Научная статья на тему 'Influence of pulse duration and pulse separation on dynamics and efficiency of ultrafast laser ablation of metals'

Influence of pulse duration and pulse separation on dynamics and efficiency of ultrafast laser ablation of metals Текст научной статьи по специальности «Медицинские технологии»

CC BY
40
15
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Influence of pulse duration and pulse separation on dynamics and efficiency of ultrafast laser ablation of metals»

LMI-I-7

Influence of pulse duration and pulse separation on dynamics and efficiency of ultrafast laser ablation of metals

Jan Winter1, Maximilian Spellauge1, David Redka1, Heinz P. Huber1*

1-Munich University of Applied Sciences, Lasercenter, Lothstr. 34, 80335 Munich, Germany

*heinz.huber@hm.edu

A surface irradiated with an ultrashort pulse passes through a sequence of physical processes, occurring on a temporal range spanning from femtoseconds to microseconds. Open questions remain as to why the pulse duration and temporal pulse separation influence the energy specific ablation volume.

Pump-probe ellipsometry (PPE) [1] reveals changes to the complex refractive index for the first tens of picoseconds, while pump-probe microscopy (PPM) [2] gives access to changes of the relative reflectivity from the initial pulse impact to the final state after about 1 ^s. Fig. 1 displays PPM experiments on Cu, Al and AISI304 in air, showing the transient evolution of the relative reflectivity change AR/R for probe pulse delay times ranging between -12.5 ps and 10 ^s.

T-

0,000 0,025 '' 0,1 I 10 100 1000 10000

Time [ns]

Fig. 1 Transient reflectivity change AR/R of Cu (black open squares), Al (red open circles) and AISI304 (blue open triangles)

The experiments indicate an ultrafast density decrease at the surface of 30% within the first 5 ps, which creates a surface expansion [3] as well as separation and propagation of a spallation layer from about 100 ps to 1 ns. Finally, the spallation layer disintegration and particle generation occurs from 1 ns to 100 ns [4].

Our measurements and simulations support the conclusion that the ablation process is efficient and precise when stress-confinement is fulfilled, which means, when initiated with pulse durations shorter than the mechanical relaxation time of about 5 ps and left un-interrupted until the final state is approached after about 10 to 100 ns [5]. MHz-burst processing leads to particle shielding, GHz-burst processing to re-deposition.

[1] S. Rapp, M. Kaiser, M. Schmidt, H.P. Huber, Ultrafast pump-probe ellipsometry setup for the measurement of transient optical properties during laser ablation, Opt. Expr. 24 (2016) 17572

[2] M. Domke, S. Rapp, M. Schmidt, and H. Huber, Ultrafast pump-probe microscopy with high temporal dynamic range, Optics Express 20 (2012)10330

[3] J. Winter, S. Rapp, M. Schmidt and H.P. Huber, Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties, Applied Surface Science 417 (2017) 2

[4] J. Winter, S. Rapp, M. Spellauge, C. Eulenkamp, M. Schmidt, and H.P. Huber, Ultrafast pump-probe ellipsometry and microscopy reveal the surface dynamics of femtosecond laser ablation of aluminium and stainless steel, Applied Surface Science 511 (2020) 145514

[5] M. Spellauge, J. Winter, S. Rapp, C. McDonnell, F. Sotier, M. Schmidt, and H.P. Huber, Influence of stress confinement, particle shielding and re-deposition on the ultrashort pulse laser ablation of metals revealed by ultrafast time-resolved experiments, Applied Surface Science 545 (2021) 148930.

i Надоели баннеры? Вы всегда можете отключить рекламу.