Civil Aviation High Technologies
Vol. 22, No. 03, 2019
ТРАНСПОРТ
05.22.01 - Транспортные и транспортно-технологические системы страны; ее регионов и городов, организация производства на транспорте; 05.22.08 - Управление процессами перевозок; 05.22.13 - Навигация и управление воздушным движением; 05.22.14 - Эксплуатация воздушного транспорта
УДК 621.396
DOI: 10.26467/2079-0619-2019-22-3-8-15
INFLUENCE OF SURFACE CONDITION OF TAXIWAYS AND RUNWAYS
ON TIME OF AIRCRAFT DEPARTURE
V.V. VOROBYEV1, A.S. KHARLAMOV1, S.JU. IANCHUGIN2, SH.F. GANIEV1
1 Moscow State Technical University of Civil Aviation, Moscow, Russia 2Vnukovo Air Traffic Center, Moscow, Russia
ABSTRACT
The state of the runway (RWY) under operating conditions, due to the possibility of formation of a layer of water, ice, slush, snow, decreases the friction coefficient of the aircraft landing gear to RWY, and may cause the aviation events. In addition, the condition of taxiways and airport runway affects the taxiing time of aircraft, which during high-traffic hours can lead to additional flight delays. To study the effect of friction coefficient on the runway occupancy time the methodology of collecting statistical data about the time of different types of aircraft spent on runway at various values of the friction coefficient is offered. The method is based on a full-scale experiment. To conduct the experiment as the object of analysis the process of moving the aircraft from the holding position up to reaching the height of 200 meters at Vnukovo airport was chosen. Since the observer cannot control the parameters affecting the object of study during the flight, the friction coefficient is recorded as an input parameter during the experiment and as the response - the time of moving aircraft from holding position up to reaching the height 200 meters after take-off on standard departure procedure. As a result of the experiment, according to the obtained data, a graph of Ttot versus friction coefficient was designed. The greatest influence of the friction coefficient is observed when taxiing from the holding position on runway to line-up position.
Key words: Friction coefficient, airport capacity, air traffic control, airspace planning, experiment procedure.
INTRODUCTION
The state of the runway (RWY) under operating conditions, due to the possibility of formation of a layer of water, ice, slush, snow, decreases the friction coefficient Kfc of the aircraft landing gear to RWY, and may cause the aviation events. In addition, the condition of taxiways and runways affects the taxiing time of aircraft, which during high-traffic hours can lead to additional flight delays [1, 2]. Regulatory documents prescribe the measuring of the runway friction for the next cases1:
1. on dry RWY: they examine the wear of the surface of RWY and define the necessity of its recovering;
2. on wet RWY: they measure the friction coefficient for verifying its acceptable limits;
3. if there is a water layer on the RWY: they check the coefficient when tendency for hydroplaning is possible;
4. on slippery RWY in bad weather conditions it is necessary to perform additional measurements for friction coefficient;
1 Airport services manual. Part 2: Pavement surface conditions. ICAO DOC 9137-AN/898/ICAO. 4thed. 2002.
Vol. 22, No. 03, 2019
Ovil Aviation High Technologies
5. on RWY covered with snow, slush or ice: continuous and precise evaluation for friction coefficient is required.
Having the above-mentioned measures conducted provides the runways in use with very good friction conditions and required flight safety even in case the runway is wet. Evaluation and maintenance experience prove that surfaces designed in accordance with all requirements and made of asphalt or cement or concrete meet the criteria listed in DOC 9157- AN/901, 3-rd edition ICAO2.
As soon as the runway surface condition gets worse, it may affect the aircraft accelerating, decelerating, subsequently influencing the takeoff distance available (TODA), rejecting and landing. The lowering of the friction coefficient also has an effect on directional controllability of aircraft leading to immediate action for correcting to the side of reading level of acceptable crosswind during take-off and landing3.
Furthermore, friction coefficient reduced may change the time of taxiing on aerodrome and rolling for take-off on the runway. In case of traffic congestion, this may cause additional flight delays [3]. To analyze the influence of the friction coefficient on the time needed to occupy the runway by aircraft an experiment was conducted while statistics of the time of occupying the runway by different types of aircraft and different frictions parameters was chosen.
THE PROCEDURE OF THE EXPERIMENT
The Object of Analysis (OA) was chosen to be the process of movement of an aircraft from the holding position on taxiway up to reaching the height 200 meters after take-off on standard departure procedure at Vnukovo airport.
Object of analysis, in accordance [4, 5] appears as the "black box" with some quantity of input and output (fig. 1).
-N
X X
V
OA
Ш
Fig. 1. Block diagram of the analysis object
The figure shows:
• input parameters:
X = ||x1,x2,..., xn|| - the vector of variable controlled and operated parameters; Z = ||z1, z2,..., zn||- the vector of controlled but non-operated parameters; E = ||e1, e2,..., en||- the vector of non-controlled and non-operated parameters;
• output parameters:
Y = ||y1,y2, ...,yn|| - the vector of data or quality of the object analyzed. This figure remains dependent variable of the object and also forms feedback of the system to the entering actions. We accept the dependence of feedback on pending variable remains function of feedback, and geometric standpoint of feedback function - is the surface of feedback. Airport Vnukovo was chosen as the place for the conducting of the experiment. This airport has number three in rating among the Russian Federation airports, after Sheremetyevo and Domod-edovo including the quantity of passengers and non-passengers and other kind of flights. The average
2 Aerodrome Design Manual. Part 1: Runways. ICAO DOC 9157-AN/901 / ICAO. 3 rded. 2006.
3 Assessment, Measurement and Reporting of Runway Surface Conditions. ICAO circulars CIR 329-AN/191/ ICAO. 2012.
Ovil Aviation High Technologies
Vol. 22, No. 03, 2019
number of passengers at Vnukovo was 15815000 in 2015, and it has more, than 170 directions all over the world. Airport Vnukovo provides more than 170000 flights of Russian and foreign air companies.
There are three passenger terminals and "Vnukovo-Cargo" complex at the airport. The main passenger terminal "Vnukovo-1" contains of "A", "B", "D" terminals. The "Vnukovo-2" is a terminal for VIP flights, special government flights. "Vnukovo-3" terminal services business flights, Moscow government and other special flights including "Roscosmos".
There are 2 intersecting runways at the airport:
• runway 1 - magnetic RWY heading 238° and 158°;
• runway 2 - magnetic RWY heading 193° and 13°.
Considering that during the process of flight operations, the observer cannot change the parameters, which can affect the object of analysis, only passive experiment could be conducted [6]. The friction coefficient will be as a parameter of the Z group. Ttot time will be the output parameter. This time is between movements of an aircraft from the holding position on taxiway up to reaching the height 200 meters after take-off on standard departure procedure.
Fig. 2. Map of aerodrome surface movement with an active runway with magnetic heading 238°
For equal conditions during conducting of an experiment, the sample will include only those events that meet the following criteria:
• aircraft types: Airbus A320, Boeing B737, Boeing B767, Boeing B777 and Yakovlev YAK 40;
• active runway with magnetic heading 238°;
• the holding position on taxiway is A2.
Vol. 22, No. 03, 2019
Civil Aviation High Technologies
As seen from fig. 2, when taxiing from the holding position up to line-up position on taxiway A2, the aircraft has to make an about 90° turn. To perform such a maneuver, it is very important for flight deck crew to consider the friction. For better analysis, the Ttot will be divided into several parts:
• T1 is the time of aircraft taxiing from the holding position to line-up position;
• T2 is the time between of ATC clearance for departure of aircraft and its starting of take-off run;
• T3 is the time between starting of take-off run of aircraft and its take-off;
• T4 is the time between take-off of aircraft and reaching the height of 200 meters.
ANALYSIS OF THE OBTAINED DATA
During the conducting of the experiment, a sample of values of time intervals T1, T2, T3, T4 and Ttot was obtained for different values of the friction coefficient. For each of the aircraft types that meet the requirements of conducting of an experiment, a table was designed. In it, each value of the friction coefficient corresponds to the expectation of time intervals M (T1), M (T2), M(T3), M(T4) and M(Ttot).
Table 1
Expectation of time intervals of taxiing for various values of friction coefficient
for aircraft A 320
Kfc Ti Т2 Тз Т4 Ttot
0.42 1:41:38 0:14:07 0:42:30 0:20:30 2:58:00
0.45 1:46:20 0:11:40 0:28:20 0:16:20 2:42:40
0.5 1:06:00 0:14:00 0:46:00 0:16:00 2:22:00
0.6 1:03:24 0:16:24 0:35:12 0:17:36 2:00:36
Table 2
Expectation of time intervals of taxiing for various values of friction coefficient
for aircraft B 737
Kfc Т1 Т2 Т3 Т4 Ttot
0.45 1:32:24 0:23:12 0:34:36 0:13:12 2:43:24
0.6 1:19:34 0:13:34 0:32:34 0:21:26 2:27:09
Table 3
Expectation of time intervals of taxiing for various values of friction coefficient
for aircraft B 767
Kfc Т1 Т2 Т3 Т4 Ttot
0.4 1:34:00 0:11:00 0:42:00 0:38:00 3:05:00
0.42 2:02:00 0:14:00 0:46:00 0:14:00 3:16:00
0.5 1:51:30 0:09:00 0:47:30 0:18:30 3:06:30
0.6 0:47:40 0:15:20 0:40:00 0:17:40 2:00:40
Table 4
Expectation of time intervals of taxiing for various values of friction coefficient
for aircraft B 777
Kfc Т1 Т2 Т3 Т4 Ttot
0.5 1:00:00 0:44:00 0:31:00 0:10:00 2:25:00
0.55 1:31:30 0:27:30 0:38:00 0:14:00 2:51:00
0.6 1:29:36 0:13:36 0:37:18 0:18:48 2:39:18
Ovil Aviation High Technologies
Vol. 22, No. 03, 2019
Table 5
Expectation of time intervals of taxiing for various values of friction coefficient
for aircraft JAK 40
Kfc Ti T2 T3 T4 Ttot
0.4 1:34:00 0:11:00 0:42:00 0:38:00 3:05:00
0.42 2:02:00 0:14:00 0:46:00 0:14:00 3:16:00
0.45 1:28:00 0:09:00 0:40:00 0:49:00 3:06:00
0.5 1:51:30 0:09:00 0:47:30 0:18:30 3:06:30
0.6 0:47:40 0:15:20 0:40:00 0:17:40 2:00:40
Figure 4 shows a graph of Ttot versus friction coefficient.
the graph of Ttot versus friction coefficient
4:04:46 3:50:24 3:35:00 3:21:36 3:07:12
m
p 2:52:4Ë 2:38:24 1:24:00 2:09:36 1:55:12
0.37 0,42 0,47 0,52 0,57
friction coefficient
Fig. 4. Graph of Ttot versus friction coefficient
As it can be seen from the graph, with an increase in the friction coefficient, Ttot decreases. It should be noted that the greatest influence of the friction coefficient is noted when taxiing from the holding position to line-up position. The influence of the friction coefficient on the remaining time intervals is insignificant. Taxiing is carried out on a complex trajectory close to a sinusoidal curve, which can be explained by the second-order dynamic equations. Speed and features of movement on taxiways depend on the condition of the coating. When the surface is dry, the taxiing speed may be higher than when it is wet. This can be explained by the fact that the longitudinal and transverse resistance forces to movement, which determine the longitudinal and ground stability and controllability of the aircraft, have large values on dry surfaces. The speed of the aircraft on the taxiway also depends on the pilot qualification [7-10].
As it can be seen from fig. 2, at Vnukovo airport there are quite a lot of taxiway intersections where the aircraft has to maneuver at large angles. Therefore, the friction coefficient can have a significant impact on taxiing time on the airfield, which in turn should be taken into account, especially during "peak hours" when the intensity movement is the highest. At the same time, the presence of highspeed taxiways used as runway exits and entries, the trajectory of movement along which allows you to perform a maneuver faster than from the taxiways that are perpendicular to the runway. This could significantly increase the capacity of the airport.
Vol. 22, No. 03, 2019
Civil Aviation High Technologies
It is practically impossible to predict the condition of the runways and taxiways. However, it is possible to accumulate statistics on the friction coefficient in different calendar months. The use of such statistics in flight planning to adjust airport capacity rates will help to reduce flight delays.
REFERENCES
1. Bogoyavlenskiy, A.A. and Bokov, A.E. (2012). Osobennosti metrologicheskogo obespecheniya sredstv i metodov izmereniy koeffitsiyenta stsepleniya na vozdushnom transporte [Features of metrological provision of means and methods of measuring the friction coefficient of air transport]. Mir izmereniy [Measurements world], no. 8, pp. 17-29. (in Russian)
2. Kublanov, M.S. (2013). Matematicheskoye modelirovaniye zadach letnoy ekspluatatsii vozdushnikh sudov na vzlete i posadke [Mathematical modeling tasks for flight operation of aircraft on takeoff and landing: a monograph]. Monografya [Monograph]. Moscow: MSTUCA, 269 p. (in Russian)
3. Eliseev, B.P., Vorobjev, V.V. and Kharlamov, A.S. (2016). Vliyaniye intensivnosti vozdushnogo dvigheniya na zaderghki reysov [Influence of air traffic on flight delays]. World of Transport and Transportation, vol. 14, no. 4(65), pp. 168-175. (in Russian)
4. Krasovskiy, G.I. and Filaretov, G.F. (1982). Planirovaniye eksperimenta [Experiment planning]. Minsk: Izd-vo BGU im. V.I. Lenina, pp. 8-14. (in Russian)
5. Paninski, L. (2004). Design of experiments via information theory. In: S. Thrun, L.K. Saul and B. Scholkopf (ed.). Advances in neural information processing systems 16. Proceedings of the 2003 Conference. MIT Press, pp. 1319-1326.
6. Pevzner, M.Z. (2013). Metodologiya issledovaniya, modelirovaniya i sovershenstvovaniya proizvodstvennikh protsessov [Methodology of research, modeling and improvement of production processes: lectures]. Kurs lektsiy [Course of lectures]. Kirov: Izd-vo VyatGU, pp. 30-33. (in Russian)
7. Kublanov, M.S. and Behtina, N.B. (2011). Problemy matematicheskogo modelirovaniya dvigeniya tyagelikh transportnikh samoletov po skorostnym rulezhnym dorozhkam [Special features of the mathematical simulation of the motion of heavy transport planes along the high-speed taxiways]. Scientific Bulletin of the Moscow State Technical University of Civil Aviation, no. 172, pp. 7-11. (in Russian)
8. Belinskiy, I.A., Samorodov,Yu.A. and Sokolov, V.S. (1982). Zimneye soderzhaniye aer-odromov [Winter maintenance of airfields]. Moscow: Transport, pp. 25-33.(in Russian)
9. Chasovnikov, V.G. (1972). Issledovaniye glissirovaniya koles samoletov na mokryikh aerodromnyikhpokryitiyakh: dis. ... kand. tekhn. nauk. [Research of aircraft wheel gliding on wet air field coverings: the Dissertation of a Candidate of Technical Sciences]. Leningrad, pp. 16-20. (in Russian)
10. Gerthoffert, J., Grosjean, C., Cerezo, V. and Do, Minh-Tan. (2014). Modelling of aircraft braking coefficient from IMAG friction measurements. AUN2014. Airports in Urban Networks. Paris, 15-16 Apr 2014. Conference paper, pp. 2-5.
INFORMATION ABOUT THE AUTHORS
Vadim V. Vorobjev, Doctor of Technical Sciences, Professor, Head of the Chair of Flight and Life Safety, Moscow State Technical University of Civil Aviation, [email protected].
Andrei S. Kharlamov, Senior Lecturer of Air Traffic Control Chair, Moscow State Technical University of Civil Aviation, [email protected].
Sergei Ju. Ianchugin, ATCO of Vnukovo Air Traffic Center, [email protected].
Shamil F. Ganiev, Candidate of Technical Sciences, Associate Professor of the Chair of Flight and Life Safety, Moscow State Technical University of Civil Aviation, [email protected].
Civil Aviation High Technologies
Vol. 22, No. 03, 2019
ВЛИЯНИЕ СОСТОЯНИЯ ПОВЕРХНОСТИ РУЛЕЖНЫХ ДОРОЖЕК И ВЗЛЕТНО-ПОСАДОЧНОЙ ПОЛОСЫ НА ВРЕМЯ ВЫЛЕТА
ВОЗДУШНЫХ СУДОВ
1 1 2 1 В.В. Воробьев , А.С. Харламов , С.Ю. Янчугин , Ш.Ф. Ганиев
1 Московский государственный технический университет гражданской авиации,
г. Москва, Россия
2Внуковский центр обслуживания воздушного движения, г. Москва, Россия
Состояние взлетно-посадочной полосы (ВПП) в эксплуатационных условиях, обусловленных возможностью образования на полосе слоя воды, льда, слякоти, снега, приводит к снижению коэффициента сцепления пневматиков шасси самолета с ВПП и может быть причиной авиационных событий. Кроме того, состояние рулежных дорожек и ВПП аэропорта влияет на время руления воздушных судов, что в часы высокой интенсивности воздушного движения может привести к дополнительным задержкам рейсов. Для исследования влияния коэффициента сцепления на время занятости ВПП воздушным судном предлагается методика, заключающаяся в сборе статистических данных по времени нахождения разных типов воздушных судов на ВПП при различных значениях коэффициента сцепления. В основе методики лежит натурный эксперимент. Для проведения эксперимента в качестве объекта исследования был выбран процесс движения воздушного судна от предварительного старта до набора им высоты 200 метров в аэропорту Внуково. Так как при производстве полетов наблюдатель не может управлять параметрами, влияющими на объект исследования, то в ходе эксперимента фиксируется в качестве входного параметра - коэффициент сцепления, в качестве отклика - интервал времени, затраченный воздушным судном при движении от предварительного старта до набора этим воздушным судном высоты 200 метров. В результате эксперимента по полученным данным был построен график зависимости этого интервала от коэффициента сцепления. Наибольшее влияние коэффициента сцепления отмечается при рулении от предварительного старта к исполнительному.
Ключевые слова: коэффициент сцепления, пропускная способность аэропортов, управление воздушным движением, планирование использования воздушного пространства, методика проведения эксперимента.
СПИСОК ЛИТЕРАТУРЫ
1. Богоявленский А.А., Боков А.Е. Особенности метрологического обеспечения средств и методов измерений коэффициента сцепления на воздушном транспорте // Мир измерений. 2012. № 8. С. 17-29.
2. Кубланов М.С. Математическое моделирование задач летной эксплуатации воздушных судов на взлете и посадке: монография. М.: МГТУ ГА, 2013. С. 269.
3. Елисеев Б.П., Воробьев В.В., Харламов А.С. Влияние интенсивности воздушного движения на задержки рейсов // Мир транспорта. 2016. Т. 14, № 4(65). С. 168-175.
4. Красовский Г.И., Филаретов Г.Ф. Планирование эксперимента. Минск: Изд-во БГУ им. В.И. Ленина, 1982. С. 8-14.
5. Paninski L. Design of experiments via information theory // Advances in Neural Information Processing Systems: proceedings of the 2003 Conference / Ed. S. Thrun, L.K. Saul, B. Schölkopf. MITPress, 2004. Pp. 1319-1326.
6. Певзнер М.З. Методология исследования, моделирования и совершенствования производственных процессов: курс лекций. Киров: Изд-во ВятГУ, 2013. С. 30-33.
7. Кубланов М.С., Бехтина Н.Б. Проблемы математического моделирования движения тяжелых транспортных самолетов по скоростным рулежным дорожкам // Научный Вестник МГТУ ГА. 2011. № 172. С. 7-11.
8. Белинский И.А., Самородов Ю.А., Соколов В.С. Зимнее содержание аэродромов. М.: Транспорт, 1982. С. 25-33.
9. Часовников В.Г. Исследование глиссирования колес самолетов на мокрых аэродромных покрытиях: дис. ... канд. техн. наук. Л., 1972. С. 16-20.
Vol. 22, No. 03, 2019
Civil Aviation High Technologies
10. Gerthoffert J. Modelling of aircraft braking coefficient from IMAG friction measurements / C. Grosjean, V. Cerezo, M.-T. Do // AUN2014. Airports in Urban Networks. Paris, 15-16 Apr 2014. Conference paper. 2014. Pp. 2-5.
СВЕДЕНИЯ ОБ АВТОРАХ
Воробьев Вадим Вадимович, доктор технических наук, профессор, заведующий кафедрой безопасности полетов и жизнедеятельности МГТУ ГА, [email protected].
Харламов Андрей Сергеевич, старший преподаватель кафедры управления воздушным движением МГТУ ГА, [email protected].
Янчугин Сергей Юрьевич, диспетчер Внуковского центра обслуживания воздушного движения, [email protected].
Ганиев Шамиль Фангалиевич, кандидат технических наук, доцент кафедры безопасности полетов и жизнедеятельности МГТУ ГА, [email protected].
Поступила в редакцию 16.03.2018 Received 16.03.2018
Принята в печать 21.05.2019 Accepted for publication 21.05.2019