Научная статья на тему 'IMPACT OF THE ATMOSPHERE STATE ON INTERACTION OF AIRCRAFT VORTEX AND CONDENSATION TRAILS'

IMPACT OF THE ATMOSPHERE STATE ON INTERACTION OF AIRCRAFT VORTEX AND CONDENSATION TRAILS Текст научной статьи по специальности «Физика»

CC BY
60
23
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ECOLOGY / CONDENSATION TRAIL / VORTEX WAKE / AIRCRAFT / INTERACTION OF TRAILS / CONCENTRATION

Аннотация научной статьи по физике, автор научной работы — Zhelannikov A. I., Zamyatin A. N., Chinyuchin Yu. M.

Currently, much emphasis is given to the environmental problems. This article is not an exception. It is devoted to the issue of propagation and interaction of vortex and condensation trails that form behind aircraft when flying in the atmosphere, depending on its state. A vortex trail is an area of disturbed air flow behind an aircraft formed as a result of its motion. A condensation trail is a product of the aviation fuel combustion in the engine and represents condensed moisture in the form of ice crystals, which is generated under certain ambient conditions. As the numerous studies and observations have shown, condensation trails can affect the heat exchange processes in the atmosphere, contributing to the greenhouse effect, deteriorate the environment. It is especially relevant for the area where numerous transitional airways pass. Therefore, it is essential to understand behind what aircraft type the condensation trail, interacting with the vortex one, dissipates in the atmosphere, and the substances composing the condensation trail lose their concentration. And on the contrary, behind what aircraft type the condensation trail does not dissipate for a long term, and the substances, composing the contrail, retain concentration for a long time. It should also be noted that the contrail, while interacting with the vortex wake, can reveal its structure and visualize the processes of propagation and attenuation of the vortex wake. This paper uses a special computational software application, based on the discrete vortex method, to study the interaction of condensation and vortex trails. It considers the flight weight, aircraft speed and altitude, its in-flight configuration, atmospheric conditions, axial velocity in the vortex core and some other factors, when calculating the vortex wake performance. This complex passed the required testing and state registration. Several procedures were executed to validate and verify the developed complex, confirming its program efficiency and the reliability of the results obtained. The Airbus A320 and A380 were selected as the research object of this article. The flight mode and atmospheric conditions are similar for all aircraft. The results obtained allow us to understand how atmospheric conditions affect the propagation of contrails behind aircraft of different classes, provided their interaction with vortex trails.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «IMPACT OF THE ATMOSPHERE STATE ON INTERACTION OF AIRCRAFT VORTEX AND CONDENSATION TRAILS»

Civil Aviation High Technologies

Vol. 25, No. 02, 2022

МАШИНО СТРОЕНИЕ 2.5.12 - Аэродинамика и процессы теплообмена летательных аппаратов; 2.5.13 - Проектирование конструкция и производство летательных аппаратов;

2.5.14 - Прочность и тепловые режимы летательных аппаратов;

2.5.15 - Тепловые электроракетные двигатели и энергоустановки

летательных аппаратов; 2.5.16 - Динамика, баллистика, управление движением летательных аппаратов

УДК 629.7.016:533.68

DOI: 10.26467/2079-0619-2022-25-2-70-80

Impact of the atmosphere state on interaction of aircraft vortex

and condensation trails

12 3

A.I. Zhelannikov , A.N. Zamyatin , Yu.M. Chinyuchin

1Central Aerohydrodynamic Institute, Zhukovsky, Russia 2 Gromov Flight Research Institute, Zhukovsky, Russia 3Moscow State Technical University of Civil Aviation, Moscow, Russia

Abstract: Currently, much emphasis is given to the environmental problems. This article is not an exception. It is devoted to the issue of propagation and interaction of vortex and condensation trails that form behind aircraft when flying in the atmosphere, depending on its state. A vortex trail is an area of disturbed air flow behind an aircraft formed as a result of its motion. A condensation trail is a product of the aviation fuel combustion in the engine and represents condensed moisture in the form of ice crystals, which is generated under certain ambient conditions. As the numerous studies and observations have shown, condensation trails can affect the heat exchange processes in the atmosphere, contributing to the greenhouse effect, deteriorate the environment. It is especially relevant for the area where numerous transitional airways pass. Therefore, it is essential to understand behind what aircraft type the condensation trail, interacting with the vortex one, dissipates in the atmosphere, and the substances composing the condensation trail lose their concentration. And on the contrary, behind what aircraft type the condensation trail does not dissipate for a long term, and the substances, composing the contrail, retain concentration for a long time. It should also be noted that the contrail, while interacting with the vortex wake, can reveal its structure and visualize the processes of propagation and attenuation of the vortex wake. This paper uses a special computational software application, based on the discrete vortex method, to study the interaction of condensation and vortex trails. It considers the flight weight, aircraft speed and altitude, its in-flight configuration, atmospheric conditions, axial velocity in the vortex core and some other factors, when calculating the vortex wake performance. This complex passed the required testing and state registration. Several procedures were executed to validate and verify the developed complex, confirming its program efficiency and the reliability of the results obtained. The Airbus A320 and A380 were selected as the research object of this article. The flight mode and atmospheric conditions are similar for all aircraft. The results obtained allow us to understand how atmospheric conditions affect the propagation of contrails behind aircraft of different classes, provided their interaction with vortex trails.

Key words: ecology, condensation trail, vortex wake, aircraft, interaction of trails, concentration.

For citation: Zhelannikov, A.I., Zamyatin, A.N. & Chinyuchin, Yu.M. (2022). Impact of the atmosphere state on interaction of aircraft vortex and condensation trails. Civil Aviation High Technologies, vol. 25, no. 2, pp. 70-80. DOI: 10.26467/2079-06192022-25-2-70-80

Vol. 25, No. 02, 2022

Civil Aviation High Technologies

Влияние состояния атмосферы на взаимодействие вихревых и конденсационных следов воздушных судов

12 3

А.И. Желанников , А.Н. Замятин , Ю.М. Чинючин

1 Центральный аэрогидродинамический институт имени проф. Н.Е. Жуковского,

г. Жуковский, Россия 2Летно-испытательный институт имени М.М. Громова, г. Жуковский, Россия 3Московский государственный технический университет гражданской авиации,

г. Москва, Россия

Аннотация: В настоящее время много внимания уделяется экологическим проблемам. Данная работа не исключение. Она посвящена проблеме распространения и взаимодействия вихревых и конденсационных следов, образующихся за воздушными судами при полете в атмосфере в зависимости от ее состояния. Вихревой след - это область возмущенного воздушного потока за самолетом, образующаяся в результате его движения. Конденсационный след является продуктом сгорания авиационного топлива в двигателе и представляет собой сконденсированную влагу в виде ледяных кристаллов, которая образуется при определенных состояниях атмосферы. Как показали многочисленные исследования и наблюдения, конденсационные следы могут влиять на теплообменные процессы в атмосфере и, способствуя парниковому эффекту, ухудшать экологию. Особенно это актуально для местности, где проходят многочисленные воздушные транзитные трассы воздушных судов. Поэтому важно понимать, за какими воздушными судами конденсационный след, взаимодействуя с вихревым, рассеивается в атмосфере, а вещества, входящие в состав конденсационного следа, теряют свою концентрацию. И, наоборот, за какими воздушными судами конденсационный след долго не рассеивается, а вещества, входящие в состав конденсационного следа, длительное время сохраняют концентрацию. Отметим также, что конденсационный след, взаимодействуя с вихревым следом, может выявлять его структуру, а также визуализировать процессы распространения и затухания вихревого следа. В данной статье для исследования взаимодействия конденсационных и вихревых следов был использован специальный расчетно-программный комплекс, базирующийся на методе дискретных вихрей. В нем при расчете характеристик вихревого следа учитываются полетный вес, скорость и высота полета самолета, его полетная конфигурация, атмосферные условия, осевая скорость в ядре вихря и некоторые другие факторы. Этот комплекс прошел необходимую апробацию и государственную регистрацию. Был выполнен ряд мероприятий по валидации и верификации разработанного комплекса, подтверждающих работоспособность программ, входящих в него, и достоверность получаемых результатов. В данной статье в качестве объектов исследования были выбраны воздушные суда А-320 и А-380. Режим полета и атмосферные условия для всех самолетов выбраны одни и те же. Получены результаты, которые позволяют понять, как влияют атмосферные условия на распространение конденсационных следов за воздушными судами разного класса при условии их взаимодействия с вихревыми следами.

Ключевые слова: экология, конденсационный след, вихревой след, воздушное судно, взаимодействие следов, концентрация.

Для цитирования: Желанников А.И., Замятин А.Н., Чинючин Ю.М. Влияние состояния атмосферы на взаимодействие вихревых и конденсационных следов воздушных судов // Научный Вестник МГТУ ГА. 2022. Т. 25, № 2. С. 70-80. DOI: 10.26467/2079-0619-2022-25-2-70-80

Introduction

It is known that under certain flight conditions, a contrail is formed behind flying aircraft (fig. 1). When aviation fuel combusts in the engine at the outlet of the nozzle, there is water vapor among other combustion products. Under certain atmospheric conditions, this water vapor together with atmospheric moisture condense in the form of drops and ice crystals and become visible [1-4]. As the numerous studies and ob-

servations have shown, contrails degenerate into thin cirri high-altitude clouds as time progresses and can affect the Earth's climate, as well as the heat exchange processes in the atmosphere, contributing to the greenhouse effect and deteriorating ecology. This is especially relevant for the areas with intensive air traffic, where numerous airways pass. At present, various methods to reduce or even eliminate the contrail are being developed. For example, if ultra-low sulfur fuel is used, it is claimed by the authors that the contrail can be almost fully eliminated (US Applica-

Civil Aviation High Technologies

Vol. 25, No. 02, 2022

Fig. 1. Example of a condensation trail behind an airplane

tion No. 12/614,640 dated November 9, 2009). The options for changing the altitude and flight route are also considered, but these alternatives can lead to an increase in flight time, which means additional carbon dioxide emission [2, 3]. A local increase in carbon dioxide can result in acid rain [1-4]. Several works [5-7] study aircraft vortex and contrails. This research has shown that contrails behind aircraft of modern aerodynamic configuration of the Airbus A320 and A380 types are drawn into wake vortices and their further propagation in the atmosphere depends on a variety of factors. Among these factors we can mention the flight speed and altitude, aerodynamic configuration of the aircraft, its flight configuration, as well as the atmospheric conditions in which a flight operates [8-14]. The paper [1] shows that some aircraft aerodynamic configuration can have a favorable effect on contrail propagation, in terms of its dispersion in the atmosphere. The engines of these aircraft are located short of the wingtip, which means that tip vortices releasing the wing, capture the contrail and disperse it partially or completely,

thus reducing the negative impact of the contrail on the environment.

On the other hand, if the contrail is not drawn into the wake vortex, and there are such aircraft aerodynamic configurations, its propagation in the atmosphere will occur according to the physical principles. In the non-turbulent atmosphere, the contrail can remain long, but in the turbulent atmosphere it can do considerably shorter [1].

This article explores the process of contrail propagation under the conditions of its interaction with wake vortex. The wake vortex effect on the contrail is prioritized but not atmospheric turbulence. It is common knowledge that [12-18], the atmospheric turbulence effect is by an order of magnitude weaker than wake vortex. Wake vortex propagation, in its turn, depends significantly on the ambient conditions [5].

It is known [2, 3, 5] that the ambient conditions can vary from highly stable to highly unstable, depending on the turbulent processes occurring in the meteorological atmosphere. This article carries out the study of the various atmospheric conditions effect on contrail propagation in the conditions of its interaction with wake vortex.

Methodology of the research

The studies on the interaction and propagation of vortex and condensation trails were carried out using the computational software application [15] which basics and ideas are described in the monographs [5-18] and articles [19-23].

The foundation of the computational software application is a mathematical model of the long-range wake vortex [5], in which speeds disturbed by aircraft are obtained, based on an accurate solution of the Helmholtz equation [17]. This allowed us to consider the dissipation and diffusion of vortices, modeling wake vortex. These phenomena are associated with the natural process of vortices attenuation in the meteorological atmosphere. The contrail was modeled in the following way: eight markers, which simulated the contrail boundary, were located around the nozzle contour of each engine. Another marker was placed in the center of the nozzle.

Vol. 25, No. 02, 2022

Civil Aviation High Technologies

Таблица 1 Table 1

Assessment of ambient conditions

Richardson number Ri Ambient condition (AC) Estimates

Ri <-1.0 Highly unstable 5

-0.01 > Ri >-1.0 Unstable 4

0.01 > Ri >-0.01 Neutral 3

2.5 > Ri > 0.01 Steady 2

Ri > 0.25 Highly stable 1

The markers were considered weightless. The problem was solved in a nonlinear non-stationary setting by the method of discrete vortices. The markers moved in space within the time frame, considering the effect of aircraft wake vortex. The problem was solved in the dimensional format; therefore, the graphs below show calculation data for the specific aircraft flight conditions. In order to simplify understanding of the process of vortex and contrails interaction, the graphs below only monitor the marker movement, which was placed in the center of the nozzle. The paper [1] shows the movement of other markers, which simulate the engine contour.

To assess the ambient condition in the mathematical model of the long-distance wake vortex of the computational software application, the Richardson number was used.

R = g_ATMz .

T (AN / Az)2

Here g is acceleration of free fall, T is the average temperature of the layer Az thick. AT / Az and AN / Az are respectively the average horizontal wind velocity temperature gradients in the layer Az thick.

The Richardson number characterizes the ratio of buoyancy forces (numerator) and dynamic factor (denominator), id est, the ratio of the contributions of free and forced convection in the formation of atmospheric turbulence. Thus, the increase in the temperature gradient modulus corresponds to the state in which buoyancy forces dominate. The increase in the velocity gradient corresponds to the increase in the dynamic

factor and characterizes the atmosphere as unstable. The ambient condition is considered neutral if - 0.01 < Ri > 0.01, in this case, the thermal influence is minimal so only forced convection can exist. When the Ri < -0.01 number decreases, buoyancy forces become more apparent, mixed convection arises, and at Ri <-1.0, a free convection mode is established. On the contrary, with an increase in Ri > 0.01 buoyancy forces begin to impede the turbulence development. At Ri > 0.25 the current becomes almost laminar, turbulent mixing is virtually absent.

So, at Ri <-1.0 the ambient condition is considered highly unstable (AC = 5), at - 0.01 > Ri >-1.0 unstable (AC = 4), at 0.01 > Ri > -0.01neutral (AC = 3), at 2.5 > Ri > 0.01 steady (AC = 2) and at Ri > 0.25 highly stable (AC = 1). All the above argumentations can be narrowed down to Table 1.

To make the application of this table and the introduction of initial data into the mathematical model of long-distance wake vortex convenient, the ambient condition estimates are given. A highly unstable atmosphere is rated at 5 points, and strongly stable at 1 point. From Table 1, we can see the estimates of other ambient conditions. The flight experiments as well as the observations of real aircraft flights showed that the position and propagation of vortex as well as aircraft contrails significantly depend on the ambient condition. In a non-turbulent atmosphere, vortex trails exist for prolonged time, while in the unstable atmosphere they quickly disappear due to dissipation and diffusion. It means, contrails, when interacting with vortex

Civil Aviation High Technologies

Vol. 25, No. 02, 2022

ones, will behave differently. The rapid destruction of the wake vortex in a highly unstable atmosphere leads to the cessation of its effect on the contrail, which can exist for more extended time. Vice versa, the long-term existence of wake vortex in a highly stable atmosphere leads to the rapid destruction of the contrail and its dispersion in the atmosphere. Turbulence of the atmosphere itself also affects the contrail dispersion. This mathematical model also takes into consideration this fact.

Results of the research

Twin-engine Airbus A320 and four-engine A380 were chosen as the objects of this investigation. The similar flight mode and atmospheric conditions were chosen for both aircraft. The altitude was H = 10,000 m, air speed V = 850 km/h, the distance behind the aircraft, to which vortex and contrails were calculated, was equal to 25 km. The Airbus A320 and A380 weight came to 77 tons and 560 tons respectively. Furthermore, the ambient condition, in the calculations, was introduced as highly stable (AC = 1), neutral (AC = 3) and highly unstable (AC = 5) in accordance with Table 1. In the graphs below, all linear dimensions are made on a scale for the convenient perception.

Figure 2 represents the calculation results for position of the Airbus A320 contrails in a highly stable atmosphere (AC = 1). Herewith, the movement of the marker in the oval form, originally located in the center of the nozzle, is shown. The time of wake vortex impact on the contrails will be assessed by the length of its trajectory. The longer the trajectory is, the longer the interaction time of these trails. The vertical axis of the charts shows the aircraft altitude H (m), so does the horizontal axis - the distance (offset) to the right from the aircraft Z (m). The presented trajectories of the marker are obtained by taking into consideration the Airbus A320 wake vortex effect. The vortex trail exists in the non-turbulent atmosphere for a long space of time.

We can see that the vortex trail, having captured the condensation one, commences long

Самолет А320, СА = 1

I

9980 5 9970 9960

9950

9940 -----

9930 J---

0 10 20 30

Z, м

Fig. 2. Propagation of a condensation trail in a highly stable atmosphere

interaction with it, thereby, more diffuses it in the atmosphere.

Figure 3 shows the calculation results of position of the Airbus A320 contrails in a neutral atmosphere (AC = 3).

In this case, due to atmospheric turbulence, the vortex trail fades faster. As in a highly stable atmosphere, after capturing the contrail, it disperses. But here the time for dispersing the trail is significantly shorter. In gusty air (AC = 5), the vortex trail fades more quickly and its interaction with the contrail, weakens more greatly (fig. 4).

The contrail retains its structure and concentration of inclusive substances for a long time. The contrail "hangs" at one height. In this case,

Vol. 25, No. 02, 2022

Civil Aviation High Technologies

Fig. 3. Propagation of a contrail in a neutral atmosphere

Fig. 4. Propagation of a contrail in a highly unstable atmosphere

only processes, taking place in a turbulent atmosphere, have an impact on it. Let us take notice that these processes in their effect are by an order of magnitude weaker than the vortex trail effect [12, 15].

The similar results are obtained for the Airbus A380. Figure 5 shows the calculation results of the contrail position in a highly stable atmosphere. The movement of two markers, originally located in the center of each engine nozzle, is also shown. The presented trajectories of markers are obtained by means taking into consideration the Airbus A380 vortex trail effect. The argumentation for the Airbus A320 is also reasonable. In the nonturbulent air (AC = 1), the vortex trail, having

captured the contrail and interacting with it, disperses quickly it in the atmosphere. In a neutral atmosphere (AC = 3), the vortex trail fades faster than in a highly stable atmosphere. Therefore, the contrail dispersion time is substantially shorter (fig. 6). In a turbulent atmosphere (AC = 5), the vortex trail fades more quickly and its interaction with the contrail weakens more greatly (fig. 7).

The contrail retains its structure and, therefore, the concentration of inclusive substances. In this case, only processes, taking place in a turbulent atmosphere, affect it. But these processes in their effect, as it has been noted above, are by an order of magnitude weaker than the vortex trail effect [12, 15].

Civil Aviation High Technologies

Vol. 25, No. 02, 2022

9820

20 40 60 80

Z, м

Fig. 5. Propagation of a condensation trail in a highly stable atmosphere

Самолет А320, СА = 3

10020

9940

9920 --

9900

9880

9860

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

9840

9820

Внутренний двигатель

Внешний двигатель

20

40 60

Z, м

80

Fig. 6. Propagation of a condensation trail in a neutral atmosphere

Conclusion

Thus, the calculations showed that in case of the vortex and contrails interaction, the diffusion of the contrail behind aircraft substantially depends on the ambient condition. In a highly stable atmosphere contrail dissipates fastest of all. Here, the vortex trail remains long and affects the contrail continuously. Subsequently, the concentration of inclusive substances decreases due to the longer time of interaction. Conversely, in a highly unstable atmosphere, the vortex trail fades rapidly and its effect on the contrail weakens, afterwards it disappears entirely. The contrail "hangs" at the same height. In this case,

only processes that happen in a turbulent atmosphere, which, as it has been noted above, in terms of their effect on the contrail, are by an order of magnitude weaker than the vortex trail impact. The contrail retains its structure and concentration of inclusive substances for a longer stretch of time.

References

1. Aubakirov, T.O., Dedesh, V.T., Zhelannikov, A.I. & Zamyatin, A.N. (2015).

Simulation of aircraft condensation trails and wake vortices interaction. Nauchnyy Vestnik MGTU GA, no. 212, pp. 5-10. (in Russian)

0

0

Vol. 25, No. 02, 2022

Civil Aviation High Technologies

Fig. 7. Propagation of a condensation trail in a highly unstable atmosphere

2. Grigorev, M.A. & Zamyatin, A.N.

(2015). Wake vortices and condensation trails from wide-body aircraft and their interaction. 14th China-Russia Conference on Fundamental Problem of Air-craft Aerodynamics, Flight Dynamics, Strength and Flight Safety. Shenyang China, pp. 11-17.

3. Grigorev, M.A. & Zamyatin, A.N.

(2016). Experimental and theoretical investigations of large scale vortex flows. ICVFM 2016, 7th International Conference on Vortex Flows and Vortex Models. Rostock, Germany, pp. 98-99.

4. Grigorev, M.A., Zamyatin, A.N. & Rogozin, V. (2016). Airflow visualization during research of large scale vortex flows. ICAS 2016, 30th Congress of the International

Council of the Aeronautical Science in Dae-jeon, Korea, pp. 1-7.

5. Ginevsky, A.S. & Zhelannikov, A.I. (2009). Vortex wakes of air crafts. SpringerVerlag Berlin, Heidelberg, 154 p. DOI: 10.1007/978-3-642-01760-5

6. Winckelmans, G., Cottin, C., Dae-ninck, G. & Leweke, T. (2007). Experimental and numerical study of counter-rotating vortex pair dynamics in ground defect. 18th Congress Français de Mécanique, pp. 28-33.

7. Winckelmans, G., Bricteux, L., Cocle, R., Duponcheel, M. & Georges, L. (2007). Assessment of multiscale models for LES: spectral behavior in very high Reynolds number turbulence and cases with aircraft wakes vortices. Proceedings 5th International Symposium on Turbulence and Shear Flow Phenomena (TSFP-5), Garching, Germany, vol. 1, pp. 327-331.

8. Frech, M. & Holzapfel, F. (2008). Skill of an aircraft wake-vortex model using weather prediction and observation. Journal of Aircraft, vol. 45, no. 2, pp. 461-470. DOI: 10.2514/ 1.28983

9. Holzapfel, F. & Steen, M. (2007). Aircraft Wake-Vortex Evolution in Ground Proximity: Analysis and parameterization. AIAA J, vol. 45, no. 1, pp. 218-227. DOI: 10.2514/1.23917

10. Stephan, A., Rohlmann, D., Holzäpfel, F. & Rudnik, R. (2019). Effects of detailed geometry on aircraft wake vortex dynamics during landing. Journal of Aircraft, vol. 56, no. 3, pp. 974-989. DOI: 10.2514/1.C034961

11. Barnes, C.J., Visbal, M.R. & Huang, P.G. (2016). On the effects of vertical offset and core structure in streamwise-oriented vortex-wing interactions. Journal of Fluid Mechanics, vol. 799, pp. 128-158. DOI: 10.1017/jfm.2016.320

12. McKenna, C., Bross, M. & Rockwell, D. (2017). Structure of a stream wise oriented vortex incident upon a wing. Journal of Fluid Mechanics, vol. 816, pp. 306-330. DOI: 10.1017/jfm.2017.87

13. Unterstrasser, S & Stephan, A. (2021). Far field wake vortex evolution of two aircraft formation flight and implications on young contrails. The Aeronautical Journal, vol. 124, issue 1275, pp. 667-702. DOI: 10.1017/aer.2020.3

Научный Вестник МГТУ ГА_

Civil Aviation High Technologies

14. Stephan, A., Schrall, J. & Holzäpfel, F. (2017). Numerical optimization of plateline design for enhanced wake-vortex decay. Journal Aircraft, vol. 54, no. 3, pp. 995-1010. DOI: 10.2514/1.C033973

15. Zhelannikov, A.I. & Zamyatin, A.N. (2015). The certificate of state registration of program for computer № 2015614783 "Design-a software package for the system of vortex-Reva security".

16. Belotserkovsky, S.M. & Nisht, M.I.

(1978). Separation and non-separation flow of thin wings with an ideal liquid. Moscow: Nauka, 277 p. (in Russian)

17. Aubakirov, T.O., Belotserkovsky, S.M., Zhelannikov, A.I. & Nisht, M.I. (1997). Nonlinear theory of the wing and its applications. Almaty: Gylym, 448 p. (in Russian)

12. Belotserkovsky, S.M. & Ginevsky, A.S. (1995). Modeling of turbulent jets and traces based on the discrete vortex method. Moscow: Fizmatlit, 1995. 368 p. (in Russian)

19. Vyshinsky, V.V. & Sudakov, G.G. (2006). Vortex trace of an airplane in a turbulent atmosphere. Trudy TsAGI, issue 2667, 155 p. (in Russian)

20. Vyshinsky, V.V. & Sudakov, G.G. (2009). The vortex track of the aircraft and flight safety issues. Proceedings of Moscow Institute of Physics and Technology, vol. 1, no. 3, pp. 73-93. (in Russian)

21. Animitsa, O.V., Gaifullin, A.M., Ryzhov, A.A. & Sviridenko, Yu.N. (2015). Modeling on the pilot stand of refueling an airplane in flight. Proceedings of Moscow Institute of Physics and Technology, vol. 7, no. 1, pp. 3-15. (in Russian)

22. Bosnyakov, I.S. & Sudakov, G.G. (2013). Modeling the destruction of a vortex wake behind a passenger plane using computational aerodynamics methods. Trudy TsAGI, issue 2730, pp. 3-12. (in Russian)

23. Aparinov, V.A. & Dvorak, A.V. (1986). The method of discrete vortices with closed vortex frames. Trudy VVIA im. Prof. N.E. Zhukovskogo, issue 1313, pp. 424-432. (in Russian)

_Том 25, № 02, 2022

Vol. 25, No. 02, 2022

Список литературы

1. Аубакиров Т.О. Моделирование взаимодействия конденсационного и вихревого следов за воздушными судами / Т.О. Аубакиров, В.Т. Дедеш, А.И. Желанников, А.Н. Замятин // Научный Вестник МГТУ ГА.

2015. № 212 (2). С. 5-10.

2. Grigorev M.A., Zamyatin A.N. Wake vortices and condensation trails from wide-body aircraft and their interaction // 14th China-Russia Conference on Fundamental Problem of Aircraft Aerodynamics, Flight Dynamics, Strength and Flight Safety. Shenyang China, 15-16 September 2015. Pp. 11-17.

3. Grigorev M.A., Zamyatin A.N. Experimental and theoretical investigations of large scale vortex flows // ICVFM 2016. 7th International Conference on Vortex Flows and Vortex Models. Rostock, Germany, 19-22 September

2016. Pp. 98-99.

4. Grigorev M.A., Zamyatin A.N., Rogozin V. Airflow visualization during research of large scale vortex flows // ICAS 2016. 30th Congress of the International Council of the Aeronautical Science in Daejeon. Korea, September 2016. Pp. 1-7.

5. Ginevsky A.S., Zhelannikov A.I. Vortex wakes of aircrafts. Springer-Verlag Berlin, Heidelberg, 2009. 154 p. DOI: 10.1007/978-3642-01760-5

6. Winckelmans G. Experimental and numerical study of counter-rotating vortex pair dynamics in ground defect / G. Winckelmans, C. Cottin, G. Daeninck, T. Leweke // 18th Congress Français de Mécanique. Grenoble, France, 27-31 August 2007. Pp. 28-33.

7. Winckelmans G. Assessment of mul-tiscale models for LES: spectral behavior in very high Reynolds number turbulence and cases with aircraft wakes vortices / G. Winckelmans, L. Bricteux, R. Cocle, M. Duponcheel, L. Georges // Proceedings 5th International Symposium on Turbulence and Shear Flow Phenomena (TSFP-5). Garching, Germany, 27-29 August 2007. Vol. 1. Pp. 327-331.

8. Frech M., Holzapfel F. Skill of an aircraft wake-vortex model using weather prediction and

Том 25, № 02, 2022_

Vol. 25, No. 02, 2022

observation // Journal of Aircraft. 2008. Vol. 45, no. 2. Pp. 461-470. DOI: 10.2514/ 1.28983

9. Holzapfel F., Steen M. Aircraft wakevortex evolution in ground proximity: analysis and parameterization // AIAA J. 2007. Vol. 45, no. 1. Pp. 218-227. DOI: 10.2514/1.23917

10. Stephan A. Effects of detailed aircraft geometry on wake vortex dynamics during landing / A. Stephan, D. Rohlmann, F. Holzäpfel, R. Rudnik // Journal of Aircraft. 2019. Vol. 56, no. 3. Pp. 974-989. DOI: 10.2514/1.C034961

11. Barnes C.J., Visbal M.R., Huang P.G. On the effects of vertical offset and core structure in streamwise-oriented vortex-wing interactions // Journal of Fluid Mechanics. 2016. Vol. 799. Pp. 128-158. DOI: 10.1017/jfm.2016.320

12. McKenna C., Bross M., Rockwell D. Structure of a stream wise oriented vortex incident upon a wing // Journal of Fluid Mechanics. 2017. Vol. 816. Pp. 306-330. DOI: 10.1017/ jfm.2017.87

13. Unterstrasser S., Stephan A. Far field wake vortex evolution of two aircraft formation flight and implications on young contrails // The Aeronautical Journal. 2020. Vol. 124, iss. 1275. Pp. 667-702. DOI: 10.1017/aer.2020.3

14. Stephan A., Schrall J., Holzäpfel F. Numerical optimization of plate-line design for enhanced wake-vortex decay // Journal Aircraft. 2017. Vol. 54, no. 3. Pp. 995-1010. DOI: 10.2514/ 1.C033973

15. Желанников А.И., Замятин А.Н.

Свидетельство о государственной регистрации программы для ЭВМ № 2015614783 «Расчетно-программный комплекс для системы вихревой безопасности», 2015.

_Научный Вестник МГТУ ГА

Civil Aviation High Technologies

16. Белоцерковский С.М., Ништ М.И.

Отрывное и безотрывное обтекание тонких крыльев идеальной жидкостью. М.: Наука, 1978. 277 с.

17. Аубакиров Т.О. Нелинейная теория крыла и ее приложения / Т.О. Аубакиров, С.М. Белоцерковский, А.И. Желанников, М.И. Ништ. Алматы: Гылым, 1997. 448 с.

18. Белоцерковский С.М., Гинев-ский А.С. Моделирование турбулентных струй и следов на основе метода дискретных вихрей. М.: Физматлит, 1995. 368 с.

19. Вышинский В.В., Судаков Г.Г. Вихревой след самолета в турбулентной атмосфере // Труды ЦАГИ. 2006. Вып. 2667. 155 с.

20. Вышинский В.В., Судаков Г.Г.

Вихревой след самолета и вопросы безопасности полетов // Труды МФТИ. 2009. Т. 1, № 3. С. 73-93.

21. Анимица О.В. Моделирование на пилотажном стенде дозаправки самолета в полете / О.В. Анимица, А.М. Гайфуллин, А.А. Рыжов, Ю.Н. Свириденко // Труды МФТИ. 2015. Т. 7, № 1. С. 3-15.

22. Босняков И.С., Судаков Г.Г. Моделирование разрушения вихревого следа за пассажирским самолетом с помощью методов вычислительной аэродинамики // Труды ЦАГИ. 2013. Вып. 2730. С. 3-12.

23. Апаринов В.А., Дворак А.В. Метод дискретных вихрей с замкнутыми вихревыми рамками // Труды ВВИА им. проф. Н.Е. Жуковского. 1986. Вып. 1313. С. 424-432.

Information about the authors

Alexander I. Zhelannikov, Doctor of Technical Sciences, Professor, Chief Researcher of Central Aerohydrodynamic Institute, zhelannikov@yandex.ru.

Andrey N. Zamyatin, Candidate of Technical Sciences, Senior Researcher, the Head of the Department, Gromov Flight Research Institute, frizamyatin@mail.ru.

Yuri M. Chinyuchin, Doctor of Technical Sciences, Professor, Professor of the Aircraft and Aviation Engines Technical Maintenance Chair, Moscow State Technical University of Civil Aviation, yu.chinyuchin@mstuca.aero.

Научный Вестник МГТУ ГА_Том 25, № 02, 2022

Civil Aviation High Technologies Vol. 25, No. 02, 2022

Сведения об авторах

Желанников Александр Иванович, доктор технических наук, профессор, главный научный сотрудник ЦАГИ им. проф. Н.Е. Жуковского, zhelannikov@yandex.ru.

Замятин Андрей Николаевич, кандидат технических наук, старший научный сотрудник, начальник отделения ЛИИ им. М.М. Громова, frizamyatin@mail.ru.

Чинючин Юрий Михайлович, доктор технических наук, профессор, профессор кафедры технической эксплуатации летательных аппаратов и авиационных двигателей МГТУ ГА, yu.chinyuchin@mstuca.aero.

Поступила в редакцию 13.01.2022 Received 13.01.2022

Принята в печать 24.03.2022 Accepted for publication 24.03.2022

ББК 05 Н 34 Св. план 2022

Научный Вестник МГТУ ГА Том 25, № 02, 2022 Civil Aviation High TECHNOLOGIES Vol. 25, No. 02, 2022

Свидетельство о регистрации в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) ПИ № ФС77-47989 от 27 декабря 2011 г.

Оформить подписку на печатную версию журнала можно на сайте Объединенного каталога «Пресса России» www.pressa-rf.ru. Подписной индекс 84254.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Подписано в печать 25.03.2022. Печать цифровая Формат 60*90/8 10,0 усл. печ. л.

Заказ № 915/39 Тираж 50 экз.

Московский государственный технический университет ГА 125993, Москва, Кронштадтский бульвар, д. 20 Изготовлено в ИД Академии имени Н. Е. Жуковского 125167, Москва, 8-го Марта 4-я ул., дом 6А Тел.: (495) 973-45-68 E-mail: artpress@mail.ru

© Московский государственный технический университет ГА, 2022

i Надоели баннеры? Вы всегда можете отключить рекламу.