S. Gordon, I.M. Grushko, A.E. Desov, G.I. Gorchakov, A. Grudemo, I.A. Ivanov, F.M.

ture on the basis of new quantitative physi- - opment of the foundations of the mechanics of manifestation of structural and functional properties of concrete [48-51]. Ivanov, J.L. Kalousek, P.G. Komokhov, D. Conrad, R. Lermit, F.M. Lee, P.A. Melnichenko, O.P. Mched-lov-Petrosyan, T.P. Pauers, T. Pauers, R. Lermit, F.M. Lee, P.A. Melnichenko. Komokhov, D. Conrad, R. Lermit, F.M. Lee, P.A. Melnichenko, O.P. Mched-lov-Petrosyan, T. Powers, V. Reichel, P.A. Rebinder, A.I. Rybiev, V.I. Soloma-tov, M.M. Sychev, H.F.W. Tay-lor, V.V. Timashev, A.V. Usherov-Marshak, M.M. Kholmyansky et al.

IV Since the end of the 20th century Mathematical and computational optimization problem solving in construction materials science and technology. Development of"computermaterial science" of concrete on the scientific basis of classical concrete science [5, 52-54]. Attraction of mathematical physics models and simulation modeling. Validation of neuro-computing application in construction materials science [5558]. A.A. Askadsky, V.V. Belov, V.A. Voznesensky, V.A. Vorobyov, B.V. Gusev, V.I. Kondrashchenko, E.V. Korolev, T.V. Lyashenko, A.S. Ovchinsky, V.P. Selyaev, S.V. Fedosov et al.

Development of a scientific platform for the development ofbreakthrough innovative solutions in system-structural materials science and high technologies of concrete with a new level of quality. Staging and realization of special researches of cause-effect relations according to the formula "4C" [7, 59-62]. Development and generalization of provisions of mechanics of concrete properties manifestation as composites [4, 63-66]. Development of methodology and theory of design and synthesis of optimal structures of conglomerate building composites [3, 8, 67, 68]. T.K. Akchurin, O.V. Ar-tamonova, V.N. Vyrovoy, A.M. Danilov, V.T. Erofeev, S.S. Kaprielov, N.I. Karpenko, D.N. Korot-kikh, V.S. P. Lesovik, N.I. Makridin, V.I. Morozov, A.P. Proshin, Y.V. Pukha-renko, G.S. Slavcheva, E.M. Chernyshov, V.I. Shevchenko, V.P. Yartsev et al.

The stages presented in Table 1 reflect the vector of movement on the way from phenomeno-logical (factual, empirical) knowledge to essential (system-structural, conceptual) knowledge in materials science of construction composites.

This movement is accompanied by the evolution of concepts and methodology of information modeling of concrete in the form of deepening and detailing of aspects of identification and formalization of its structure.

It follows from Table 1 that the current state of basic scientific knowledge and information modeling of concrete can be evaluated as an exit to digitalization of construction materials science and technology. Setting and solving problems of designing and synthesis of optimal structures today should be carried out on the basis of formalization and computer modeling of cause-and-effect relations in the system "technology - material - construction - building (structure) - operating environment". Digitalization here should be understood as a transition from physical, in-situ models (concrete samples) to work with its mathematical image. Digitalization makes it possible to perform control actions with a virtual object (a digital twin of a building structure) with the help of a computer. In this case, the computer is used not so much as a means of processing information and calculations, but as a direct "productive force" in obtaining the final result.

REVIEW OF CURRENT METHODS FOR COMPUTER MODELING OF CONCRETE

The goals of digitalization have become achievable due to the emergence of universal shells and increasingly powerful algorithmic programming languages, computational and information resources for applied mathematical modeling. Supercomputer technologies and hybrid architecture computing systems using traditional and advanced algorithms have become commonplace. The method of neurocomputing ("machine learning" in foreign terminology) has received a particularly rapid development in this respect. Neurocomputing provides the creation of systems and algorithms for information processing capable of autonomously generating adaptive responses of the "cause-effect" type for a specific information environment. Neurocomputing is considered as an alternative to programmed computing due to its ability to "learn" to process information while acting in an informational environment [55, 69]. Since the 90s of the last century, neural networks have been used in the development of concrete

-

77]. Unfortunately, and this is noted by the researchers themselves [78], such developments are reduced to neural network programming of cause-effect links and relations in the system "formulation-technological factors" - "properties" of concrete. Machine learning is carried out on the basis of empirical data according to the "black box" principle, without taking into account structural factors. That is, in their methodological bases and statements such works lie in the context of the III stage of evolution of construction material science and concrete technology (see Table 1). Moreover, according to Lyashenko [79], machine learning models are "more passive" than experimental-statistical models. She argues that the initial data for them are not generated according to a special plan, but in an arbitrary way. A review of foreign sources shows that the most common method of computer modeling of concrete structure today is mesoscale modeling. According to this method, concrete is considered as a composite material made of aggregates of different shapes and sizes included in the cement matrix. It should be noted that in the domestic materials science terminology, the mac-roscale level of concrete structure corresponds to this interpretation.

In most cases, mesoscale modeling is based on the formation of pseudo-random 3D packing of particles according to their computer-generated locations and radii [80, 81]. The nonlinear behavior of the simulated structure is investigated

by numerical methods using its finite element

-

purpose software such as ANSYS [83]. It is noted that "classical" mesoscale modeling often shows significant discrepancy with the results of physical experiments, as it does not consider microstructural levels of concrete. To refine the mesoscale models, for example, matrix-inclusion contact zone modeling is used [84], microstructure visualization using X-ray computed tomography [85], machine learning [86], including for image analyzer data processing [87]. Computer modeling of atomic and molecular structure of cement stone neoplasms by molecu-

lar dynamics methods has become a separate independent direction of digitalization of building materials science. These methods combine quantum-mechanical description of objects and models of "classical forces" [88-90]. In Russian science, Vorobyov should be considered as the founder of the calculation of the composition and prediction of concrete properties using computer modeling of their structure. His methods combine the probabilistic-geometric concept with the theory of percolation and the theory of effective media [91]. Modeling of the structure of building composites today is carried out on a large scale by the leading Russian scientific schools [53, 58, 61, 63, 67, 67, 92, 93].

DISCUSSION OF THE CURRENT STATE OF COMPUTER MODELING OF CONCRETE AND FUTURE PROPOSALS

Despite significant successes, the methods of computer modeling of concrete listed in the previous section do not take into account the com-

plexity of the structure of this material. The applied approaches are differentiated by scale structural levels and do not provide a holistic adequate digital model of concrete. In our opinion, these methods require integration on the basis of modern concepts and data on identification and formalization of concrete structure. Let us characterize concrete as an object of mathematical modeling. "Concretes are composites of conglomerate type, which are structured solids endowed with the features of substance, multiphase, polystructure, scale multiscale, deterministic, stochastic and dialectic" [94]. E.M. Chernyshov identified these features as universals of structure [95]. The universals of polystructure and scale multilevelness show that, despite the diversity of concrete varieties, their structure is a spatial-geometric construction of characteristic dimensionality from 10-10 to 10-1 meters. The structure has at least 5-6 structural levels and three types of substructures in the integral structure of concrete. Substructures are distinguished by their scale, genesis and mechanics of properties manifestation (Table 2).

Characteristic feature Substructure type

I (conglomerate composite) II (microconstruction) III (continuous medium)

Visualization gm Si

"Occupied" levels of the holistic structure macro-, meso- and microscales sub-micro-, ultramicro- and nanoscale nanoscale and atomic molecular

Dimensional range of structural elements, m 10-1 - 10-(4"5) 10-(4-5) - 10-M 10"8 - 10-10

Table 2. Characterization ofsubstructures in thepolystructure ofconcrete

Description of the structure two-component "construction" of a spatially continuous matrix and deter-ministically stochastically distributed discrete inclusions; a continuous heterogeneous body "Microscale spatial construction" of ce-mentitious matter neoplasms from consolidated individual crystalline and hidden crystalline differences solid-phase substance of individual hidden crystalline or crystalline neoplasms; solid monophasic body endowed with imperfections (defects) in the form of vacancies, substitutions, dislocations.

Genesis a product of the formation of the "addition system" a product of the interaction between the "addition system" and the "growth system" a product of the evolution of the "growth system"

Regularities of property mechanics mechanics of composites construction "micromechanics" thermofluctuation theory, crack mechanics

Design criteria control of the stress field by parameters of their concentration and localization Load bearing capacity kinetic strength, fracture toughness

Scientific basis for synthesis tools Mechanics and mechanochemistry of granular media, physicochemistry of dispersed systems physicochemistry of dispersed systems, theory of structure of matter, solid state chemistry, crystal chemistry, nanochemistry

Volume in the composite space, % 100 15-20 6-10

Each of the identified types of substructures has its own specific formalizations and mathematical model. The first type is a probabilistic-geometric model of granular particle packing, the second type is a finite element model of stochastic structure, the third type is a discrete model of crystal lattice. To obtain an adequate numerical model of concrete, the disclosure and integration of these models is necessary. In this case, it is most difficult to formalize the substructure of the second type. It has a pro-

nounced stochasticity and variability. It is a structure of morphologically crystalline (or hidden crystalline) lamellar, fibrous-needle, etc. differences of neoplasms. The mathematical model of the second type of substructure can be correlated with the corresponding models of spatial systems of building macroscale structures (rod, rack-and-beam, shell structures, etc.) [96]. However, with this approach we will have to face the problem of determinization of stochastic systems.

CONCLUSION

In our opinion, the proposed approach to the development of a digital model of concrete as a polystructural material requires preliminary creation of an information platform. Such a platform will include:

1) theoretical knowledge base,

2) empirical data base,

3) base of mathematical and computer models of concretes and processes occurring in them during production and operation,

4) algorithms for construction and synthesis of structures,

5) optimization criteria and boundary conditions,

6) terms of reference for computer simulation. Generation of the knowledge base in the information platform implies a system identification and formalization of concrete polystructure. This should result in a system of quantitative parameters of the structures of each of the three types of substructures.

These parameters with their estimates and characteristics will be a function (output) in mathematical models of the type "formulation-technological factors - composition, structure, state" and "operational factors - composition, structure, state", and then serve as arguments (input) in models of the type "composition, structure, state - properties". Numerical solution of inverse problems on the basis of these models is the essence of optimization design and technological synthesis of concretes with characteristics specified depending on the conditions of their operation in building structures.

REFERENCES

1. Travush V.I. Tsifrovyye tekhnologii v stroitel'stve [Digital technologies in construction] // Academia. Arkhitektura i stroitel'stvo, 2018, Issue3, pp. 107-117 (in Russian).

2. Informatika v stroitel'stve (s osnovami ma-tematicheskogo i komp'yuternogo modeli-rovaniya) [Computer science in construction (with the basics of mathematical and computer modeling)] / team of authors; under. ed.P.A. Akimov. Moscow, KNORUS, 2017, 420 pages (in Russian).

3. Makeyev A.I. Metodologicheskiye osno-vaniya teorii konstruirovaniya i sinteza op-timal'nykh struktur konglomeratnykh stroitel'nykh kompozitov [Methodological foundations of the theory of design and synthesis of optimal structures of conglomerate building composites] // Nauchnyy vestnik VGASU. Seriya: Fiziko-khimicheskiye problemy i vysokiye tekhnologii stroitel'nogo materialovedeniya, 2015, Issue 1, pp. 29-31 (in Russian).

4. Karpenko N.I. Obshchiye modeli mekhan-iki betona [General models of concrete mechanics]. Moscow, Stroyizdat, 1996, 416 pages (in Russian).

5. Kondrashchenko V.I. Nekotoryye aspekty komp'yuternogo materialovedeniya [Some aspects of computer materials science] // Modelirovaniye i optimizatsiya kompozitov : Mat. k mezhdunar. seminaru, posvyashch. 80-letiyu V.A. Voznesenskogo. Odessa, Astroprint, 2014, pp. 64-68 (in Russian).

6. Chernyshov Ye.M., Makeyev A.I. K modelirovaniyu napryazhennogo sos-toyaniya strukturno-neodnorodnykh konglomeratnykh kompozitov v stroitel'nykh konstruktsiyakh [Towards modeling the stress state of structurally in-homogeneous conglomerate composites in building structures] // International Journal of Calculation of Civil and Construction Structures, 2015, Vol. 11, Issue 2, pp. 160170 (in Russian).

7. Bazhenov Yu.M., Gar'kina I.A., Danilov A.M., Korolev Ye.V. Sistemnyy analiz v stroitel'nom materialovedenii [System analysis in construction materials science]. Moscow, MGSU, 2012, 432 pages (in Russian).

8. Budylina Ye.A., Gar'kina I.A., Danilov

A.M. Obshchaya skhema identifikatsii i sinteza stroitel'nykh materialov [General scheme for identification and synthesis of building materials] // Regional'naya arkhitektura i stroitel'stvo, 2022, Issue 4, pp. 26-30 (in Russian).

9. Chernyshov Ye.M. Materialovedeniye i tekhnologiya stroitel'nykh kompozitov kak sistema nauchnogo znaniya i predmet razvitiya issledovaniy. Chast' 2. Razvitiye i evolyutsiya nauchnogo znaniya o konglom-eratnykh stroitel'nykh kompozitakh kak strukturirovannykh sistemakh [Materials science and technology of building composites as a system of scientific knowledge and a subject for the development of research. Part 2. Development and evolution of scientific knowledge about conglomerate building composites as structured systems]

// Izvestiya vysshikh uchebnykh zavedeniy.

-

Russian).

10. Chernyshov Ye.M., Makeyev A.I. O

probleme razvitiya, evolyutsii «tsifrovogo podkhoda» v materialovedenii i tekhnologii stroitel'nykh kompozitov [On the problem of development, evolution of the "digital approach" in materials science and technology of building composites] // Sovremen-naya nauka: teoriya, metodologiya, praktika: Mat-ly III vserossiyskoy (natsional'noy) nauchno-prakticheskoy konferentsii. Tambov, Izd-vo IP Chesnokova A.V., 2021, pp. 9-21 (inRussian).

11. Denisov F.A. Prostrannoye rukovodstvo k obshchey tekhnologii ili k poznaniyu vsekh rabot, sredstv, orudiy i mashin, upotreb-lyayemykh v raznykh khimicheskikh is-kusstvakh [A lengthy guide to general technology or to the knowledge of all works, means, tools and machines used in various chemical arts]. Moscow 1828,548 pages (in Russian).

12. Mendeleyev D.I. Osnovy fabrichno-zavodskoy promyshlennosti [Fundamentals of the factory industry]. St. Petersburg,

Type. V. Demakova, 1897, 201 pages (in Russian).

13. Tishchenko I.A. Osnovnyye protsessy i ap-paraty khimicheskoy tekhnologii. Vyp. I : Obshcheye vvedeniye. Izmel'cheniye i iz-mel'chayushchiye apparaty [Basic processes and devices of chemical technology. Vol. I: General introduction. Grinding and grinding apparatus]. Moscow, Tipo-Lit. I. Kh. Kavykina, 1913, 161 pages (in Russian).

14. Walker W.H., Lewis W.K., McAdams W.H. Principles of chemical engineering. London, McGraw-Hill Publising Co., ltd, 1923. 631 pages.

15. Badger V., McCab V. Osnovnyye protsessy i apparaty khimicheskikh pro-izvodstv [Basic processes and apparatus of chemical production]. Moscow, Leningrad, Goskhimtekhizdat, 1933, 476 pages (in Russian).

16. Kasatkin A.G. Osnovnyye protsessy i apparaty khimicheskoy tekhnologii. [Basic processes and apparatuses of chemical technology]. Moscow, Khimiya, 1973. 752 pages (in Russian).

17. Malyuga I.G. Sostav i sposob prigotovleni-ya tsementnogo rastvora (betona) dlya polu-cheniya naibol'shey kreposti [Composition and method of preparing cement mortar (concrete) to obtain the greatest strength]. St. Petersburg, type. or T. V.A. Tikhanova, 1895, 201 pages (in Russian).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

18. Zhitkevich N.A. Beton i betonnyye raboty [Concrete and concrete work]. St. Petersburg, 1912, 524 pages (in Russian).

19. Evald V.V. Stroitel'nyye materialy. Ikh prigotovleniye, svoystva i ispytaniya [Construction Materials. Their preparation, properties and tests]. Moscow, Gos. nauch-tekhn. izd-vo, 1931, 510 pages (in Russian).

20. Znachko-Yavorsky I.L. Ocherki istorii vyazhushchikh veshchestv ot drevneyshikh vremen do serediny XIX veka [Essays on the history of binders from ancient times to the mid-19th century]. Leningrad, Izd-vo AN SSSR, 1963, 496 510 pages (in Russian).

21. Bogdanov A.A. Vseobshchaya organi-zatsion-naya nauka (tektologiya) [General

-ye

izd. Ch. 1-3, Moscow, Leningrad, 1929, 220 pages (in Russian).

22. Bertalanffy L. Obshchaya teoriya sistem -obzor problem i rezul'tatov [General theory of systems - a review of problems and results] // Sistemnyye issledovaniya. Ye-zhegodnik. Moscow,«Nauka», 1969, pp. 34-35 (in Russian).

23. Issledovaniya po obshchey teorii sistem [Research on general systems theory] // Sb. perevodov pod red. V. N. Sadovskogo i E. G. Yudina. Moscow, Progress, 1969, 519 pages (in Russian).

24. Karman T., Bio M. Matematicheskiye me-to-dy v inzhenernom dele [Mathematical methods in engineering] / Per s angl., 2-ye izd. Moscow, Leningrad, Gos. izd-vo tekhniko-teoretich. lit-ry, 1948, 424 pages (in Russian).

25. Skramtaev B.G. Teoriya prochnosti beto-na. Novyye vidy betonov [Theory of concrete strength. New types of concrete] / Doklady, prochitannyye na Vseukr. konfer-entsii po betonu i zhelezobetonu 17-19

-nauch.

tekhn. izd-vo Ukrainy, 1933, 55 pages (in Russian).

26. Jung V.N. Vvedeniye v tekhnologiyu tse-menta [Introduction to cement technology]. Moscow, Leningrad, Gosstroyizdat, 1938, 404 pages (in Russian).

27. Mikhailov V.V. Elementy teorii struktury betonov [Elements of the theory of concrete structure]. Moscow, Leningrad, Gosstroyizdat, 1941, 227 pages (in Russian).

28. Sheykin A.E. Teoriya uprugosti, prochnosti, plastichnosti betona [Theory of elasticity, strength, plasticity of concrete]. Moscow, NIIZhB, 1944, 250 pages (in Russian).

29. Wiener N. Kibernetika, ili Upravleniye i svyaz' v zhivotnom i mashine [Cybernetics, or Control and Communication in Animals and Machines]. Moscow, Nauka, 1983, 344 pages (in Russian).

30. Optner S.L. Sistemnyy analiz dlya resh-eniya delovykh i promyshlennykh problem [System analysis for solving business and industrial problems]. Moscow, Sovetskoye radio, 1968, 216 pages (in Russian).

31. Kafarov V.V. Metody kibernetiki v khimii i khimicheskoy tekhnologii [Methods of cybernetics in chemistry and chemical technology]. Moscow, Khimiya, 1968, 379 pages (in Russian).

32. Fisher R. Statisticheskiye metody dlya is-sledovateley [Statistical methods for researchers]. Moscow, Gosstatizdat, 1958, 267 pages (in Russian).

33. Adler Yu.P., Markova E.V., Granovsky Yu.V. Planirovaniye eksperimenta pri poiske optimal'nykh usloviy [Planning an experiment when searching for optimal conditions]. Moscow, Nauka, 1976, 280 pages (in Russian).

34. Akhnazarova S.L., Kafarov V.V. Metody optimizatsii eksperimenta v khimicheskoy tekhnologii. [Methods for optimizing experiments in chemical technology]. Moscow, Vyssh. shk., 1985, 327 pages (in Russian).

35. Voznesensky V.A., Vyrovoy V.N., Kersh V.Ya. et al. Sovremennyye metody optimizatsii kompozitsionnykh materialov [Modern methods of optimization of composite materials] / Ed. V. A. Voznesensky. Kyiv: Budivelnik, 1983, 144 pages (in Russian).

36. Lyashenko T.V. Optimizatsiya napolnite-ley poliefirnykh svyazuyushchikh na os-nove modeley novogo klassa [Optimization of polyester binder fillers based on new class models]: dis.... cand. tech. Sci. Odessa, 1984, 236 pages (in Russian).

37. Shinkevich E.S. [Optimization of the structure of cellular silicate concrete according to a set of quality criteria based on isoparametric analysis]: dis. ...cand. tech. Sci. Kraskovo, 1985, 249 pages (in Russian).

38. Bazhenov Yu.M. [Concrete under dynamic loading]. Moscow,Stroyizdat, 1970, 272 pages (in Russian).

39. Ratinov V.B., Rosenberg T.I. Dobavki v beton [Additives to concrete]. Moscow, Stroyizdat, 1973,207 pages (in Russian).

40. Melnichenko P.A. Strukturno-statisticheskiy podkhod k resheniyu zadachi upravlyayemogo strukturoobrazovaniya kompozitov [Structural-statistical approach to solving the problem of controlled structure formation of composites] // Snizheniye materialoyemkosti i povysheniye dol-govechnosti stroitel'nykh izdeliy. Kyiv, Budivelnik, 1974, pp. 66-76 (in Russian).

41. Rebinder P.A. Poverkhnostnyye yavleniya v dispersnykh sistemakh. Fiziko-khimicheskaya mekhanika. Izbrannyye trudy [Surface phenomena in disperse systems. Physico-chemical mechanics. Selected works]. Moscow, Nauka, 1979, 384 pages (in Russian).

42. Akhverdov I.N. Osnovy fiziki betona [Fundamentals of concrete physics]. Moscow

sian).

43. Podvalny A.M. Opredeleniye velichiny sobstvennykh deformatsiy v betonnom konglomerate na razlichnykh strukturnykh urovnyakh [Determination of the magnitude of intrinsic deformations in concrete conglomerate at various structural levels] // Zavodskaya laboratoriya, 1973, Issue 10, pp. 1204 - 1206 (in Russian).

44. Sheikin A.E., Chekhovsky Yu.V., Bruss-er M.I. Struktura i svoystva tsementnykh betonov [Structure and properties of cement concrete]. Moscow,Stroyizdat, 1979, 344 pages (in Russian).

45. Rybyev I.A., Nekhoroshev A.V. Iskhod-nyye metodicheskiye pozitsii pri issledo-vanii iskusstvennykh stroitel'nykh konglomeratov [Initial methodological positions in the study of artificial building conglomerates] // Stroitel'nyye materialy, 1980, Issue 2, pp. 24 - 26 (in Russian).

46. Solomatov V.I. Elementy obshchey teorii kompozitsionnykh stroitel'nykh materialov [Elements of the general theory of composite building materials] // Izvestiye vuzov.

Stroitel'stvo i arkhitektura, 1980, Issue 8, pp.61-70 (in Russian).

47. Chernyshov E.M. Upravleniye protsessami strukturoobrazovaniya i kachestvom silikat-nykh avtoklavnykh materialov (voprosy metodologii, strukturnoye materialovedeni-ye, inzhenerno-tekhnologicheskiye zadachi) [Control of structure formation processes and quality of silicate autoclave materials (issues of methodology, structural materials science, engineering and technological problems)]: dis. ... Dr. Tech. Sci. Voronezh, 1988, 600 pages (in Russian).

48. Bolotin V.V., Goldenblat I.I., Smirnov A.F. Stroitel'naya mekhanika. Sovremen-noye sostoyaniye i perspektivy razvitiya [Structural mechanics. Current state and development prospects]. Moscow, Stroyizdat, 1972, 191 pages (in Russian).

49. Budeshtsky R.I. Elementy teorii prochnos-ti zernistykh kompozitsionnykh materialov [Elements of the theory of strength of granular composite materials]. Tbilisi, Metsniereba, 1972,82 pages (in Russian).

50. Zaitsev Yu.V. Uchet makro- i mikrostruktury materiala i yego fizicheskoy nelineynosti v zadachakh o razvitii tresh-chin v betone [Taking into account the macro- and microstructure of the material and its physical nonlinearity in problems of the development of cracks in concrete] // Izvestiye vuzov. Stroitel'stvo i arkhitektura, 1975, Issue 10 11, pp.15 -20(in Russian).

51. Komokhov P.G. Fiziko-mekhanicheskiye aspekty razrusheniya betona i printsipy snizheniya yego treshchinoobrazovaniya [Physico-mechanical aspects of concrete destruction and principles of reducing its cracking] // Sovershenstvovaniye tekhnologii stroitel'nogo proizvodstva: Mezhvuz. tematich. sb. Tomsk, 1981, pp. 145-151 (inRussian).

52. Voznesensky V.A., Krovyakov S.A., Lyashenko T.V. Elementy komp'yuternogo materialovedeniya pri issledovanii betonov [Elements of computer materials science in the study of concrete] // Budivelni kon-

struktsii: Mizhvidomchiy naukovo-tekhnichniy zb., vip. 50. Kyiv, NDIBK, 1999, pp. 310 -318 (in Russian).

53. Askadsky A.A., Kondrashenko V.l. Komp'yuternoye materialovedeniye po-limerov. Tom 1. Atomno-molekulyarnyy uroven'. [Computer materials science of polymers. Volume 1. Atomic-molecular level]. Moscow, Nauchnyy mir, 1999, 544 pages (in Russian).

54. Bazhenov Yu.M., Vorobyov V.A., Il-yukhin A.V. Osnovnyye podkhody k komp'yuternomu materialovedeniyu stroitel'nykh kompozitnykh materialov [Basic approaches to computer materials science of building composite materials] // Stroitel'nyye materialy, 2006, Issue 3,.P. 71 (in Russian).

55. Chernyshov E.M., Dyachenko E.I., Dyachenko D.E. O neyrosetevom modeliro-vanii v zadachakh sistemno-strukturnogo stroitel'nogo materialovedeniya [On neural network modeling in problems of system-structural construction materials science] //

Sovremennyye problemy stroitel'nogo ma-

181 (in Russian).

56. Danilov A.M., Korolev E.V., Smirnov V.A., Proshin A.P. Neyrosetevyye metody issledovaniya v stroitel'nom materi-alovedenii [Neural network research methods in construction materials science] //

Izvestiya vysshikh uchebnykh zavedeniy.

-

Russian).

57. Gusev B.V., Korolev E.V., Grishina A.N.

Modeli polidispersnykh sistem: kriterii otsenki i analiz pokazateley effektivnosti [Models of polydisperse systems: evaluation criteria and analysis of performance indicators] // Promyshlennoye i gra-zhdanskoye stroitel'stvo, 2018, Issue 8, pp. 31-39 (in Russian).

58. Smirnov V.A., Korolev E.V. Iyerarkhi-cheskoye modelirovaniye stroitel'nykh materialov kak dispersnykh sistem: spetsi-alizirovannaya programmnaya realizatsiya

[Hierarchical modeling of building materials as dispersed systems: specialized software implementation] // Stroitel'nyye materialy, 2019, Issue 1-2, pp. 43-53 (in Russian).

59. Vyrovoy V.N., Dorofeev V.S., Sukhanov

V.G. Kompozitsionnyye stroitel'nyye materialy i konstruktsii: struktura, samoorga-nizatsiya, svoystva [Composite building materials and structures: structure, self-organization, properties]. Odessa, State. Academy of Construction and Architecture, 2010, 169 pages (in Russian).

60. Kaprielov S.S., Sheinfeld A.V., Kar-dumyan G.S., Chilin I.A. O podbore sostavov vysokokachestvennykh betonov s organomineral'nymi modifikatorami [On the selection of compositions of high-quality concrete with organomineral modifiers] // Stroitel'nyye materialy, 2017, Issue 12, pp. 58-63 (in Russian).

61. Selyaev V.P., Selyaev P.V. Fiziko-khimicheskiye osnovy mekhaniki razrusheniya tsementnykh kompozitov [Physicochemical foundations of fracture mechanics of cement composites]. Saransk, Mordov Publishing House. University, 2018, 220 pages (in Russian).

62. Belov V.V., Obraztsov I.V., Smirnov M.A. Proyektirovaniye zernovykh sostavov mineral'nykh vyazhushchikh sistem [Design of grain compositions of mineral binder systems] // Vestnik Tverskogo gosudar-stvennogo tekhnicheskogo universiteta. Seriya: Stroitel'stvo. Elektrotekhnika i khimicheskiye tekhnologii, 2020, Issue 2, pp. 7-15 (in Russian).

63. Artamonova O.V., Chernyshov E.M. Na-nomodifitsirovannyye struktury neor-ganicheskikh sistem tverdeniya stroitel'nykh kompozitov. [Nanomodified structures of inorganic hardening systems for building composites]. Voronezh, Nauchnaya kniga, 2022, 248 pages (in Russian).

64. Korotkikh D.N. Treshchinostoykost' sov-remennykh tsementnykh betonov (prob-

lemy materialovedeniya i tekhnologii) [Crack resistance of modern cement concrete (problems of materials science and technology)]. Voronezh, Voronezhskiy GASU, 2014, 141 pages (in Russian).

65. Maksimova I.N., Makridin N.I., Erofeev V.T., Skachkov Yu.P. Struktura i prochnost' konstruktsionnykh tsementnykh kompozitov [Structure and strength of structural cement composites]. Saransk, 2015, 360 pages (in Russian).

66. Chernyshov E.M., Makeev A.I., Korot-kikh D.N. Bazovyye polozheniya mekhan-iki proyavleniya konstruktsionnykh svoystv konglomeratnykh stroitel'nykh kompozitov. Chast' 1. Obzor rezul'tatov teoreticheskikh issledovaniy problemy konstruirovaniya i sinteza struktur sovremennykh vysoko-tekhnologichnykh betonov [Basic principles of the mechanics of manifestation of the structural properties of conglomerate building composites. Part 1. Review of the results of theoretical studies of the problem of design and synthesis of structures of modern high-tech concrete] // Izvestiya vuzov. Stroitel'stvo, 2020, Issue 8, pp. 43-51 (in Russian).

67. Slavcheva G.S., Chernyshov E.M. Algo-ritm konstruirovaniya struktury tsementnykh penobetonov po kompleksu zada-vayemykh svoystv [Algorithm for designing the structure of cement foam concrete based on a set of specified properties] // Stroitel'nyye materialy, 2016, Issue 9, pp. 58-64 (in Russian).

68. Chernyshov E.M., Makeev A.I. К razviti-yu teorii konstruirovaniya i sinteza struktur konglomeratnykh stroitel'nykh kompozitov [Towards the development of the theory of design and synthesis of structures of conglomerate building composites] // Funda-mental'nyye, poiskovyye i prikladnyye is-sledovaniya Rossiyskoy akademii arkhitektury i stroitel'nykh nauk po nauch-nomu obespecheniyu razvitiya arkhitektury, gradostroitel'stva i stroitel'noy otrasli Rossiyskoy Federatsii v 2019 godu : Sb. nauch.

tr. RAASN, Vol. 2, Moscow, Izdatel'stvo ASV, 2020, pp. 482 - 502 (in Russian).

69. Anitescu C, Atroshchenko E, Alajlan N, Rabczuk T. Artificial neural network methods for the solution of second order boundary value problems // Computers, Materials & Continua, 2019, Vol. 59(1), pp. 345-359.

70. Wittmann F.H., Martinola G. Optimisation of concrete properties by neural networks // Concrete 2000 - economic and durable construction through exellence: Proc. Int. Conf., London, E & FN Spon, 1993, pp. 1889-1898.

71. Shishcgaran A, Varaee H, Rabczuk T, Shishcgaran G. High correlated variables creator machine: Prediction of the compressive strength of concrete // Computers & Structures, 2021, Vol. 247, p. 106479.

72. Asteris P G, Ashrafian A, Rezaic-Balf M. Prediction of the compressive strength of self-compacting concrete using surrogate models // Computers and Concrete, 2019, Vol. 24, pp. 137-150.

73. Nguyen T., Pham Duy H., Pham Thanh T., Vu H. Compressive strength evaluation of fiber-reinforced high-strength selfcom-pacting concrete with artificial intelligence // Advances in Civil Engineering, 2020, e3012139.

74. Saha P, Prasad M L V, Kuraar P.R. Predicting strength of SCC using artificial neural network and multivariable regression analysis // Computers and Concrete, 2017, Vol 20(1), pp. 31-38.

75. Mashhadban H, Kutanaei S., Sayarincjad M. Prediction and modeling of mechanical properties in fiber reinforced selfcompacting concrete using particle swarm optimization algorithm and artificial neural network // Construction & Building Materials, 2016, Vol. 119, pp. 277-287.

76. Mai H.-V.T., Nguyen M.H., Trinh S.H., Ly H.-B. Optimization of machine learning models for predicting the compressive strength of fiber-reinforced self-compacting concrete // Frontiers of Structural and Civil

Engineering, 2023, doi.org/10.1007/sll709-022-0901-6

77. Balykov A.S., Kaledina E.A., Volodin

S.V. Prognozirovaniye prochnosti pri szhatii i proyektirovaniye sostavov kon-struktsionnykh legkikh betonov s prime-neniyem metodov mashinnogo obucheniya [Prediction of compressive strength and design of compositions of structural lightweight concrete using machine learning methods] // Nanotekhnologii v stroitel'stve, 2023, Vol. 15, Issue 2, pp. 171-186 (in Russian).

78. Naser M.Z. Digital twin for next gen concretes: On-demand tuning of vulnerable mixtures through Explainable and Anomalous Machine Learning // Cement and Concrete Composites, 2022, Vol. 132, art. no. 104640.

79. Lyashenko T.V. O neyronnykh setyakh i eksperimental'no-statisticheskom modeliro-vanii [About neural networks and experimental-statistical modeling] // Modeling and Optimization of Building Composites. -Odessa, 2016.-pp. 86-90 (in Russian).

80. Elias J., Vorechovsky' M., Skocek J., Ba-zant Z.P. Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data // Engineering

-

16.

81. Xiong Q.A., Wang X., Jivkov A.P. 3D

multi-phase meso-scale model for modelling coupling of damage and transport properties in concrete // Cement and Concrete Composites, 2020, Vol. 109, P. 103545.

82. Contrafatto L., Cuomo M., Gazzo S. A

concrete homogenisation technique at me-so-scale level accounting for damaging behaviour of cement paste and aggregates // Computers & Structures, 2016, Vol. 173, pp. 1-18.

83. Shams M.Z. Multi-Scale Modeling of Particle Reinforced Concrete Through Finite Element Analysis: Theses and Dissertations, 2016, Paper 1202, https://dc.uwm.edu/etd/1202

84. Stroeven P., Stroeven M. Dynamic Computer Simulation of Concrete on different Levels of the Microstructure - Part 1 // Image Analysis and Stereology, 2003, Issue 22, pp.91-95.

85. Homel M.A., Iyer J., Herbold E.B., Sem-nani S.J. Mesoscale model and X-ray computed micro-tomographic imaging of damage progression in ultra-high-performance concrete // Cement and Concrete Research, 2022,Vol. 157,P. 106799.

86. Zhang J., Zhang M., Dong B., Ma H. Quantitative evaluation of steel corrosion induced deterioration in rubber concrete by integrating ultrasonic testing, machine learning and mesoscale simulation // Cement and Concrete Composites, 2022, Vol. 128, P.104426.

87. Imran Waris M., Ahmad A., Plevris V. [et al.] An alternative approach for measuring the mechanical properties of hybrid concrete through image processing and machine learning // Construction and Building Materials, 2022,Vol. 328,P. 126899.

88. Li K., Shui Z. H., Dai W. Molecular dynamic simulation of structural and mechanical properties of cement hydrates: from natural minerals to amorphous phases // Materials Research Innovations, 2012, Vol. 16, Issue 5, pp. 338-344.

89. Kulik D.A., Miron G.D., Lothenbach B. A structurally-consistent CASH+ sublattice solid solution model for fully hydrated C-S-H phases: Thermodynamic basis, methods, and Ca-Si-H2O core sub-model // Cement and Concrete Research, 2022, Vol. 151, P. 106585.

90. Valavi M., Casar Z., Bowen P. [et al.]

Molecular dynamic simulations of cementi-tious systems using a newly developed force field suite ERICA FF // Cement and Concrete Research, 2022, Vol. 154, P. 106712.

91. Bazhenov Yu.M., Vorobyov V.A., Il-yukhin A.V. [et al.] Komp'yuternoye mate-rialovedeniye stroitel'nykh kompozitnykh materialov. [Computer materials science of

building composite materials]. Moscow, Izd-vo Rossiyskoy inzhenernoy akademii, 2006, 256 pages (In Russia).

92. Magdeev U.Kh., Morozov V.I., Pukha-renko Yu.V. К matematicheskoy post-anovke zadachi ob opredelenii osesimmet-richnykh deformatsiy konstruktsiy iz neod-norodno ortotropnykh materialov [Towards a mathematical formulation of the problem of determining axisymmetric deformations of structures made of inhomogeneous orthotopic materials] // Fundamental, search and applied research of the RAASN on scientific support for the development of architecture, urban planning and the construction industry of the Russian Federation in 2016: Collection of scientific papers of the RAASN. Moscow, ASV Publishing House, 2017. pp. 227-230 (in Russian).

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

93 Selyaev V.P., Selyaev P.V., Lazarev A.L. [et al.] Fraktal'naya kvantovo-mekhanicheskaya model' deformirovaniya i razrusheniya betona [Fractal quantum mechanical model of deformation and destruction of concrete] // Regional'naya arkhitektura i stroitel'stvo, 2022, Issue 4, pp. 31-40 (in Russian).

94. Chernyshov E.M. Makeev A.I. Materi-alovedeniye i tekhnologiya stroitel'nykh kompozitov kak sistema nauchnogo znaniya i predmet razvitiya issledovaniy. Chast' 3. Sistemnaya identifikatsiya "konstruktsii struktury" konglomeratnykh stroitel'nykh kompozitov (v kachestvennoy postanovke problemy) [Materials science and technology of building composites as a system of scientific knowledge and a subject of research development. Part 3. System identification of the "structure design" of conglomerate building composites (in a qualitative formulation of the problem)] // Izvesti-ya vysshikh uchebnykh zavedeniy. Stroitel'stvo, 2021, Issue 3, pp. 5-26 (in Russian).

95. Chernyshov E.M., Makeev A.I. Univer-salii stroitel'nykh kompozitov kak strukturi-rovannykh tverdykh tel [Universals of

building composites as structured solids] // Izvestiya vuzov. Stroitel'stvo, 2021, Issue 11, pp. 37-54 (in Russian).

96. Current problems of numerical modeling of buildings, structures and complexes. Vol. 2. To the 25th anniversary of the StaDiO Research Center / Under the general direction. ed. A.M. Belostotsky and P.A. Akimova. Moscow, Publishing house ASV, 2016, 596 pages (in Russian).

СПИСОК ЛИТЕРАТУРЫ

1. Травуш В.И. Цифровые технологии в

Academia

и строительство, 2018. № 3. С. 107-117

2. Информатика в строительстве (с основами математического и компьютерного моделирования) / коллектив авторов ; под. ред. П.А. Акимова. - М.: КНОРУС, 2017. 420 с.

3. Макеев А.И. Методологические основания теории конструирования и синтеза оптимальных структур конгломератных строительных композитов // Научный вестник ВГАСУ. Серия: Физико-химические проблемы и высокие технологии строительного материаловедения, 2015. -№1. С. 29-37

4. Карпенко Н.И. Общие модели механики бетона. М.: Стройиздат, 1996. 416 с.

5. Кондращенко В.И. Некоторые аспекты компьютерного материаловедения // Моделирование и оптимизация композитов : Мат. к междунар. семинару, по-

Одесса: Астропринт, 2014. С. 64-68

6. Чернышев Е.М., Макеев А.И. К моделированию напряженного состояния

-

ных композитов в строительных конструкциях // Международный журнал по расчету гражданских и строительных конструкций. 2015. Т. 11, № 2. С. 160-170

7. Баженов Ю.М., Гарькина И.А., Данилов A.M., Королев Е.В. Системный

анализ в строительном материаловедении. -М: МГСУ, 2012. 432 с.

8. Будылина Е.А., Гарькина И. А., Данилов А. М. Общая схема идентификации и синтеза строительных материалов // Региональная архитектура и строительство, 2022. № 4(53). С. 26-30.

9. Чернышов Е.М. Материаловедение и технология строительных композитов как система научного знания и предмет развития исследований. Часть 2. Развитие и эволюция научного знания о конгломератных строительных композитах как структурированных системах // Известия высших учебных заведений. Строительство. 2020. № 1. С. 57-77.

10. Чернышов Е.М., Макеев А.И. О проблеме развития, эволюции «цифрового подхода» в материаловедении и технологии строительных композитов // Современная наука: теория, методология,

-

-

-

нокова A.B., 2021. С. 9-21.

11. Денисов Ф.А. Пространное руководство к общей технологии или к познанию всех работ, средств, орудий и машин, употребляемых в разных химических искусствах. -М., 1828. 548 с.

12. Менделеев Д.И. Основы фабрично-заводской промышленности. - С-Пб: Тип. В. Демакова, 1897. 201 с.

13. Тищенко И.А. Основные процессы и аппараты химической технологии. Вып. I: Общее введение. Измельчение и измельчающие аппараты. -М. : Типо-Лит. И.Х.Кавыкина, 1913. 161с.

14. Walker W.H., Lewis W.K., McAdams W.H. Principles of chemical engineering. -London: McGraw-Hill Publising Co., ltd, 1923.631 p.

15. Бэджер В., Мак-Кэб В. Основные процессы и аппараты химических производств. - Москва ; Ленинград : Госхим-техиздат, 1933. 476 с.

16. Касаткин А.Г. Основные процессы и аппараты химической технологии. - М.: «Химия», 1973. 752 с.

17. Малюга И.Г. Состав и способ приготовления цементного раствора (бетона) для получения наибольшей крепости. - С-Пб : тип. и лит. В.А. Тиханова, 1895. 201 с.

18. Житкевич H.A. Бетон и бетонные работы. -СПб, 1912. 524 с.

19. Эвальд В.В. Строительные материалы. Их приготовление, свойства и испытания. -М.: Гос. науч-техн. изд-во, 1931. 510 с.

20. Значко-Яворский И.Л Очерки истории вяжущих веществ от древнейших времен до середины XIX века. - Л.: Изд-во АН СССР, 1963. 496 с.

21. Богданов A.A. Всеобщая организационная наука (тектология) / 3-е изд. Ч. 1-3. -М.; Л.: 1929. 220 с.

22. Берталанфи Л. Общая теория систем -обзор проблем и результатов // Системные исследования. Ежегодник. - М.: «Наука», 1969. С. 34-35.

23. Исследования по общей теории систем // Сб. переводов под ред. В.Н. Садовского и Э.Г. Юдина. -М.: Прогресс, 1969. -519 с.

24. Карман Т., Био М. Математические ме-

-

е изд. -М.-Л.: Гос. изд-во технико-теоретич. лит-ры, 1948. 424 с.

25. Скрамтаев Б.Г. Теория прочности бетона. Новые виды бетонов / Доклады,

прочитанные на Всеукр. конференции по

-

г. - Харьков : Гос.-науч. техн. изд-во Украины, 1933. 55 с.

26. Юнг В.Н. Введение в технологию цемента. -Ж ; Л.: Госстройиздат, 1938. 404 с.

27. Михайлов В.В. Элементы теории структуры бетонов. - М.; Л. : Гос. изд. строит, лит., 1941. 227 с.

28. Шейкин А.Е. Теория упругости, проч-

-

НИИЖБ, 1944. 250 с.

29. Винер Н. Кибернетика, или Управление и связь в животном и машине. - М.: Наука, 1983. 344 с.

30. Оптнер С.Л. Системный анализ для решения деловых и промышленных проблем / Пер. с англ. - М.: Советское радио, 1968. 216 с.

31. Кафаров В.В. Методы кибернетики в химии и химической технологии. - М.: Химия, 1968. 379 с.

32. Фишер Р. Статистические методы для исследователей. - М.: Госстатиздат, 1958.267 с.

33. Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. - М.: Наука, 1976. 280 с.

34. Ахназарова С.Л., Кафаров В.В. Методы оптимизации эксперимента в химической технологии. -М.: Высш. шк., 1985. 327 с.

35. Вознесенский В. А., Выровой В. Н., Керш В. Я. и др. Современные методы оптимизации композиционных материалов / Под ред. В. А. Вознесенского. - Киев : Буд1вельник, 1983. 144 с.

36. Ляшенко Т.В. Оптимизация наполнителей полиэфирных связующих на основе моделей нового класса: дис.... канд. техн. наук. - Одесса, 1984. 236 с.

37. Шинкевич Е.С. Оптимизация структуры ячеистого силикатного бетона по комплексу критериев качества на основе изопараметрического анализа: дис. ... канд. техн. наук. - Красково, 1985. 249 с.

38. Баженов Ю.М. Бетон при динамическом нагружении. - М.: Стройиздат, 1970. 272 с.

39. Ратинов В.Б., Розенберг Т.И. Добавки в бетон. М.: Стройиздат, 1973. 207 с.

40. Мельниченко П.А. Структурно-статистический подход к решению задачи управляемого структурообразования композитов // Снижение материалоемкости и повышение долговечности строительных изделий. - Киев: Будивельник, 1974. С. 66-76.

41. Ребиндер П.А. Поверхностные явления

-

химическая механика. Избранные труды. -М.: Наука, 1979. 384 с.

42. Ахвердов И.Н. Основы физики бетона. -

43. Подвальный А.М. Определение величины собственных деформаций в бетонном конгломерате на различных структурных уровнях // Заводская лаборато-рия,1973. №10. С. 1204 - 1206.

44. Шейкин А.Е., Чеховский Ю.В., Брус-сер М.И. Структура и свойства цементных бетонов. М.: Стройиздат, 1979. 344 с.

45. Рыбьев И.А., Нехорошее A.B. Исходные методические позиции при исследовании искусственных строительных конгломератов // Строительные материалы, 1980. №2. С. 24-26.

46. Соломатов В.И. Элементы общей теории композиционных строительных материалов // Известие вузов. Строительство и архитектура, 1980. №8. С. 61 -70.

47. Чернышев Е.М. Управление процессами структурообразования и качеством силикатных автоклавных материалов (вопросы методологии, структурное материаловедение, инженерно-технологические задачи) : дис. ... д-ра техн. наук. - Воронеж, 1988. 600 с.

48. Болотин В.В., Гольденблат И.И., Смирнов А.Ф. Строительная механика. Современное состояние и перспективы развития. М.: Стройиздат, 1972. 191 с.

49. Будештский Р.И. Элементы теории прочности зернистых композиционных материалов. Тбилиси: Мецниереба, 1972. 82 с.

50. Зайцев Ю.В. Учет макро- и микроструктуры материала и его физической нелинейности в задачах о развитии трещин в бетоне // Известие вузов. Строительство и архитектура, 1975. № 11. С. 15 - 20.

51. Комохов П.Г. Физико-механические аспекты разрушения бетона и принципы снижения его трещинообразования // Совершенствование технологии строительного производства: Межвуз. тема-тич. сб. -Томск, 1981. С. 145-151.

52. Вознесенский В.А., Кровяков С.А., Ляшенко Т.В. Элементы компьютерного материаловедения при исследовании бе-

тонов // Буд1велш конструкцп: М1жвадо-мчий науково-техшчний зб., вип. 50. -Кшв: НД1БК, 1999. С. 310 -318

53. Аскадский A.A., Кондратенко В.И. Компьютерное материаловедение полимеров. Том 1. Атомно-молекулярный уровень. -М.: Научный мир, 1999. 544 с.

54. Баженов Ю.М., Воробьев В.А., Илюхин A.B. Основные подходы к компьютерному материаловедению строительных композитных материалов // Строительные материалы, 2006. № 3. С. 71

55. Чернышов Е.М., Дьяченко Е.И., Дьяченко Д.Е. О нейросетевом моделирова-

-

строительного материаловедения // Современные проблемы строительного материаловедения. -Шаново, 2000. С. 175-181

56. Данилов А.М., Королев Е.В., Смирнов

B.А., Прошин А.П. Нейросетевые методы исследования в строительном материаловедении // Известия высших учебных заведений. Строительство, 2003. № 10. С. 28-34.

51. Гусев Б.В., Королев Е.., Гришина А.Н. Модели полидисперсных систем: критерии оценки и анализ показателей эффективности // Промышленное и гражданское строительство, 2018. № 8. С. 31-39.

58. Смирнов В.А., Королев Е.В. Иерархическое моделирование строительных материалов как дисперсных систем: специализированная программная реализация // Строительные материалы, 2019. № 1-2.

C. 43-53.

59. Выровой В.Н., Дорофеев B.C., Суханов В.Г. Композиционные строительные материалы и конструкции: структура, самоорганизация, свойства. - Одесса:

-

туры, 2010. 169 с.

60. Каприелов С.С., Шейнфельд A.B., Кардумян Г.С., Чилин И.А. О подборе составов высококачественных бетонов с органоминеральными модификаторами // Строительные материалы, 2017. № 12. С. 58-63.

61. Селяев В.П., Селяев П.В. Физико- химические основы механики разрушения цементных композитов. - Саранск: Изд-во Мордов. ун-та, 2018. 220 с.

62. Белов В.В., Образцов И.В., Смирнов М.А. Проектирование зерновых составов минеральных вяжущих систем // Вестник Тверского государственного технического университета. Серия: Строительство. Электротехника и химические технологии, 2020. № 2. С. 7-15.

63. Артамонова О.В., Чернышов Е.М. Наномодифицированные структуры неорганических систем твердения строительных композитов. - Воронеж: Научная книга, 2022. 248 с.

64. Коротких Д.Н. Трещиностойкость современных цементных бетонов (проблемы материаловедения и технологии). Воронеж, Воронежский ГАСУ, 2014. 141 с.

65. Максимова И.Н., Макридин Н.И., Ерофеев В.Т., Скачков Ю.П. Структура и прочность конструкционных цементных композитов. - Саранск, 2015. 360 с.

66. Чернышов Е.М., Макеев А.И., Коротких Д.Н. Базовые положения механики проявления конструкционных свойств конгломератных строительных композитов. Часть 1. Обзор результатов теоретических исследований проблемы конструирования и синтеза структур современных высокотехнологичных бетонов // Известия вузов. Строительство,2020. № 8. С. 43-51

67. Славчева Г.С., Чернышов Е.М. Алгоритм конструирования структуры цементных пенобетонов по комплексу задаваемых свойств // Строительные мате-риалы,2016. № 9. С. 58-64.

68. Чернышов Е.М., Макеев А.И. К развитию теории конструирования и синтеза структур конгломератных строительных композитов // Фундаментальные, поисковые и прикладные исследования Российской академии архитектуры и строительных наук по научному обеспечению развития архитектуры, градостроительства и строительной отрасли Российской

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Федерации в 2019 году : Сб. науч. тр. РААСН.Т. 2. -М.: Издательство АСВ, 2020.С. 482 - 502 с.

69. Anitescu С, Atroshchenko Е, Alajlan N, Rabczuk Т. Artificial neural network methods for the solution of second order boundary value problems // Computers, Materials & Continua, 2019. V. 59(1). pp. 345-359

70. Wittmann F.H., Martinola G. Optimisation of concrete properties by neural networks // Concrete 2000 - economic and durable construction through exellence: Proc. Int. Conf. - London: E & FN Spon, 1993. -P. 1889-1898.

71. Shishcgaran A, Varaee H, Rabczuk Т, Shishcgaran G. High correlated variables creator machine: Prediction of the compressive strength of concrete // Computers & Structures, 2021. V. 247. p. 106479

72. Asteris P G, Ashrafian A, Rezaic-Balf M. Prediction of the compressive strength of self-compacting concrete using surrogate models // Computers and Concrete, 2019. V.24. pp. 137-150

73. Nguyen Т., Pham Duy H., Pham Thanh Т., Vu H. Compressive strength evaluation of fiber-reinforced high-strength selfcompacting concrete with artificial intelligence // Advances in Civil Engineering, 2020. e3012139

74. Saha P, Prasad M L V, Kuraar P.R. Predicting strength of SCC using artificial neural network and multivariable regression analysis // Computers and Concrete, 2017. V.20(I). pp. 31-38

75. Mashhadban H, Kutanaei S., Sayarincjad M. Prediction and modeling of mechanical properties in fiber reinforced selfcompacting concrete using particle swarm optimization algorithm and artificial neural network // Construction & Building Materials, 2016. V.119. pp. 277-287

76. Mai H.-V.T., Nguyen M.H., Trinh S.H., Ly H.-B. Optimization of machine learning models for predicting the compressive strength of fiber-reinforced self-compacting concrete // Frontiers of Structural and Civil Engineering, 2023. doi.org/10.1007/sl 1709-022-0901-6

77. Балыков A.C., Каледина E.A., Володин C.B. Прогнозирование прочности при сжатии и проектирование составов конструкционных легких бетонов с применением методов машинного обучения // Нанотехнологии в строительстве. 2023. Т. 15, №2. С. 171-186.

78. Naser M.Z. Digital twin for next gen concretes: On-demand tuning of vulnerable mixtures through Explainable and Anomalous Machine Learning // Cement and Concrete Composites, 2022. Vol. 132, art. no. 104640. DOI: 10.1016/j.cemconcomp.2022.104640

79. Ляшенко Т.В. О нейронных сетях и экспериментально-статистическом моделировании // Modelling and Optimization of Building Composites. - Одесса, 2016. С. 86-90.

80. Elias J., Vorechovsky' M., Skocek J., Ba-zant Z.P. Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data // Engineering Fracture Mechanics, 2015.V.135.Pp.1-16

81. Xiong Q.A., Wang X., Jivkov A.P. 3D multi-phase meso-scale model for modelling coupling of damage and transport properties in concrete // Cement and Concrete Composites, 2020. Vol. 109. P. 103545.

82. Contrafatto L., Cuomo M., Gazzo S. A

concrete homogenisation technique at meso-scale level accounting for damaging behaviour of cement paste and aggregates // Computers & Structures, 2016. V. 173. P. 1-18.

83. Shams M.Z. Multi-Scale Modeling of Particle Reinforced Concrete Through Finite Element Analysis: Theses and Dissertations, 2016. Paper 1202. https://dc.uwm.edu/etd/1202

84. Stroeven P., Stroeven M. Dynamic Computer Simulation of Concrete on different Levels of the Microstructure - Part 1 // Image Analysis and Stereology, 2003. №22. pp. 91-95. DOI: 10.5566/ias.v22.p91-95

85. Homel M.A., Iyer J., Herbold E.B., Sem-nani S.J. Mesoscale model and X-ray computed micro-tomographic imaging of dam-

age progression in ultra-high-performance concrete // Cement and Concrete Research, 2022. Vol. 157. P. 106799.

86. Zhang J., Zhang M., Dong B., Ma H. Quantitative evaluation of steel corrosion induced deterioration in rubber concrete by integrating ultrasonic testing, machine learning and mesoscale simulation // Cement and Concrete Composites, 2022. Vol. 128. P. 104426.

87. Imran Waris M., Ahmad A., Plevris V. [et al.] An alternative approach for measuring the mechanical properties of hybrid concrete through image processing and machine learning // Construction and Building Materials, 2022. Vol. 328. P. 126899.

88. Li K., Shui Z. H., Dai W. Molecular dynamic simulation of structural and mechanical properties of cement hydrates: from natural minerals to amorphous phases // Materials Research Innovations, 2012 . Vol 16. № 5. pp. 338-344

89. Kulik D.A., Miron G.D., Lothenbach B. A structurally-consistent CASH+ sublattice solid solution model for fully hydrated C-S-H phases: Thermodynamic basis, methods, and Ca-Si-H2O core sub-model // Cement and Concrete Research, 2022. Vol. 151. P. 106585.

90. Valavi M., Casar Z., Bowen P. [et al.]

Molecular dynamic simulations of cementi-tious systems using a newly developed force field suite ERICA FF // Cement and Concrete Research, 2022. Vol. 154. P. 106712.

91. Баженов Ю.М., Воробьев B.A., Илюхин A.B. [и др.] Компьютерное материаловедение строительных композитных материалов. -М.: Изд-во Российской инженерной академии, 2006. 256 с.

92. Магдеев У.Х., Морозов В.И., Пухарен-ко Ю.В. К математической постановке задачи об определении осесимметрич-ных деформаций конструкций из неоднородно ортотропных материалов // Фундаментальные, поисковые и прикладные исследования РААСН по научному обеспечению развития архитектуры, градостроительства и строительной отрасли Российской Федерации в 2016 году : Сборник научных трудов РААСН / Российская академия архитектуры и строительных наук. - Москва : Издательство АСВ, 2017. С. 227-230.

93 Селяев В.П., Селяев П.В., Лазарев А.Л. [и др.] Фрактальная квантово-механическая модель деформирования и разрушения бетона // Региональная архитектура и строительство, 2022. № 4(53). С. 31-40.

94. Чернышов Е.М. Макеев А.И. Материаловедение и технология строительных композитов как система научного знания и предмет развития исследований. Часть 3. Системная идентификация "конструкции структуры" конгломератных строительных композитов (в качественной по.

Строительство,2021. №3(747). С. 5-26.

95. Чернышов Е.М., Макеев А.И. Универсалии строительных композитов как структурированных твердых тел // Известия вузов. Строительство, 2021. № 11. С. 37-54.

96. Актуальные проблемы численного моделирования зданий, сооружений и ком-исследовательского центра СтаДиО: Монография / Под общ. ред. A.M. Бело-стоцкого и П.А. Акимова. -М.: Изд-во АСВ, 2016. 596 с.

Aleksey I. Makeev, Ph.D. tech. sciences, Associate Professor, Associate Professor of the Department of Technology of Building Materials, Products and Structures, Voronezh State Technical University, 84, st. 20th Anniversary of October, Voronezh, 394006, Russia; E-mail: makeev@vgasu.vrn.ru

Макеев Алексей Иванович, канд. техн. наук, доцент, доцент кафедры технологии строительных материалов, изделий и конструкций ФГБОУ ВО "Воронежский государственный технический университет", 84, ул. 20-летия Октября, Воронеж, 394006, Россия; E-mail: makeev@vgasu.vrn.ru

i Надоели баннеры? Вы всегда можете отключить рекламу.