УДК [612.563+612.53](98) DOI: 10.17238/issn2542-1298.2020.8.1.89
INFLUENCE OF SHIVERING, HYPOTHERMIA AND CIRCADIAN RHYTHMS ON THE FEATURES OF RESEARCH USING INFRARED THERMOGRAPHY IN THE ARCTIC (Review) = ВЛИЯНИЕ ДРОЖИ, ГИПОТЕРМИИ И ЦИРКАДНОГО РИТМА НА ОСОБЕННОСТИ ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ С ПОМОЩЬЮ МЕТОДА ИНФРАКРАСНОЙ ТЕРМОГРАФИИ В УСЛОВИЯХ АРКТИКИ (обзор)
А.И. Насутион*/** ORCID: 0000-0003-1742-0362 М.Н. Панков* ORCID: 0000-0003-3293-5751 А.Б. Кирьянов* ORCID: 0000-0002-5594-6624 Л.Ф. Старцева*** ORCID: 0000-0002-9928-5362
*Северный (Арктический) федеральный университет имени М.В. Ломоносова
(г. Архангельск) **Университет Сиа Куала (г. Банда Ачех, Индонезия) ***Государственный институт лекарственных средств и надлежащих практик
(Москва)
Изучены факторы окружающей среды, которые характерны для арктических регионов и влияют на результаты термографических исследований, тем самым ограничивая спектр их применения. Небольшие отклонения температуры вызывают изменения излучения с поверхности тела и таким образом влияют на анализ и интерпретацию термограмм. Кроме того, при применении инфракрасной термографии для измерения температур биообъектов необходимо понимать технические и методологические особенности метода. Проводя исследования с участием местного населения, важно учитывать изменения температуры кожи под воздействием факторов окружающей среды. Географически к арктическим регионам относятся Канада, Гренландия, Исландия, Норвегия, Швеция, Финляндия, Аляска и северные области России, в которых преобладает холодный климат. Холодный климат, неблагоприятные погодные условия и долгие зимние ночи - одни из многих факторов, затрудняющих проведение исследований в Арктике. Проводя исследования в области физиологии, важно рассматривать температуру окружающей среды как фактор, влияющий на количественную оценку индивидуальных особенностей участников, а полученные в результате знания адаптировать для использования в качестве дополнения программ обучения студентов. Основное внимание авторы уделяют дрожи, гипотермии и циркадному ритму как последствиям воздействия факторов окружающей среды, которые могут влиять на особенности применения инфракрасной термографии для исследований в области физиологии в Арктике.
Ключевые слова: температура тела, инфракрасная термография, дрожь, гипотермия, циркадные ритмы, Арктика.
Ответственный за переписку: Панков Михаил Николаевич, адрес: 163045, г. Архангельск, проезд Бадиги-на, д. 3; e-mail: [email protected]
Для цитирования: Насутион А.И., Панков М.Н., Кирьянов А.Б., Старцева Л.Ф. Influence of Shivering, Hypothermia and Circadian Rhythms on the Features of Research Using Infrared Thermography in the Arctic (Review) = = Влияние дрожи, гипотермии и циркадного ритма на особенности проведения исследований с помощью метода инфракрасной термографии в условиях Арктики (обзор) // Журн. мед.-биол. исследований. 2020. Т. 8, № 1. С. 89-98. DOI: 10.17238/issn2542-1298.2020.8.1.89
The use of thermal imaging in biomedical practice is of great relevance. At the moment, body temperature is one of the most accurate parameters that reflect a person's condition. Thermal radiation from the skin can tell us about changes occurring in the body and, sometimes, about their causes, since most often the deviation of temperature distribution from the norm is a sign of a developing pathology [1].
One of the modern methods of measuring temperature is infrared thermography. None of the existing techniques has such wide diagnostic capabilities in various diseases as thermography
[2]. This method allows us to determine the localization of possible changes or inflammation, as well as their activity and prevalence. The informational content and reliability of thermal images for some diseases is approaching 100 %
[3]. Moreover, infrared thermography causes no discomfort in patients [4-8]. This method is absolutely safe and easy to apply [9-11]. Its degree of safety is remarkably high, even with frequent use. Importantly, this method can be applied in pregnant women and young children [8, 12, 13].
One of the disadvantages, however, is that infrared thermography requires taking into consideration several factors that can affect either the analysis or the interpretation of thermal images [14, 15]. The main influencing factor is the environment: its temperature is very important for accurate human studies using infrared thermography [16, 17]. Most sources suggest a range of 18-25 °C, as the subject may shiver at lower temperatures or sweat at higher temperatures [17-19].
Cold temperatures, adverse weather conditions and prevailing darkness in the winter are just a few of the many factors impeding research in the Arctic [20]. Geographically, the Arctic regions include Canada, Greenland, Iceland, Norway, Sweden, Finland, Alaska and the northern areas of Russia where cold climate prevails [21]. The United States Centers for Disease Control and Prevention (CDC) found that 63 % of weather-related deaths between 2006 and 2010 in the United States were attributed to exposure to excessive natural cold,
hypothermia, or both [18]. Meanwhile, changes in temperature in the Arctic adversely affect the health of not only indigenous residents: unsuitable clothing as well as a lack of knowledge on how to deal with cold and harsh weather conditions may be the main risk factors for temporary residents.
Foreign students make a significant contribution to increasing the temporary population of the Arctic. In general, it is residents of tropical countries that come to study at Russian universities. In 2016, the number of foreigners entering universities of the Russian Federation amounted to 244 597 people [22]. Over the following year, the number of students from tropical countries in Russian universities increased by 17 %, the number of students from India increased by 20 %, and those from China by
10 %. The Russian Ministry of Education reports that in 2015-2016 Russian universities enrolled about 3.1 thousand people from Vietnam and about
11 thousand from African countries [23].
Currently, studies explaining the influence of
environmental factors on infrared thermography are rather scarce. When conducting research in the field of physiology, it is important to consider ambient temperature as a factor affecting the quantitative assessment of the individual characteristics of participants and adapt the resulting knowledge to complement student training programmes. The purpose of this article is to review factors that can influence both the analysis and interpretation of the results of applying infrared thermography in the Arctic. It also explains how important ambient temperature and related factors are to fill research gaps and minimize the limitations of infrared thermography in identifying pathologies in both permanent and temporary residents of the Arctic.
Environment. One of the factors influencing the analysis and interpretation of thermograms is the environment. Infrared thermography is based on measuring the heat radiated by the body in the infrared spectrum and the subsequent conversion of these vibrations into an electrical signal [24]. Infrared thermography does not imply a direct measurement of temperature, since the thermal imager determines only the energy of thermal
radiation. The camera captures the radiation of the target object, as well as the radiation of its surroundings. Both of these radiation components are attenuated as they pass through the atmosphere. Therefore, the main problem is matching the detector's response curve to what is called an atmospheric window, namely, the range of wavelengths of infrared radiation that pass through the atmosphere with slight attenuation [25].
Infrared thermography is based on fundamental physical laws [26]. For a physical body, the energy emitted in the infrared region per unit surface area per unit time (emissive power) is determined by the total radiation power and depends on the body's temperature in kelvins. This can be seen from Equation 1 below [27]:
E = s a T4, (1)
where o (the Stefan-Boltzmann constant) is 5.67-10-8 W-m-2-K-4, and e is emissivity. For a perfect blackbody, e =1. The emissivity of the human body equals 0.98.
The camera captures both the heat radiated by the body and that reflected by it (Eq. 2). To determine the surface temperature of the body, it is necessary to determine the value of the reflected temperature (T) (Eq. 3):
E
received
= s a T4 + (1-s) a T4
r
reflected'
^ {[ Ereceived (1 S) a Treflected] / S a}
1/4
(2)
(3)
where T is the surface temperature and o equals 5.67-10-8 W-m-2-K-4.
As can be seen from the equations above, small temperature fluctuations change the body's thermal radiation power, which affects both the analysis and the interpretation of thermograms. However, qualitative and quantitative changes in temperature distribution indicate the radiation's abnormality [27]. Therefore, for the application of infrared thermography in the Arctic conditions, both technical and methodological aspects of the method should be clear.
The impact of cold climatic conditions on the local population is closely related to such physiological phenomena as shivering, hypothermia and circadian rhythms.
Shivering. Shivering causes particular discomfort to non-indigenous residents of the Arctic, which can affect the results of infrared thermography. This factor is extremely important as many scientists note that the subjects of research can shiver at low ambient temperatures [17, 2830]. Shivering is a protective mechanism allowing heat transfer to take place through frequent involuntary muscle contractions, compensating for the lowered body temperature in a healthy living organism. At the molecular level, the mechanism of reflex protection against cold is activated when the low temperature is perceived by the preoptic nucleus of the hypothalamus [31]. The neurological mechanism of shivering is mediated by spinal alpha motor neurons and their axons [32]. Heat production through shivering is a major component of thermogenesis during body cooling. This thermoregulatory mechanism in humans is, as a rule, well adapted to heat dissipation in hot climates, but, at the same time, is poorly adapted to its preservation in the cold [33].
Shivering is related to cold-induced thermogenesis (CIT) [34]. When people are exposed to cold, they exhibit two basic types of physiological reactions in order to maintain their internal temperature. Firstly, they can rely on the body's thermal insulation properties, regulating blood flow to control heat loss; secondly, they can increase their energy consumption 3-5-fold compared with the state of rest [35] in order to counterbalance the cold-induced heat loss [34]. Furthermore, this condition can be triggered by hypothermia [36-38].
Hypothermia. Fluctuations in ambient temperature can lead to hypothermia, which can result in inaccurate diagnosis using thermography. Since shivering can provoke a 5-fold increase in energy consumption, it is the main mechanism for counteracting hypothermia and ensuring human survival in conditions of extreme cold [36-38]. As is well known, the human body is designed to maintain homeostasis under changing environmental conditions. Humans produce or release heat through thermoregulation mechanisms to protect themselves from extreme heat or cold.
During cold weather, the body loses heat faster than it is generated, which consumes the stored energy and can lead to hypothermia, defined as the core temperature of the body below 95 °F (35 °C) [39].
Hypothermia leads to vasoconstriction and an increase in blood viscosity, an increase in the load on the cardiovascular system similar to overheating [38]. In other words, this additional strain on the heart is combined with many other problems, including increased sensitivity of the heart muscle, which can lead to dysrhythmia [40]. Hypothermia is often a symptom of other diseases; for example, some systemic infections disrupt thermoregulation and allow hypothermia to develop even in the warm season [41].
Other than that, infrared thermography also plays an important role in assessing inflammatory processes [42]. Inflammation leads to hyperthermia, while degeneration, decreased muscle activity and poor perfusion can cause hypothermia [43]. It was found that in the area of inflammation, despite the decrease in the intensity of most chemical processes, the intensity of the separated processes of cellular respiration and phosphorylation can increase. As a result, the temperature of the inflamed area will be higher than that of the surrounding tissue [44]. Therefore, we can say that changes in the normal temperature distribution are a sign of a pathological process [45]. This fact should be taken into account when interpreting thermograms [27].
Circadian rhythm. When researching in the Arctic, it is important to consider the circadian rhythms of body temperature fluctuations. Light of sufficient intensity is the main factor supporting the 24-hour period of human circadian rhythms
[46]. Therefore, life in long day and night conditions can cause problems with sleep, mood, and productivity in people living in the Arctic
[47]. It has been shown that skin temperature changes throughout the day. In the Arctic, people
lack natural sunlight in the winter and have an excess of it in the summer. In the evening, the temperature of the body's core and proximal skin areas increases compared with distal areas; the opposite effect can, apparently, be observed in the morning [48]. Intensive insolation, excess sunlight in the summer and the predominance of darkness in the winter are some of the many problems that arise when conducting research in the Arctic. For most subjects, recordings should be made at the same time of the day and during the same season to make successive group comparisons possible.
Some studies claim that people living in the subarctic climate may experience more seasonal fluctuations in sleep patterns than those living closer to the equator [49, 50]. During the winter, newcomers are often limited in mobility and experience desynchronization of sleep and circadian rhythms, which impairs their cognitive function. Changes in circadian rhythms are also associated with fluctuations in melatonin secretion depending on the length of the day [46]. Since there is no data that could explain the level of melatonin in various people, both indigenous and non-indigenous, it can be assumed that it depends on the ability to adapt to extreme cold, length of the day and, sometimes, to prolonged physical inactivity. This indicates that changes in the circadian rhythms of both permanent and temporary residents of the Arctic may affect the interpretation of the obtained thermograms.
Conclusion. In studies using infrared thermography in the Arctic, it is necessary to take into account such physiological phenomena as shivering, hypothermia and the circadian rhythm of human body temperature, which are associated with the influence of climatic and geographical factors of the Arctic region.
Conflict of interest. Authors declare no conflict of interest.
Список литературы
1. Romanovsky A.A. Skin Temperature: Its Role in Thermoregulation // Acta Physiol. (Oxf.). 2014. Vol. 210. P. 498-507.
2. Lahiri B.B., Bagavathiappan S., Jayakumar T., Philip J. Medical Applications of Infrared Thermography: A Review // Infrared Phys. Technol. 2012. Vol. 55, № 4. P. 221-235.
3.Дурново E.A., Потехина Ю.П., Марочкина М.С., Хомутинникова Н.Е., Янова Н.А. Возможности инфракрасной термографии в комплексной диагностике заболеваний челюстно-лицевой области // Соврем. проблемы науки и образования. 2012. № 4. URL: http://science-education.ru/ru/article/view?id=6657 (дата обращения: 10.10.2018).
4. Хижняк Л.Н., Хижняк Е.П., Иваницкий Г.Р. Диагностические возможности матричной инфракрасной термографии. Проблемы и перспективы // Вестн. новых мед. технологий. 2012. Т. XIX, № 4. С. 170-176.
5.Дехтярев Ю.П., Мироненко С.А., Дунаевский В.И., Венгер Е.Ф., Котовский В.И., Тимофеев В.И., НазарчукС.С., СоловьевЕ.А. Tермографическая диагностика заболеваний позвоночника у спортсменов // Лечеб. физкультура и спорт. медицина. 2013. № 8(116). С. 16-20.
6. Картель А.А., Лещенко В.Г., Буцель А.Ч., Дудко М.А., Процко А.Ю. Термография в диагностике синуситов // Оториноларингология. Восточная Европа. 2013. № 2. Р. 84-89.
7. Koжевникова И.С., Панков М.Н., Старцева Л.Ф., Aфанасенкова Н.В. Применение инфракрасной термографии при сосудистой патологии (краткий обзор) // Междунар. журн. приклад. и фундам. исследований. 2017. № 5-1. С. 72-74.
8. Потехина Ю.П., ёрников Г.Ю., Голованова М.В., Ткаченко Ю.А. Возможности новой технологии инфракрасной термографии в дифференциальной диагностике меланоцитарных образований кожи // Вестн. эстет. медицины. 2012. № 2. С. 83-88.
9. Уракова KA., Ураков A.Л. Инфракрасная термография головы плода - новая методика диагностики в акушерстве // Вестн. Рос. воен.-мед. акад. 2014. № 3(47). С. 32-36.
10. ГерасимоваН.Н. Современные возможности лучевой визуализации лимфатических узлов в подмышечной области // Междунар. журн. приклад. и фундам. исследований. 2016. № 10-2. С. 201-204.
11. KoжевниковаИ.С., ПанковМ.Н., ЕрмошинаН.А. Методы обработки и анализа термограмм для экспресс-диагностики новообразований молочных желез // Журн. мед.-биол. исследований. 2017. Т. 5, № 2. С. 56-66. DOI: 10.17238/issn2542-1298.2017.5.2.56
12. Шейко Е.А., Козель Ю.Ю., Триандафилиди Е.И., Шихлярова А.И. Дистанционная инфракрасная термография как вспомогательный метод в диагностике и лечении гемангиом у детей до года // Междунар. журн. приклад. и фундам. исследований. 2015. № 9-2. С. 302-304.
13. Паршикова С.А., Паршиков В.В. Неинвазивные методы мониторинга раневого процесса (обзор литературы). Перспективы их применения в челюстно-лицевой хирургии у детей // Соврем. проблемы науки и образования. 2012. № 2. С. 64.
14. Zaproudina N., Varmavuo V., Airaksinen O., NarhiM. Reproducibility of Infrared Thermography Measurements in Healthy Individuals // Physiol. Meas. 2008. Vol. 29. P. 515-524.
15. Fernández-Cuevas I., Bouzas Marins J.C., Arnáiz Lastras J., Gómez Carmona P.M., Piñonosa Cano S., García-Concepción M.A., Sillero-Quintana M. Classification of Factors Influencing the Use of Infrared Thermography in Humans: A Review // Infrared Phys. Technol. 2015. Vol. 71. P. 28-55.
16. Ring E.F.J., Ammer K. The Technique of Infra Red Imaging in Medicine // Thermol. Int. 2000. Vol. 10, № 1. P. 7-14.
17. Ammer K., Ring E.F.J. Standard Procedures for Infrared Imaging in Medicine // Medical Infrared Imaging / еd. by N.A. Diakides, J.D. Bronzino. Boca Raton, 2007. Р. 32.1-32.14.
18. Berko J., Ingram D.D., Saha S., Parker J.D. Deaths Attributed to Heat, Cold, and Other Weather Events in the United States, 2006-2010 // Natl. Health Stat. Rep. 2014. Vol. 30, № 76. Р. 1-15.
19. Sikdar S.D., KhandelwalA., Ghom S., Diwan R., Debta F.M. Thermography: A New Diagnostic Tool in Dentistry // J. Indian Acad. Oral Med. Radiol. 2010. Vol. 22, № 4. P. 206-210.
20. Comiso J.C., Hall D.K. Climate Trends in the Arctic as Observed from Space // WIREs Clim. Change. 2014. Vol. 5, № 3. P. 389-409. DOI: 10.1002/wcc.277
21. Hedlund C., Blomstedt Y., Schumann B. Association of Climatic Factors with Infectious Diseases in the Arctic and Subarctic Region: A Systematic Review // Glob. Health Action. 2014. № 7. Art. № 24161. DOI: 10.3402/gha.v7.24161
22. Россия в цифрах. 2017: крат. стат. сб. / Федер. служба гос. статистики (Росстат). М., 2017. 511 с.
23. International Students in Russia // Study in Russia: the Website of Ministry of Science and Higher Education of the Russian Federation. URL: https://studyinrussia.ru/en/actual/articles/international-students-in-russia/ (дата обращения: 10.10.2018).
24. NiedzielskaI., Pawelec S., Puszczewicz Z. The Employment of Thermographic Examinations in the Diagnostics of Diseases of the Paranasal Sinuses // Dentomaxillofac. Radiol. 2017. Vol. 46, № 6. Art. № 20160367. DOI: 10.1259/ dmfr.20160367
25. Cardone D., Merla A. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences // Sensors (Basel). 2017. Vol. 17, № 5. Art. № 1042. DOI: 10.3390/s17051042
26. Priego Quesada J.I., Martínez Guillamón N., Cibrián Ortiz de Anda R.M., Psikuta A., Annaheim S., Rossi R.M., Corberán Salvador J.M., Pérez-Soriano P., Salvador Palmer R. Effect of Perspiration on Skin Temperature Measurements by Infrared Thermography and Contact Thermometry During Aerobic Cycling // Infrared Phys. Technol. 2015. Vol. 72. P. 68-76. DOI: 10.1016/j.infrared.2015.07.008
27. Carpes F.P., Mello-Carpes P.B., Priego Quesada J.I., Pérez-Soriano P., Salvador Palmer R., Ortiz de Anda R.M.C. Insights on the Use of Thermography in Human Physiology Practical Classes // Adv. Physiol. Educ. 2018. Vol. 42, № 3. P. 521-525. DOI: 10.1152/advan.00118.2018
28. Chiang M.F., Lin P.W., Lin L.F., Chiou H.Y., Chien C.W., Chu S.F., Chiu W.T. Mass Screening of Suspected Febrile Patients with Remote-Sensing Infrared Thermography: Alarm Temperature and Optimal Distance // J. Formos. Med. Assoc. 2008. Vol. 107, № 12. P. 937-944.
29. van Marken Lichtenbelt W.D., Schrauwen P. Implications of Nonshivering Thermogenesis for Energy Balance Regulation in Humans // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011. Vol. 301, № 2. P. R285-R296.
30. Giesbrecht G.G., Sessler D.I., Mekjavic I.B., Schroeder M., Bristow G.K. Treatment of Mild Immersion Hypothermia by Direct Body-to-Body Contact // J. Appl. Physiol. 1994. Vol. 76, № 6. P. 2373-2379.
31. Henneman E. Organization of the Motoneuron Pool: The Size Principle // Medical Physiology / ed. by VB. Mountcastle. St. Louis: CV Mosby, 1980. P. 718-741.
32. Morrison S.F. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central Neural Pathways for Thermoregulatory Cold Defense // J. Appl. Physiol. (1985). 2011. Vol. 110, № 5. P. 1137-1149. DOI: 10.1152/japplphysiol.01227.2010
33. Brychta R.J., Chen K.Y. Cold-Induced Thermogenesis in Humans // Eur. J. Clin. Nutr. 2017. Vol. 71, № 3. P. 345-352. DOI: 10.1038/ejcn.2016.223; PMID: 27876809
34. Eyolfson D.A., Tikuisis P., Xu X., Weseen G., Giesbrecht G.G. Measurement and Prediction of Peak Shivering Intensity in Humans // Eur. J. Appl. Physiol. 2001. Vol. 84, № 1-2. P. 100-106. DOI: 10.1007/s004210000329; PMID: 11394237
35. Haman F. Shivering in the Cold: From Mechanisms of Fuel Selection to Survival // J. Appl. Physiol. (1985). 2006. Vol. 100, № 5. P. 1702-1708. DOI: 10.1152/japplphysiol.01088.2005; PMID: 16614367
36. Blondin D.P., Tingelstad H.C., Mantha O.L., Gosselin C., Haman F. Maintaining Thermogenesis in Cold Exposed Humans: Relying on Multiple Metabolic Pathways // Compr. Physiol. 2014. Vol. 4, № 4. P. 1383-1402. DOI: 10.1002/cphy.c130043; PMID: 25428848
37. Mabuchi K., Kanbara O., Genno H., Chinzei T., Haeno S., KunimotoM. Automatic Control of Optimum Ambient Thermal Conditions Using Feedback of Skin Temperature // Biomed. Thermol. 1997. № 16. P. 6-13.
38. Johnson J.M., Minson C.T., Kellogg D.L. Jr. Cutaneous Vasodilator and Vasoconstrictor Mechanisms in Temperature Regulation // Compr. Physiol. 2014. Vol. 4, № 1. P. 33-89.
39. Zhang X., Zhang S., Wang C., Wang B., Guo P. Effects of Moderate Strength Cold Air Exposure on Blood Pressure and Biochemical Indicators among Cardiovascular and Cerebrovascular Patients // Int. J. Environ. Res. Public Health. 2014. Vol. 11, № 3. P. 2472-2487. DOI: 10.3390/ ijerph110302472
40. Prevent Hypothermia & Frostbite // Centers for Disease Control and Prevention. URL: https://www.cdc.gov/ disasters/winter/staysafe/hypothermia.html (дата обращения: 03.12.2012).
41. Saltenrich N. Between Extremes: Health Effects of Heat and Cold // Environ. Health Perspect. 2015. Vol. 123, № 11. Р. A276-A280.
42. Seuser A., Kurnik K., Mahlein A.-K. Infrared Thermography as a Non-Invasive Tool to Explore Differences in the Musculoskeletal System of Children with Hemophilia Compared to an Age-Matched Healthy Group // Sensors (Basel). 2018. № 18, № 2. Art. № 518. DOI: 10.3390/s18020518
43. Garagiola U., Giani E. Use of Telethermography in the Management of Sport Injuries // Sports Med. 1990. Vol. 10, № 4. P. 267-272.
44. Cui J., Durand S., Levine B.D., Crandall C.G. Effect of Skin Surface Cooling on Central Venous Pressure During Orthostatic Challenge // Am. J. Physiol. Heart Circ. Physiol. 2005. Vol. 289, № 6. Р. H2429-H2433.
45. Андреев Р.С., Ктенов Ю.Н., Якушкин A.B., Акимов Е.Б., Сонькин В.Д. Возможности инфракрасной термографии по выявлению морфофункциональных характеристик человека (детей и взрослых) // Вестн. Моск. ун-та. Сер. 23: Aнтропология. 2016. № 3. С. 49-58.
46. Arendt J. Biological Rhythms During Residence in Polar Regions // Chronobiol. Int. 2012. Vol. 29, № 4. P. 379-394.
47. Marqueze E.C., Vasconcelos S., Garefelt J., Skene D.J., Moreno C.R., Lowden A. Natural Light Exposure, Sleep and Depression among Day Workers and Shiftworkers at Arctic and Equatorial Latitudes // PLoS One. 2015. Vol. 10, № 4. Art. № e0122078.
48. Ioannou S., Gallese V., Merla A. Thermal Infrared Imaging in Psychophysiology: Potentialities and Limits // Psychophysiology. 2014. Vol. 51, № 10. P. 951-963.
49. Johnsen M.T., Wynn R., Bratlid T. Is There a Negative Impact of Winter on Mental Distress and Sleeping Problems in the Subarctic: The Troms0 Study // BMC Psychiatry. 2012. Vol. 12. Art. № 225.
50. Friborg O., Bjorvatn B., Amponsah B., Pallesen S. Associations Between Seasonal Variations in Day Length (Photoperiod), Sleep Timing, Sleep Quality and Mood: A Comparison Between Ghana (5°) and Norway (69°) // J. Sleep Res. 2012. Vol. 21, № 2. P. 176-184.
References
1. Romanovsky A.A. Skin Temperature: Its Role in Thermoregulation. Acta Physiol. (Oxf.), 2014, vol. 210, no. 3, pp. 498-507.
2. Lahiri B.B., Bagavathiappan S., Jayakumar T., Philip J. Medical Applications of Infrared Thermography: A Review. InfraredPhys. Technol., 2012, vol. 55, no. 4, pp. 221-235.
3. Durnovo E.A., Potekhina Yu.P., Marochkina M.S., Khomutnikova N.E., Yanova N.A. Vozmozhnosti infrakrasnoy termografii v kompleksnoy diagnostike zabolevaniy chelyustno-litsevoy oblasti [Features of Infrared Thermography in the Diagnosis of Complex Diseases of Maxillofacial Region]. Sovremennyeproblemy nauki i obrazovaniya, 2012, no. 4. Available at: http://science-education.ru/ru/article/view?id=6657 (accessed: 10 October 2018).
4. Khizhnyak L.N., Khizhnyak E.P., Ivanitskiy G.R. Diagnosticheskie vozmozhnosti matrichnoy infrakrasnoy termografii. Problemy i perspektivy [The Diagnostic Opportunities of Infrared Thermography. Problems and Prospects]. Vestnik novykh meditsinskikh tekhnologiy, 2012, vol. 19, no. 4, pp. 170-176.
5. Dekhtyarev Yu.P., Mironenko S.A., Dunaevskiy VI., Venger E.F., Kotovskiy V.I., Timofeev V.I., Nazarchuk S.S., Solov'ev E.A. Termograficheskaya diagnostika zabolevaniy pozvonochnika u sportsmenov [Thermographic Diagnostics of Spine Diseases in Sportsmen]. Lechebnayafizkul'tura i sportivnaya meditsina, 2013, no. 8, pp. 16-20.
6. Kartel' A.A., Leshchenko V.G., Butsel' A.Ch., Dudko M.A., Protsko A.Yu. Termografiya v diagnostike sinusitov [Thermography in the Diagnostics of Sinusitis]. Otorinolaringologiya. Vostochnaya Evropa, 2013, no. 2, pp. 84-89.
7. Kozhevnikova I.S., Pankov M.N., Startseva L.F., Afanasenkova N.V. Primenenie infrakrasnoy termografii pri sosudistoy patologii (kratkiy obzor) [Application of Infrared Thermography with Vascular Pathology (Brief Overview)]. Mezhdunarodnyy zhurnalprikladnykh i fundamental'nykh issledovaniy, 2017, no. 5-1, pp. 72-74.
8. Potekhina Yu.P., Kurnikov G.Yu., Golovanova M.V., Tkachenko Yu.A. Vozmozhnosti novykh tekhnologiy infrakrasnoy termografii v differentsial'noy diagnostike melanotsitarnykh obrazovaniy kozhi [The Opportunities of InfraRed Thermography New Technology in Skin Melanocytic Formations Differential Diagnostics]. Vestnik esteticheskoy meditsiny, 2012, no. 2, pp. 83-88.
9. Urakova N.A., Urakov A.L. Infrakrasnaya termografiya golovki ploda - novyy metod diagnostiki v akusherstve [Infrared Thermography of Fetal Head as a New Diagnostic Method in Obstetrics]. Vestnik voenno-meditsinskoy akademii, 2014, no. 3, pp. 32-36.
10. Gerasimova N.N. Sovremennye vozmozhnosti luchevoy vizualizatsii limfaticheskikh uzlov v podmyshechnoy oblasti [Modern Possibilities of Radiological Imaging of Lymph Nodes in the Armpit]. Mezhdunarodnyy zhurnal prikladnykh i fundamental'nykh issledovaniy, 2016, no. 10-2, pp. 201-204.
11. Kozhevnikova I.S., Pankov M.N., Ermoshina N.A. Methods of Infrared Thermogram Processing and Analysis for Instant Diagnosis of Breast Cancer. J. Med. Biol. Res., 2017, vol. 5, no. 2, pp. 56-66. DOI: 10.17238/issn2542-1298.2017.5.2.56
12. Sheyko E.A., Kozel' Yu.Yu., Triandafilidi E.I., Shikhlyarova A.I. Distantsionnaya infrakrasnaya termografiya kak vspomogatel'nyy metod v diagnostike i lechenii gemangiom u detey do goda [Remote Infrared Thermography as an Auxiliary Method in the Diagnosis and Treatment of Hemangiomas in Children Under One]. Mezhdunarodnyy zhurnal priklandnykh i fundamentalnykh issledovaniy, 2015, no. 9-2, pp. 302-304.
13. Parshikova S.A., Parshikov V.V Neinvazivnye metody monitoringa ranevogo protsessa (obzor literatury). Perspektivy ikh primeneniya v chelyustno-litsevoy khirurgii u detey [Noninvasive Monitoring of Wounds Healing (Review). Prospects of Using in Children Facial Surgery]. Sovremennye problemy nauki i obrazovaniya, 2012, no. 2, p. 64.
14. Zaproudina N., Varmavuo V., Airaksinen O., Narhi M. Reproducibility of Infrared Thermography Measurements in Healthy Individuals. Physiol. Meas., 2008, vol. 29, no. 4, pp. 515-524.
15. Fernández-Cuevas I., Bouzas Marins J.C., Arnáiz Lastras J., Gómez Carmona P.M., Piñonosa Cano S., García-Concepción M.Á., Sillero-Quintana M. Classification of Factors Influencing the Use of Infrared Thermography in Humans: A Review. InfraredPhys. Technol., 2015, vol. 71, pp. 28-55.
16. Ring E.F.J., Ammer K. The Technique of Infra Red Imaging in Medicine. Thermol. Int., 2000, vol. 10, no. 1, pp. 7-14.
17. Ammer K., Ring E.F.J. Standard Procedures for Infrared Imaging in Medicine. Diakides N.A., Bronzino J.D., Peterson D.R. (eds.). Medical Infrared Imaging. Boca Raton, 2007, pp. 32.1-32.14.
18. Berko J., Ingram D.D., Saha S., Parker J.D. Deaths Attributed to Heat, Cold, and Other Weather Events in the United States, 2006-2010. Natl. Health Stat. Rep., 2014, vol. 30, no. 76, pp. 1-15.
19. Sikdar S.D., Khandelwal A., Ghom S., Diwan R., Debta F.M. Thermography: A New Diagnostic Tool in Dentistry. J. Indian Acad. Oral Med. Radiol., 2010. vol. 22, no. 4, pp. 206-210.
20. Comiso J.C., Hall D.K. Climate Trends in the Arctic as Observed from Space. WIREs Clim. Change, 2014, vol. 5, no. 3, pp. 389-409. DOI: 10.1002/wcc.277
21. Hedlund C., Blomstedt Y., Schumann B. Association of Climatic Factors with Infectious Diseases in the Arctic and Subarctic Region: A Systematic Review. Glob. Health Action, 2014, no. 7. Art. no. 24161. DOI: 10.3402/gha.v7.24161
22. Rossiya v tsifrakh. 2017 [Russia in Figures. 2017]. Moscow, 2017. 511 p.
23. International Students in Russia. Study in Russia: the Website of Ministry of Science and Higher Education of the Russian Federation. Available at: https://studyinrussia.ru/en/actual/articles/international-students-in-russia/ (accessed: 10 October 2018).
24. Niedzielska I., Pawelec S., Puszczewicz Z. The Employment of Thermographic Examinations in the Diagnostics of Diseases of the Paranasal Sinuses. Dentomaxillofac. Radiol., 2017, vol. 46, no. 6. Art. no. 20160367. DOI: 10.1259/ dmfr.20160367
25. Cardone D., Merla A. New Frontiers for Applications of Thermal Infrared Imaging Devices: Computational Psychopshysiology in the Neurosciences. Sensors (Basel), 2017, vol. 17, no. 5. Art. no. 1042. DOI: 10.3390/s17051042
26. Priego Quesada J.I., Martínez Guillamón N., Cibrián Ortiz de Anda R.M., Psikuta A., Annaheim S., Rossi R.M., Corberán Salvador J.M., Pérez-Soriano P., Salvador Palmer R. Effect of Perspiration on Skin Temperature Measurements by Infrared Thermography and Contact Thermometry During Aerobic Cycling. Infrared Phys. Technol., 2015, vol. 72, pp. 68-76. DOI: 10.1016/j.infrared.2015.07.008
27. Carpes F.P., Mello-Carpes P.B., Priego Quesada J.I., Pérez-Soriano P., Salvador Palmer R., Ortiz de Anda R.M.C. Insights on the Use of Thermography in Human Physiology Practical Classes. Adv. Physiol. Educ., 2018, vol. 42, no. 3, pp. 521-525. DOI: 10.1152/advan.00118.2018
28. Chiang M.F., Lin P.W., Lin L.F., Chiou H.Y., Chien C.W., Chu S.F., Chiu W.T. Mass Screening of Suspected Febrile Patients with Remote-Sensing Infrared Thermography: Alarm Temperature and Optimal Distance. J. Formos. Med. Assoc., 2008, vol. 107, no. 12, pp. 937-944.
29. van Marken Lichtenbelt W.D., Schrauwen P. Implications of Nonshivering Thermogenesis for Energy Balance Regulation in Humans. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2011, vol. 301, no. 2, pp. R285-R296.
30. Giesbrecht G.G., Sessler D.I., Mekjavic I.B., Schroeder M., Bristow G.K. Treatment of Mild Immersion Hypothermia by Direct Body-to-Body Contact. J. Appl. Physiol., 1994, vol. 76, no. 6, pp. 2373-2379.
31. Henneman E. Organization of the Motoneuron Pool: The Size Principle. Mountcastle V.B. (ed.). Medical Physiology. St. Louis, 1980, pp. 718-741.
32. Morrison S.F. 2010 Carl Ludwig Distinguished Lectureship of the APS Neural Control and Autonomic Regulation Section: Central Neural Pathways for Thermoregulatory Cold Defense. J. Appl. Physiol. (1985), 2011, vol. 110, no. 5, pp. 1137-1149. DOI: 10.1152/japplphysiol.01227.2010
33. Brychta R.J., Chen K.Y. Cold-Induced Thermogenesis in Humans. Eur. J. Clin. Nutr., 2017, vol. 71, no. 3, pp. 345-352. DOI: 10.1038/ejcn.2016.223; PMID: 27876809
34. Eyolfson D.A., Tikuisis P., Xu X., Weseen G., Giesbrecht G.G. Measurement and Prediction of Peak Shivering Intensity in Humans. Eur. J. Appl. Physiol., 2001, vol. 84, no. 1-2, pp. 100-106. DOI: 10.1007/s004210000329; PMID: 11394237
35. Haman F. Shivering in the Cold: From Mechanisms of Fuel Selection to Survival. J. Appl. Physiol. (1985), 2006, vol. 100, no. 5, pp. 1702-1708. DOI: 10.1152/japplphysiol.01088.2005; PMID: 16614367
36. Blondin D.P., Tingelstad H.C., Mantha O.L., Gosselin C., Haman F. Maintaining Thermogenesis in Cold Exposed Humans: Relying on Multiple Metabolic Pathways. Compr. Physiol., 2014, vol. 4, no. 4, pp. 1383-1402. DOI: 10.1002/cphy.c130043; PMID: 25428848
37. Mabuchi K., Kanbara O., Genno H., Chinzei T., Haeno S., Kunimoto M. Automatic Control of Optimum Ambient Thermal Conditions Using Feedback of Skin Temperature. Biomed. Thermol., 1997, no. 16, pp. 6-13.
38. Johnson J.M., Minson C.T., Kellogg D.L. Jr. Cutaneous Vasodilator and Vasoconstrictor Mechanisms in Temperature Regulation. Compr. Physiol., 2014, vol. 4, no. 1, pp. 33-89.
39. Zhang X., Zhang S., Wang C., Wang B., Guo P. Effects of Moderate Strength Cold Air Exposure on Blood Pressure and Biochemical Indicators Among Cardiovascular and Cerebrovascular Patients. Int. J. Environ. Res. Public Health, 2014, vol. 11, no. 3, pp. 2472-2487. DOI: 10.3390/ ijerph110302472
40. Prevent Hypothermia & Frostbite. Centers for Disease Control and Prevention. Available at: https://www.cdc. gov/disasters/winter/staysafe/hypothermia.html (accessed: 3 December 2012).
41. Saltenrich N. Between Extremes: Health Effects of Heat and Cold. Environ. Health Perspect., 2015, vol. 123, no. 11, pp. A276-A280.
42. Seuser A., Kurnik K., Mahlein A.-K. Infrared Thermography as a Non-Invasive Tool to Explore Differences in the Musculoskeletal System of Children with Hemophilia Compared to an Age-Matched Healthy Group. Sensors (Basel), 2018, vol. 18, no. 2. Art. no. 518. DOI: 10.3390/s18020518
43. Garagiola U., Giani E. Use of Telethermography in the Management of Sport Injuries. Sports Med., 1990. vol. 10, no. 4, pp. 267-272.
44. Cui J., Durand S., Levine B.D., Crandall C.G. Effect of Skin Surface Cooling on Central Venous Pressure During Orthostatic Challenge. Am. J. Physiol. Heart Circ. Physiol., 2005, vol. 289, no. 6, pp. H2429-H2433.
45. Andreev R.S., Kalenov Yu.N., Yakushkin A.V, Akimov E.B., Son'kin V.D. Vozmozhnosti infrakrasnoy termografii po vyyavleniyu morfofunktsional'nykh kharakteristik cheloveka (detey i vzroslykh) [Application of Infrared Thermography to Identify Morphological and Functional Characteristics of a Person (Children and Adults)]. Vestnik Moskovskogo universiteta. Ser. 23: Antropologiya, 2016, no. 3, pp. 49-58.
46. Arendt J. Biological Rhythms During Residence in Polar Regions. Chronobiol. Int., 2012, vol. 29, no. 4, pp. 379-394.
47. Marqueze E.C., Vasconcelos S., Garefelt J., Skene D.J., Moreno C.R., Lowden A. Natural Light Exposure, Sleep and Depression Among Day Workers and Shift Workers at Arctic and Equatorial Latitudes. PLoS One, 2015, vol. 10, no. 4. Art. no. e0122078.
48. Ioannou S., Gallese V., Merla A. Thermal Infrared Imaging in Psychophysiology: Potentialities and Limits. Psychophysiology, 2014, vol. 51, no. 10, pp. 951-963.
49. Johnsen M.T., Wynn R., Bratlid T. Is There a Negative Impact of Winter on Mental Distress and Sleeping Problems in the Subarctic: The Troms0 Study. BMC Psychiatry, 2012, vol. 12. Art. no. 225.
50. Friborg O., Bjorvatn B., Amponsah B., Pallesen S. Associations Between Seasonal Variations in Day Length (Photoperiod), Sleep Timing, Sleep Quality and Mood: A Comparison Between Ghana (5°) and Norway (69°). J. Sleep Res., 2012, vol. 21, no. 2, pp. 176-184.
DOI: 10.17238/issn2542-1298.2020.8.1.89
Abdillah I. Nasution*/** ORCID: 0000-0003-1742-0362 Mikhail N. Pankov* ORCID: 0000-0003-3293-5751 Artem B. Kir'yanov* ORCID: 0000-0002-5594-6624 Larisa F. Startseva*** ORCID: 0000-0002-9928-5362
*Northern (Arctic) Federal University named after M.V. Lomonosov
(Arkhangelsk, Russian Federation) **Syiah Kuala University (Banda Aceh, Republic of Indonesia) ***State Institute of Drugs and Good Practices (Moscow, Russian Federation)
INFLUENCE OF SHIVERING, HYPOTHERMIA AND CIRCADIAN RHYTHMS ON THE FEATURES OF RESEARCH USING INFRARED THERMOGRAPHY
IN THE ARCTIC (Review)
This article examines environmental factors typical of the Arctic regions that affect the results of thermographic studies, thereby limiting their range of application. Minor temperature deviations cause changes in radiation from the surface of the body and, thus, affect the analysis and interpretation of thermograms. What is more, to apply infrared thermography to measure the temperature of biological objects, it is necessary to understand the method's technical and methodological features. At the same time, for research involving the local population, it is important to take into account changes in skin temperature under the influence of environmental factors. Geographically, the Arctic regions include Canada, Greenland, Iceland, Norway, Sweden, Finland, Alaska and northern areas of Russia where cold climate prevails. Cold climate, adverse weather conditions and long winter nights are among the many factors impeding investigations in the Arctic. For physiological research, it is important to consider ambient temperature as a factor affecting the quantitative assessment of the individual characteristics of the participants and adapt the resulting knowledge to complement student training programmes. This review focuses on shivering, hypothermia, and circadian rhythms as the effects of environmental factors that may influence the use of infrared thermography for research on physiology in the Arctic.
Keywords: body temperature, infrared thermography, shivering, hypothermia, circadian rhythms, Arctic.
Поступила 25.03.2019 Принята 20.10.2019 Received 25 March 2019 Accepted 20 October 2019
Corresponding author: Mikhail Pankov, address: proezd Badigina 3, Arkhangelsk, 163045, Russian Federation; e-mail: [email protected]
For citation: Nasution A.I., Pankov M.N., Kir'yanov A.B., Startseva L.F. Influence of Shivering, Hypothermia and Circadian Rhythms on the Features of Research Using Infrared Thermography in the Arctic (Review). Journal of Medical and Biological Research, 2020, vol. 8, no. 1, pp. 89-98. DOI: 10.17238/issn2542-1298.2020.8.1.89