UDC 616.155.1:612.13-021.58
https://doi.Org/10.26641/2307-0404.2021.1.227936
V.l. Cherniy, L.O. Sobanska,
INFLUENCE OF CARDIOPULMONARY BYPASS ON THE ERYTHROCYTE MEMBRANES AND THE METHOD OF ITS PROTECTION
P.O. Topolov, T.V. Cherniy
State Institution of Science "Research and Practical Center of Preventive and Clinical Medicine " State Administrative Department Scientific Department of Minimally Invasive Surgery Verkhnia str., 5, Kyiv, 01014, Ukraine
Державна наукова установа «Науково-практичний центр профшактично'1'
та клiнiчноïмедицини» Державного управлтня справами
Науковий вiддiл малотвазивно'1' хiрургiï
(керiвник - д. мед. н. 1.М. Бойко)
вул. Верхня, 5, Ки '1'в, 01014, Украша
e-mail: [email protected]
Цитування: Медичш перспективы. 2021. Т. 26, № 1. С. 85-90
Cited: Medicniperspektivi. 2021;26(1):85-90
Key words: fructose-1.6-diphosphate, cardiopulmonary bypass, erythrocyte, hemolysis, mechanical resistance, osmotic resistance, acid hemolysis, erythrocyte membrane permeability, phosphorus
Ключовi слова: фруктозо-1,6-дифосфат, штучний кровообг еритроцит, гемол1з, мехатчнарезистенттсть, осмотична резистенттсть, кислотний гемолiз, прониктсть еритроцитiв, фосфор Ключевые слова: фруктозо-1,6-дифосфат, искусственное кровообращение, эритроцит, гемолиз, механическая резистентность, осмотическая резистентность, кислотный гемолиз, проницаемость эритроцитов, фосфор
Abstract. Influence of cardiopulmonary bypass on the erythrocyte membranes and the method of its protection. Cherniy V.I., Sobanska L.O., Topolov P.O., Cherniy T.V. The damage to erythrocytes during cardiopulmonary bypass (CPB) remains a recent problem. The aim of this research was to study the effect offructose-1,6-diphosphate on the state of the erythrocyte membrane during CPB and the level of phosphorus in blood as a marker of the energy potential in the cell. Patients were divided into two groups. The control group 1 (Gr 1) consisted of 75 individuals. The group 2 (Gr 2) included patients to whom fructose-1,6-diphosphate (FDP) was administrated according to the developed scheme as follows 10 g of the drug was diluted in 50 ml of a solvent, 5 g of the drug was injected intravenously with the use of perfusor immediately before initiation of CPB at a rate of 10 ml/min and 5 g at the 30th minute of CPB (before the stage of warming) the same way. When comparing two groups the best results in hemolysis (p<0.01), mechanical (p<0.01). osmotic resistance of erythrocytes (p<0.01), the time of acid hemolysis (p<0.01) and the permeability of the erythrocyte membrane in postperfusion period were in Gr 2. Before cardiac surgery hypophosphatemia was detected in 18% out of 150 and in 32% out of 150 patients - a lower limit of normal phosphorus content in the blood. After CPB in Gr 1 phosphorus content in blood was 0.85±0.32 mmol/l and hypophosphatemia was in 53% out of 75 patients. This indicates a pronounced energy deficit in this group. In Gr 2 phosphorus level was 1.7±0.31 mmol/l and there was no hypophosphatemia. As a result, FDP as an endogenous high-energy intermediate metabolite of the glycolytic pathway leads to resistance to hemolysis, protects the erythrocyte membrane from damage and increases the energy potential of the cell during CPB.
Реферат. Вплив штучного Kp0B006iry на мембрани еритроциив i cnoci6 ix захисту. Чернш В.1., Собанська Л.О., Тополов П.О., Чернш Т.В. Пошкодження еритроцитiв при штучному кровооб^у (ШК) залишаеться актуальною проблемою. Метою до^дження було вивчення впливу фруктозо-1,6-дифосфату на стан мембрани еритроцитiв пiд час ШК i рiвень фосфору в кровi як маркера енергетичного потенщалу ^iтини. Пащенти були розnодiленi на двi групи. Контрольну групу 1 (Gr 1) склали 75 оаб. До групи 2 (Gr 2) увтшли пацiенти, яким вводили фруктозо-1,6-дифосфат (ФДФ) за розробленою нами схемою таким чином: 10 г препарату розводили в 50 мл розчинника, 5 г препарату вводили внутршньовенно з використанням перфузора безпосередньо перед початком ШК зi швидюстю 10 мл/хв i 5 г на 30-й хвилинi ШК (перед етапом зiгрiвання) аналогiчним чином. При порiвняннi двох груп кращi результати гемолiзу (р<0,01), механiчноi (р<0,01), осмотично'1'резистентностi еритроцитiв (p<0,01), часу кислотного гемолiзу (p<0,01) i проникностi мембран еритроцитiв у постперфузшному перiодi були в Gr 2. До операцп на серц гiпофосфатемiя була виявлена у 18% зi 150 пацiентiв i в 32% зi 150 пацiентiв виявлено нижню межу нормального вмiсту фосфору в кровi. Шсля ШК у Gr 1 вмiст фосфору в кровi становив 0,85±0,32 ммоль/л, а гiпофосфатемiя була в 53% з 75 пацiентiв. Це свiдчить про виражений енергетичний дефщит у цш гр^. У Gr 2 рiвень фосфору був
21/ Том XXVI/1
85
1,7±0,31 ммоль/л, а гтофосфатемп не було. У результатi ФДФ як ендогенний високоенергетичний промiжний метаболiт глiколiтичного шляху збшьшуе резистенттсть до гемолiзу, захищае мембрану еритроцита eid ушкодження i збтьшуе енергетичний потенцiал клтини nid час ШК.
The normal function of erythrocyte membrane and energy potential of the cell during cardiopulmonary bypass is of the essence. Changing the state of cell membranes can serve as an early signal of the development of pathological processes. The state of erythrocytes and their deformability largely depends on the intracellular content of adenosine triphos-phate (ATP): decreasing ATP level leads to reduced deformability, and increasing ATP level leads to increased deformability [12, 15]. Hypophosphatemia is one of the disturbance mechanisms of energy supply of intracellular homeostasis processes in erythrocytes and it is often found in cardiac surgery patients, patients of intensive care units, especially in patients on mechanical ventilation [11, 13]. There is evidence that insulin resistance and associated hyperglycemia after cardiac surgery is the result of hypophosphatemia [10]. Fructose-1,6-diphosphate (FDP) is an endogenous high-energy intermediate metabolite of the glycolytic pathway that increases ATP production and has an organoprotective effect in various pathological conditions associated with oxygen deficiency. Increasing the concentration of erythrocyte ATP leads to improved blood rheology and resistance to hemolysis due to better defor-
mability of erythrocytes [8, 12]. An effective way to optimize energy metabolism under hypoxic conditions is exogenous delivery of FDP to the patient.
The measurement of plasma free hemoglobin (plfHb) is a well-known method but it does not define sublethal trauma of RBC. The concept of sublethal RBC damage was introduced by Dr. Galletti [14]. This is especially important to consider in the process of cardiopulmonary bypass (CPB). A reasonable way to assess the structural and functional state of erythrocytes is to determine the resistance of blood cells to mechanical, osmotic, and acidic factors [4]. The purpose of the research is to study and reduce the damaging effect of CPB on an erythrocyte membrane and improve energy potential of erythrocytes during CPB.
MATERIALS AND METHODS OF RESEARCH
The patients were divided into two groups. The first group (Gr 1, n=75) was the control group, the second group (Gr 2, n=75) included individuals who were administered the drug with the active substance FDP before and during CPB. The distribution of patients into groups is presented in table 1.
The distribution of patients into groups
Table 1
n=741 *
Characteristics Gr1 (n=75) * Gr2 (n=75)
Gender: male 61 62
female 14 13
Age (M±m), years 63.05±8,89 63.39±9.34
Weight (M±m), kg 87.67±16.41 85.7±11.48
NYHA** functional class:
Class II 6 (8.0%) 5 (6.7%)
Class III 57 (76.0%) 56 (74.7%)
Class IV 12 (16.0%) 14 (18.6%)
Notes: * - the difference in parameters in groups by test x2 statistically is not significant (p>0.05); NYHA : Classification.
New York Heart Association
113 (75.3%) patients underwent coronary artery bypass grafting (CABG), 10 (6.7%) patients underwent CABG + left ventricular aneurysm resection (LVAR), 13 (8.6%) patients underwent aortic valve replacement (AVR), 3 (2%) patients underwent AVR+ CABG, 5 (3.4%) patients underwent mitral valve replacement (MVR), 6 (4%) - MVR+CABG. Management during on-pump CABG surgery inclu-
des aortic cross-clamping followed by fibrillation and aortic cross-clamping followed by crystalloid cardioplegia during aortic and mitral valve replacement. The cardiopulmonary bypass time (CPB-time) in Gr 1 was 98.4±19.8 min., in Gr 2 -93.85±19.54 min. The perfusion system used a membrane oxygenator, roller pump, nonpulsatile flow, and the primed circuit 1.3-1.6 l to achieve
moderate hemodilution (Ht - 25±2 г/л). Hyperosmolar prime volume with an osmolarity of 510.9 mosmol/l was used [6]. The mean flow index and mean arterial blood pressure were targeted at 2.5 L/min/m2 and 6080 mmHg, correspondingly. CPB was administrated in conditions with moderate systemic hypothermia (32-33°С). This study complied with the ethics committee approval, written informed consent was obtained from patients. Exclusion criteria included: hereditary fructose intolerance, creatinine clearance below 50 ml/min, hypernatremia, hyperphosphatemia.
In Gr 2 the dosage regimens of FDP were as follows: 10 g of the drug was diluted in 50 ml of a solvent, 5 g of the drug was injected intravenously with the use of perfusor immediately before initiation of CPB at a rate of 10 ml/min and 5 g at the 30th minute of CPB (before the stage of warming) in the same way [7]. According to the study protocol, patient's blood was sampled for erythrocyte resistance and phosphorus level research before surgery and after CPB. Several parameters were studied. Plasma free hemoglobin (plfHb) concentration was measured using the hemoglobin cyanide method [5]. Erythrocytes osmotic resistance was carried out by the method of determining the time up to 50% hemolysis of a blood sample in a buffer hypotonic glycerol-saline mixture in one tube [9]. The method of Y.V. Ganitkevich, L.I. Cher-nenko was used for mechanical resistance of erythrocytes [4]. The result was expressed as % of hemolyzed cells after mechanical exposure. Erythrocyte membrane permeability (EMP) was determined using the method of urea hemolysis [2]. The concentration of urea in a series of buffered
hypotonic solutions was increased and the degree of hemolysis was studied. Acid hemolysis was determined by I.A. Terskov and I.I. Gitelzon [3].
«MedStart» software program was used for the statistical analyses (licence certificate v. 4. MS 0007006.07.2009, Y.Y. Liakh, V.G. Gurianov). We checked data for normality before further analysis and used mean values, standard error, Student's t-test. The x2 (Pearson) criterion was used to assess the statistical significance of the differences between two or more relative data. Group differences were considered statistically significant at p-value <0.05 [1].
RESULTS AND DISCUSSION
Before surgery hypophosphatemia was detected in two groups: 18% of patients (n=27) have hypo-phosphatemia and 32% of patients have a clear tendency to it (49 patients have a lower limit of normal phosphorus content in the blood), indicating an initial energy deficiency in this category of patients. The content of phosphorus before CPB in Gr 1 (1.13±0.22) and Gr 2 (1.16±0.22) was comparable (p=0.454). In Gr 2 phosphorus levels (1.7±0.31) were statistically significantly higher after surgery (p<0.01) and there was no hypo-phosphatemia. In Gr 1 the phosphorus level in the blood (0.85±0.32) after surgery decreased significantly compared with the baseline (p<0.01). After CPB in Gr 1 hypophosphatemia was in 53% out of 75 patients. Analysis results after CPB showed significantly decreased phosphorus level in Gr 1 compared with Gr 2 (p<0.01).
Table 2
Phosphorus value, hemolysis, erythrocyte resistance in Gr1 and Gr 2 before and after CPB
Parameters Mean±SD p*
Gr 1 (n=75) Gr 2 (n=75)
Phosphorus, mmol/1 Before CPB 1.13±0.22 1.16±0.22 0.45
After CPB 0.85±0.32 1.7±0.31 p<0.01
Hemolysis, g/l Before CPB 0.15±0.08 0.16±0.09 0.632
After CPB 0.57±0.23 0.44±0.15 p<0.01
Mechanical resistance of erythrocytes, % Before CPB 58.62±19.8 53.16±16.96 0.29
After CPB 79.83±15.68 68.88±15.56 p<0.01
Time of acid hemolysis 50% of Before CPB 228.1±36.49 232.6±41.96 0.90
erythrocytes, sec.
After CPB 132.9±33.04 151.3±31.33 p<0.01
Osmotic resistance of erythrocytes, sec. Before CPB 456.9±239.7 501.1±240.6 0.62
After CPB 247.3±129.4 362.4±179.9 p<0.01
Notes: * - p<0.05 reliability of indicators between Gr 1 and Gr 2; CPB - cardiopulmonary bypass.
21/ Том XXVI/1
87
Hemolysis during extracorporeal circulation is the result of the destruction of the RBC membrane with the breakdown and release of plasma free hemoglobin. There are no significant differences in the level of hemolysis between groups before CPB (p=0.632). After CPB hemolysis was higher in Gr 1 (p<0.01).
After CPB there was a greater decrease in the mechanical resistance of erythrocytes in Gr 1 compared with Gr 2 (p<0.01).
Acid resistance of erythrocytes allows judging about condition of a phospholipid bilayer and proteins of membranes of erythrocytes [4]. After CPB, there was a tendency for greater resistance of erythrocytes to acid hemolysis in Gr 2 (p<0.01).
The study of osmotic resistance of erythrocytes (ORE) showed that after CPB erythrocytes in Gr 2 were more resistant to hypoosmotic factor (p=0.01).
Assessment of the erythrocyte membrane permeability (EMP) for the urea solution revealed that there was no statistical difference in urea hemolysis between Gr1 and Gr2 before CPB. After CPB (Fig.) where the hypotonic solutions of urea and sodium chloride were diluted in a ratio of 45:55, there was a tendency to a higher level of erythrocyte hemolysis in Gr 1 (p=0.05). When the solution was diluted in a ratio of 50:50, 55:45 (p<0.01), 60:40 (p=0.01) this tendency persisted. At a dilution of 65:35, almost all erythrocytes were lysed in two groups and there was no statistical difference in data (p=1.0).
Note: * - the difference in parameters is statistically significant (p<0.05)
Parameters of erythrocyte membrane permeability (EMP %) for urea solution after CPB
Studies have shown that a lower level of hemo-lysis, better resistance to mechanical hemolysis, ORE, EMP, and acid hemolysis in Gr 2 are due to the protection of FDP cells from physical and chemical damaging factors. A decrease in ORE is possible with a deficiency of ATP in erythrocytes and activation of lipid peroxidation [12, 13].
CONCLUSIONS
1. In cardiac surgery patients it was found that before CPB hypophosphatemia or the tendency to the lower limit of normal phosphorus content in the blood were determined in 50% of cases. Hypop-hosphatemia is one of the mechanisms of impairment of energy supply of processes in erythrocytes.
2. The administration of FDP according to the developed scheme led to the correction of hypophos-phatemia in Gr 2 and there was no hypophospha-temia after CPB. In Gr1 hypophosphatemia was in 53% out of 75 patients after perfusion.
3. Hemolysis that developed after extra-corporeal circulation as a result of damage to the
erythrocyte membrane was higher in Gr 1 compared to Gr 2 (p<0.01).
4. After CPB lower mechanical and osmotic resistance of erythrocytes, the time of acid hemolysis of 50% of erythrocytes, and the increased permeability of the erythrocyte membrane in Gr 1 indicate significant damage to the erythrocyte membrane and a decrease in its resistance to cardio-pulmonary bypass compared to Gr 2.
5. It was found that the administration of FDP according to the developed scheme (5 g of the drug was injected intravenously through a syringe dispenser immediately before the start of perfusion at a rate of 10 ml/min and 5 g before the stage of warming) increases the resistance of the erythrocyte membrane to the action of traumatic factors. In Gr 2 there was a lower level of hemolysis and better ery-throcyte resistance in comparison with control Gr 1.
Conflict of interests. The authors declare no conflict of interest.
REFERENCES
1. Antomonov MYu. [Mathematical processing and analysis of biomedical data]. 2nd ed. Kyiv: MITS «Medinform»; 2018. p. 576. Ukrainian.
2. Badalova ZA, Dodkhoev DS. [Indicators of sorption capacity and permeability of erythrocyte membranes in children and newborns living in the zone of increased radiation background]. Vestnik Avitsenny. 2019;21(4):597-602. Russian.
doi: https://doi.org/10.25005/2074-0581-2019-21-4-597-602
3. Chuchkova NN, Kormilina NV, Kavunienko AA, Vasiliev MA, Volkova AG. [Influence of various concentrations of homocystene on the dynamics of acid hemolysis]. Zdorovie, diemografiia, ekologia finno-ugorskikh narodov. 2015;4:64-65. Russian. Available from: https://www.elibrary.ru/item.asp?id=25360501
4. Maltseva IV. [Characteristic of resistance of erythrocytes in cardiosurgical patients with various degree of manifestation of postperfusion hemolysis]. Bulletin of Siberian Medicine. 2013;12(1):69-74. Russian. doi: https://doi.org/10.20538/1682-0363-2013-1-69-74
5. Murygina OI, Zhukova ER, Petrova OV, Nikuli-na DM. [Reference intervals of free hemoglobin content in the study by hemoglobin cyanide method on an automatic biochemical analyzer ILAB 300 PLUS. Science and innovation in medicine]. Nayka i innovacii v medicine. 2019;4(3):4-7. Russian.
doi: https://doi.org/10.35693/2500-1388-2019-4-3-4-7
6. Sobanska LO, Cherniy VI. [Composition of prime solutions of oxygenator]. Ukraine Patent N 140427. 2020. Ukrainian.Available from:
https://base.uipv.org/searchINV/search.php?action=search
7. Sobanska LO, Cherniy VI. [The method of cardiopulmonary bypass]. Ukraine Patent N 140409. 2020. Ukrainian. Available from: https://base.uipv.org/searchINV/search.php?action=search
8. Alva N, Alva R, Carbonell T. Fructose 1,6-Bipho-sphate: A summary of its cytoprotective mechanism. Current
Medicinal Chemistry. 2016;23(39):4396-4417. doi: https://doi.org/10.2174/0929867323666161014144250
9. Asatryan TT, Gaikovaya LB, Slepisheva VV. The value of the acidified glycerol lysis test with a graphical determination for screening of hereditary sphe-rocytosis. Translational Medicine. 2019;6(6):51-59. doi: https://doi.org/10.18705/2311-4495-2019-6-6-51-59
10. Garazi E, Bridge S, Caffarelli A, Ruoss S. Acute cellular insulin resistance and hyperglycemia associated with hypophosphatemia after cardiac surgery. A&A Practice. 2015;4(2):22-25.
doi: https://doi.org/10.1213/xaa.0000000000000112
11. Thomas J, Kang S, Wyatt C, Kim F, Mangelsdorff A, Weigel F. Glucose-6-phosphate dehydrogenase deficiency is associated with cardiovascular disease in U.S. Military Centers. Texas Heart Institute journal. 2018;45(3):144-50. doi: https://doi.org/10.14503/thij-16-6052
12. Grygorczyk R, Orlov S. The effect of hypoxia on the properties of erythrocyte membranes - importance for intravascular hemolysis and purinergic blood flow control. Frontiers in physiology. 2017. doi: https://doi.org/10.3389/fphys.2017.01110
13. Wang L, Xiao C, Chen L, Zhang X, Kou Q. Impact of hypophosphatemia on outcome of patients in intensive care unit: a retrospective cohort study. BMC Anesthesiology. 2019;86(19).
doi: https://dx.doi.org/10.1186%2Fs12871-019-0746-2
14. Olia S, Maul T, Antaki J, Kameneva M. Mechanical Blood Trauma in Assisted Circulation: Sublethal RBC Damage Preceding Hemolysis. The International Journal of Artificial Organs. 2016;39(4):150-59. doi: https://doi.org/10.5301/ijao.5000478
15. Repsold L, Joubert A. Eryptosis: an erythrocyte's suicidal type of cell death. BioMed Research International. 2018;1(3).
doi: https://doi.org/10.1155/2018/9405617
СПИСОК Л1ТЕРАТУРИ
1. Антомонов М. Ю. Математическая обработка и анализ медико-биологических данных. 2-е изд. Кшв: МИЦ «Мединформ», 2018. 576 с.
2. Бадалова З. А., Додхоев Д. С. Показатели сор-бционной способности и проницаемости эритро-цитарных мембран у детей и новорожденных, проживающих в зоне повышенного радиационного фона. Вест. Авиценны. 2019. Т. 21, № 4. C. 597-602. DOI: https://doi.org/10.25005/2074-0581-2019-21-4-597-602
3. Влияние различных концентраций гомоцис-тена на динамику кислотного гемолиза / Н. Н. Чучкова и др. Здоровье, демография, экология финно - угорских народов. 2015. Т. 4. С. 64-65. URL: https://www.elibrary.ru/item.asp?id=25360501
4. Мальцева И. В. Характеристика резистентности эритроцитов у кардиохирургических больных с
различной степенью выраженности постпер-фузионного гемолиза. Бюл. Сибирской медицины. 2013. Т. 12, № 1. С. 69-74.
DOI: https://doi.org/10.20538/1682-0363-2013-1-69-74
5. Мурыгина О. И., Жукова Е. Р., Петрова О. В., Никулина Д. М. Референтные интервалы содержания свободного гемоглобина при исследовании гемогло-бинцианидным методом на биохимическом автоматическом анализаторе ILAB 300 PLUS. Наука и инновации в медицине. 2019. Т. 4, № 3. С. 4-7. DOI: https://doi.org/10.35693/2500-1388-2019-4-3-4-7
6. Склад розчишв для заповнення первинного об'ему оксигенатора: пат. на кор. модель № 140427 Украша: МПК6 A61K 31/00, A61M 1/00, A61K 9/08 (2006.01); u201908289; заявл. 16.07.2019; опубл. 25.02.2020, Бюл. № 4/2020
21/ Том XXVI/1
89
URL: https://base.uipv.org/searchINV/search.php?action= search
7. Cnoci6 проведения штучного Kp0B006iry: пат. на кор. модель № 140409 Украша: МПК6 A61M 1/10 (2006.01), A61K 31/00, A61P 9/10 (2006.01), U201908012; заяв. 12.07.2019; опубл. 25.02.2020, Бюл. № 4/2020
URL: https://base.uipv.org/searchINV/search.php?action= search
8. Alva N., AlvaR., Carbonell T. Fructose 1,6-Bi-phosphate: A summary of its cytoprotective mechanism. Current Medicinal Chemistry. 2016. Vol. 23, No. 39. P. 4396-4417.
DOI: https://doi.org/10.2174/0929867323666161014144250
9. Asatryan T. T., Gaikovaya L. B., Slepishe-va V. V. The value of the acidified glycerol lysis test with a graphical determination for screening of hereditary spherocytosis. Translational Medicine. 2019. Vol. 6, No. 6. P. 51-59.
DOI: https://doi.org/10.18705/2311-4495-2019-6-6-51-59
10. Garazi E., Bridge S., Caffarelli A., Ruoss S. Acute cellular insulin resistance and hyperglycemia associated with hypophosphatemia after cardiac surgery. A&A Practice. 2015. Vol. 4, No. 2. P. 22-25. DOI: https://doi.org/10.1213/xaa.0000000000000112
11. Glucose-6-phosphate dehydrogenase deficiency is associated with cardiovascular disease in U.S. Military Centers / J. Thomas et al. Texas Heart Institute journal. 2018. Vol. 45, No. 3. P. 144-150.
DOI: https://doi.org/10.14503/thij-16-6052
12. Grygorczyk R., Orlov S. The effect of hypoxia on the properties of erythrocyte membranes - importance for intravascular hemolysis and purinergic blood flow control. Frontiers in physiology. 2017. DOI: https://doi.org/10.3389/fphys.2017.01110.
13. Impact of hypophosphatemia on outcome of patients in intensive care unit: a retrospective cohort study / L. Wang et al. BMC Anesthesiology. 2019. Vol. 86, No. 19. DOI: https://dx.doi.org/10.1186%2Fs12871-019-0746-2
14. Olia S., Maul T., Antaki J., Kameneva M. Mechanical Blood Trauma in Assisted Circulation: Sublethal RBC Damage Preceding Hemolysis. The International Journal of Artificial Organs. 2016. Vol. 39, No. 4. P. 150159. DOI: https://doi.org/10.5301/ijao.5000478
15. Repsold L., Joubert A. Eryptosis: an erythrocyte's suicidal type of cell death. BioMed Research International. 2018. Vol. 1, No. 3.
DOI: https://doi.org/10.1155/2018/9405617
CTaTra Hagmm^a go pegaKmï 10.12.2020
♦
UDC 616.831.71:616.61]-06:616.831-002.1-005.4 https://doi.org/10.26641/2307-0404.2021.L227941
O.M. Kononets, CEREBRAL HEMISPHERES - CEREBELLUM -
О. V. Tkachenko, KIDNEY INTERACTION IN PATIENTS
O O Kamenetska WITH ACUTE CEREBRAL ISCHEMIA
Shupyk National Medical Academy of Postgraduate Education Department of Neurology N 2 Dorohozhytska str., 9, Kyiv, 04112, Ukraine
Нацюнальна медична академiя пiслядипломноi освiти iменi П.Л. Шупика
кафедра неврологИ № 2
(зав. - д. мед. н., проф. О.В. Ткаченко)
вул. Дорогожицька, 9, Кшв, 04112б Укра'та
e-mail: [email protected]
Цитування: Медичш перспективы. 2021. Т. 26, № 1. С. 90-98 Cited: Medicniperspektivi. 2021;26(1):90-98
Key words: acute ischemic stroke, lateralization of brain function, cerebellum, renal concentration-filtration function Ключовi слова: гострий iшемiчний iнсульт, мiжпiвкульна асиметрiя, мозочок, концентрацшно-фшьтрацшна функщя нирок
Ключевые слова: острый ишемический инсульт, межполушарная асимметрия, мозжечок, концентрационно-фильтрационная функция почек