SIMULATION OF THE AGGREGATE NODE OF A COMMUNICATION NETWORK
DOI 10.24411/2072-8735-2018-10066
Alexander V. Anufrenko,
Military Academy of communications named after S. M. Budenny, St. Petersburg, Russia, leroi88@mail.ru
Ilia S. Meshkov,
Military Academy of communications named after
S. M. Budenny, St. Petersburg, Russia, ilya.meshkov.1987@mail.ru
Maxim A. Snyatkov,
Military Academy of communications named after Keywords: : the aggregate node; communication
S. M. Budenny, St. Petersburg, Russia, pepsimax_76@icloud.com network; simulation; GPSS Studio.
Model of aggregate node of a communication network designed to study the effect of its parameters on the characteristics of the aggregated traffic, such as frame delay, jitter and frame loss. The applications are implemented the laws of queueing theory, graph theory, probability theory, fractal geometry and apparatus of simulation. The models of the aggregate node include the models of traffic generators, which generate video traffic, voice traffic and data traffic arriving at the aggregate node. Traffic generators take into account the self-similar nature of traffic. Models of node aggregation take into account the work of nodal and network protection-mechanisms for communication networks with packet switching. Defense mechanisms work in terms of the ultimate reliability of network elements caused by failure of a different nature. The simulation environment selected program "GPSS Studio". On the basis of simulation models of the aggregate node compute the latency of data frames and jitter of the aggregated traffic. In calculations use the real load, structural and functional parameters of the simulated aggregate node. Data obtained by simulation helps to more accurately justify the decisions related to the planning and design of aggregate nodes in terms of compliance with the requirements in terms of quality of service. The developed model of the aggregate node, contribute to the justification of the best option of the aggregate node from the proposed manufacturers terms of quality/price.
Information about authors:
Alexander V. Anufrenko, Military Academy of communications named after S. M. Budenny, Research fellow of the research center, St. Petersburg, Russia
Ilia S. Meshkov, Military Academy of communications named after S. M. Budenny, Adjunct of the department "Military systems of space, radio relay, satellite communication and navigation", St. Petersburg, Russia
Maxim A. Snyatkov, Military Academy of communications named after S. M. Budenny, Cadet of the faculty of "Multichannel telecommunication systems", St. Petersburg, Russia
Для цитирования:
Ануфренко А.В., Mешков И.С., Снятков М.А. Имитационное моделирование узла агрегации сети связи // T-Comm: Телекоммуникации и транспорт. 2018. Том 12. №4. С. 56-61.
For citation:
Anufrenko A.V., Meshkov I.S., Snyatkov M.A. (2018). Simulation of the aggregate node of a communication network. T-Comm, vol. 12, no.4, pр. 56-61.
Щ
Introduction
The level of aggregation is an important element of the network. It represents a level of network architecture, performing a bridging function between the access level of the network and core level of the network as well as the subscriber traffic aggregation function [1]. The main requirement to this level is to ensure redundancy and optimal load sharing between the parallel connections (how in the direction of access level and in the direction of the core level).
The main tasks of the aggregation level are monitoring and managing traffic which are separated by type of services and user requests.
In conditions, when the aggregate nodes (AN) represent large and complex objects (Table I, Fig. 1), defined by the set of connections between a large number of protocols and relevant parameters, and there are ever more stricter requirements to the level of quality of serv ice (QoS), the ability to make informed and timely decisions on planning and design
Table I
The main components of the aggregate node
Technical Software
Network equipment: network adapters, switches, routers, crypto routers. Directing system: cables, connectors, transmitting and receiving data devices in wireless technologies. Network software: network client, the stack of protocols, the service of removed access, etc.
Distinctive ft aw res of the aggregate nude structure
Accenting to the number a ltd type of network equipment
S wild]
Several reserving each otter switches
_ Routa*
Swatch and roultr, connected ir
I'aaivc equipment
Accenting tu the view of tin diversity of network equipment
Oti one at^trcjiatc node
On several agpriyatc node
Combi itel version
According to the method of cmss-site connections
Star
Alt connections
According to (lie structure of the network ctpiipntent
Modular
Using the convoiera
etc.
According to the technical data of e lenient s
Speed of the frames promotion
Traffic capacity
l>elay of frame transmission t';*.:;;l:-1.' m otic
Siye [lie Initier The pcrtbmiaice of the
internal bus The perlonoaice of the
Speed of the frames filtering
The list of interface's The number of slots
Fig. 1, Distinctive features of the structure of the aggregate node
Given the fact that the simulation model it is possible to establish with any degree of detail of the process or phenomenon [2, 3], which is a necessary condition in the analysis of such complex objects as AN, this type of mathematical modeling approaches to the analysis of functioning of different AN of the network.
The formation of the model
The model of the AN is a computer program describing the operation of the elements of the AN, their communication between themselves and the external environment. The selected program for simulation is "GPSS Studio" [2-4].
uu ©¡vi
fej, hfl-- l-rnvifav»
taDH mff <§"m ^ton # aiD
l^agr ; 3 £ ft™
■agr
iAi
HID
•Hl.
{mi i>
M ¡h
cm« &J& innfflrat
• j, "r ^ j r.rm
, .-Ai A'i-agr,
' u
m% & m*
Fig, 2. The structure of the aggregate node, in the format of the queuing system
According to the classification of Kendall, the AN can be described by the queuing system type as G/G/m and is a non-priority {as in the parameters of requests and type of service), non-exponential non-linear open queuing system. The number of phases depends on the specific model (Fig. 2) [5-7J.
Description of the modeling process
The AN models include the developed traffic generators (G1,G2...GN), which simulate the work of the voice traffic source (codec G. 722), video traffic source (codec H. 264), data traffic source and user interface involving the pulsating nature of these types of traffic [8-11].
Each tralfie generator ts represented by two segments: segment "The flow of the source traffic" and the segment "On Off". In the first segment simulates generation process, the code process, traffic encapsulation process in Ethernet frames, in the second segment simulates the proccss of alternation of transmission and non-transmission of the traffic given its pulsating nature, expressed through the Hurst coefficient 18-11].
The traffic comes on the AN, which depending on the initial data can be represented by one of the six fault-tolerant structures, self-developed in the process of creating models. Four of the six structures in the queuing system format are shown in Fig. 2.
During processing frames on the aggregate node simulates the failures associated with the ultimate reliability of node elements, and their recovery due of protecting mechanisms used in communication networks with packet switching. The protecting mechanisms considered in the models are divided into two groups:
protocols that are responsible for the availability of the AN (IISRP (hot standby router protocol), VRRP (virtual router redundancy protocol), CORP (common address redundancy protocol), FHRP (first hop redundancy protocol), etc.);
protocols, responsible for the efficiency of the AN (LACP (link aggregation control protocol), PAgP (port aggregation protocol), NMT (nortel multi-channel boxes), etc.) 112-14].
After processing in the node, the aggregated traffic comes in its output buffer. The traffic frames are simulated by transacts of "GPSS Studio" with the parameters according to the model load parameters. According to the simulation statistics calculates the propagation delay of the frames coming through the AN and jitter delay. The input data for the simulation are given in Table H.
Table 2
The input date of simulation
Parameter Voice Video Date
Load parameters
Encoding speed V|,V-.,Vi kbps 4S 64 108
The algorithmic delay of the coding, Tkm!, ms 40 6,734 100
Delay encapsulation, T,„k, ms 5 5 0
The distribution of the duration of the delay encapsulation Pareto Pareto Pareto
The number o! bytes in the Ethernet frame Wr 240 120 1350
W2 12 12 20
wi 8 8
W 4 20 20 20
ws 26 26 26
The intensity of the frame transmission /., fps 22 86 10
The law of distribution of intensity of the frame transmission Normal Normal Normal
The duration of ON-period, ['¡.T^T-,, sec 180 120 60
The duration of OFF-pcriod, Tj, see 30 30 30
The distribution of alternating ON/OFF-periods Pareto Gamma Weibull
The ] iurst Coefficient, i [ 0.9 0,9 0,9
Structural and functional parameters
The number of inputs/outputs of AN element l...n/l...m
The performance of AN element, Q, fps lO-'.-.SMO4
The capacity of the input buffer AN element, I.I, frames I0\..5*104
The law ofdistribution of intensity of the frame processing in AN element Normal
The capacity of the output buffer AN element, 1,2, frames I0\..50*10'
The time interval of failure of an AN element. Tot AN, sec 1...3600
The time interval of failure, TotKl, sec 1...3600
The time interval to recovery of AN element. TvAN, sec 0...0.05
The time interval of the channel recovery, TvKLsec 0,05...3
The rale of frame transmission via the communication channels, Vp, fps 5*104... 10"
Load, structural, functional parameters of the model correspond to real parameters of the researched AN. In general model in the "GPSS Studio" consists of five segments: "Description Area", "Modeling of traffic generation", "Simulation of the aggregate node work", "Failure simulation", "Task of the time simulation". The main functional of the segments shown in Fig. 3. In the segment "Failure simulation" is taken into account the influence of the enemy, namely computer attacks of the type "Network traffic analysis" [15-16].
Before you start modeling the calculations of strategic and tactical planning of the experiment runs [2]. Factors of strategic planning: the speed of traffic generators; combination of types of traffic generators; the law of distribution of load intensity coming from the traffic generators; speed of encoding, speed of encapsulation. Given the chosen parameters of the traffic generators, varying in the modeling process of the aggregate node, the number of necessary experiments is equal to 72 [2].
The calculation of the number of realizations of each experiment to determine the values of the researched parameters produced fay the formulas 1 and 2 [2|.
Nr-tl^ N. ,:2v'
e
(0)
(2)
where N1 is the number of realizations of the experiment to determine the time of the traffic frame latency, ta is the argument of Laplace, S - time estimation of delay (jitter) frames of traffic, e is the accuracy of the estimation of time de-lay (jitter) frames of traffic» N2 is the number of realizations of Ihe experiment for determining the jitter of the traffic frames.
Segments of AN il ode I with failures
fask of tlic rime simulation
Account sent and lost messages, the calculation of probabilities of message transmission The task of modeling time und calculation of the results
Modeling of tin flic generation
Simulation of the traffic generator 1 Simulation of the traffic generator 2
Simulation of the traffic generator 3
Failure simulation
Simulation ofNA failures (internal)
Simulation of data channel failures
Simulation of failures of NA elements due to the impact of the enemy
Structure I
Structure 3
Structure 4
Structure 5
Structure 6
t
Simulation of tlie aggregate node work
The drawing of the categories of messages and account
mggsaijgs îdi
I he drc»\vTng of characteristics of Ihe
_nicssa}j.cs __
The simulation of ihe work of the main channels
Simulation of AN work
The simulation the messages receiving The simulation of ihe work of the backup channels
Description Area
Enter the input data
Matrix definition Description of the functions that define the initial data
Arithmetic expression?
Fig» 3. Model segments of the aggregate node
of traffic characteristics. The account in the models the protective mechanisms of the packet switched networks helps to ensure a more accurate selection of the fault-tolerant structure of AN.
Thanks for introducing in the simulation model of the AN the real input data and analyzing the obtained output date, it is possible to generate reasonable requirements for the structure, type of equipment and protective mechanisms of AN given the received load.
References
1. Anufrenko A.V., Volkov D.V., Kanaev A.K. (2015). The principle of the organization of the agregate node of multiservice communication network. Actual problems of info-telecommunications in science and education: coll. scientific. Art. - SPb.; SPbGUT, 2015. Vol.2, pp. 203-206.
2. Boev V.D. Modeling systems. The tools of CPSS World; manual. SPb.: BHV-Petersburg, 2004" 240 p.
3. Aliev T.I. Basics of modeling of discrete systems. SPb,: SPbGU ITMO, 2009. 363 p.
4. Roev V.D. Investigation of the adequacy of the GPSS World and AnyLogic in modeling of the discrete-event processes: monography. SPb.: VAS, 2011.404 p.
5. Boev V.D,, Sypchenko P.R. Computer simulation. Elements of theory and practice. SPb.: VAS, 2009. 436 p.
6. Nazarov A.N., Sychcv K.I. Models and methods of calculation of Indicators of quality of functioning of the huh equipment and structural network parameters of the next generation networks. Krasnoyarsk: Publishing house OOO «Polikom», 2010. 389 p,
7. Aliev T.I. Computer networks and telecommunications: manual. SPb.: SPbSU ITMO, 2011. 400 p.
8. Shelukhin O.I., Osin A.V., Tenashev A.M. Fractal processes in telecommunications. M.: Radio Engineering, 2003. 480 p.
9. Bakhareva N.F., Tarasov V.N. Approximation methods and models of mass service. The study of computer networks. Samara: Samara scientific center of the Rus-sian Academy of Sciences, 2011, 327 p.
10. Anufrenko A.V., Vasiliev E.L., Kanaev A.K., Subbotin D.V. Models of the aggregate node in telecommunication network. Proceedings of the II interunrversity scientific-practical conference "Problems of technical support of troops in modern conditions". SPb. 2017, pp. 63-65.
11. Gorodetsky A.Y., Zaborowski B.C. Informatics. Fractal processes in computer networks: manual. SPb.: Publishing House Of SPbGTU, 2000. 102 p.
12. Anufrenko A.V., Barantsev A.V., Kanaev A.K. Fault-tolerance lor communication networks based on packet-oriented technologies. Jubilee 70 a!I-Russia scien-tific.-tech. a conference dedicated to radio Day. SPb.: LO ZNUS, 2015, pp.. 304-306.
13. Olifer V., Olifer N. Computer networks. Principles, technologies, protocols: textbook for universities. 4-e izd. SPb.: Piter, 2012. 944 p.
14. Camer D. Network TCP/IP. volume I. Principles, protocols, and structure, 4th ed. M.: Publishing house "Williams", 2003. H48 p.
15. Kocinac M.A., Osadchy A.I., Kocinac M.M., Lauta O.S., De-mentyev V.E., Vasyukov D.U. Sustainobility information and telecommunications networks in conditions of information warfare. SPb.: LO ZN11S, 2014. 126 p.
16. Privalov A.A. The method of topological transformations of stochastic networks and its use for the analysis of communication systems of the Navy. SPb,: V MA, 2001, 186 p.
17. Vishnevsky V.M. Theoretical bases of design of computer networks. M.: Tcchnosphere, 2003. 512 p.
18. ITU T Recommendation Y. 1540. Internet protocol data communication service — IP packet transfer and availability performance parameters. December 2002. URL: http://niits.ru/public/2008/2008-006.pdf (date accessed: 3.03.2017 years).
19. Kanaev A.K., Sakharova M.A. Simulation of processing flows of IP packets with different types of infor-mation components on the basis of deep analysis of traffic. Bull research results - 20!4. No. 3 (12), pp. 85-93. URL: http://cyberleninka.ru/article/ii ( date accessed: 10.02,2017 years).
20. Anufrenko A.V., Bennett E.V., Kanaev A.K. Simulation model of the aggregate node to study the influence of structural parameters of the aggregate node, the aggregate traffic parameters. Transport of Ural. Ekaterinburg. 2017. No. 2 (53), pp. 47-50.
ИМИТАЦИОННОЕ МОДЕЛИРОВАНИЕ УЗЛА АГРЕГАЦИИ СЕТИ СВЯЗИ
Ануфренко Александр Винторович, Военная академия связи им. С. М. Буденного, Санкт-Петербург, Россия, leroi88@mail.ru Мешков Илья Сергеевич, Военная академия связи им. С. М. Буденного, Санкт-Петербург, Россия, ilya.meshkov.1987@mail.ru Снятков Максим Александрович, Военная академия связи им. С. М. Буденного, Санкт-Петербург, Россия,
Pepsimax_76@icloud.com
Aннотaция
Модели узла агрегации сети связи разработаны для исследования влияния его параметров на характеристики агрегированного трафика, такие как задержка кадров, джиттер и потеря кадров. При создании моделей применялись законы теории массового обслуживания, теории графов, теории вероятности, фрактальная геометрия и аппарат имитационного моделирования. Модели узла агрегации включают разработанные модели генераторов трафика, которые формируют видео трафик, речевой трафик и трафик данных, поступающий на узел агрегации. Генераторы трафика учитывают самоподобный характер трафика. Модели узла агрегации учитывают работу узловых и сетевых защитных механизмов сети связи с коммутацией пакетов. Защитные механизмы работают в условиях конечной надежности элементов сети, вызванной отказами различного характера. Средой моделирования выбрана программа "GPSS Studio". На основе имитационных моделей узла агрегации рассчитываются значения задержки кадров данных и джиттера агрегированного трафика. При расчётах используются реальные нагрузочные, структурные и функциональные параметры моделируемого узла агрегации. Полученные при моделировании расчетные данные помогают более точно обосновать решения, связанные с планированием и проектированием узлов агрегации в условиях выполнения требований по уровню качества обслуживания. Разработанные модели узла агрегации способствуют обоснованию наилучшего варианта узла агрегации из предлагаемых фирмами-производителями с точки зрения цена/качество.
Ключевые слова: узел агрегации, телекоммуникационная сеть связи, имитационное моделирование, GPSS Studio. Литература
1. Ануфренко А.В., Волков Д.В., Канаев А.К. Принцип организации узла агрегации мультисервисной сети связи / Актуальные проблемы инфотелекоммуникаций в науке и образовании. IV Междунар. науч.-технич. и науч.-метод. конференция: сб. науч. ст.: в 2 т. Спб.: СПб ГУТ, 2015. С. 203-206.
2. Боев В.Д. Моделирование систем. Инструментальные средства GPSS World: Учеб. пособие. СПб.: БХВ-Петербург, 2004. 240 с.
3. Алиев Т.И. Основы моделирования дискретных систем. СПб.: СПбГУ ИТМО, 2009. 363 с.
4. Боев В.Д. Исследование адекватности GPSS World и AnyLogic при моделировании дискретно-событийных процессов: монография. СПб.: ВАС, 2011. 404 с.
5. Боев В.Д., Сыпченко Р.П. Компьютерное моделирование. Элементы теории и практики. СПб.: ВАС, 2009. 436 с.
6. Назаров А.Н., Сычев К.И. Модели и методы расчета показателей качества функционирования узлового оборудования и структурно-сетевых параметров сетей связи следующего поколения. Красноярск: Издательство ООО "Поликом", 2010. 389 с.
7. Алиев Т.И. Сети ЭВМ и телекоммуникации: учеб. пособие. СПб.: СПбГУ ИТМО, 2011. 400 с.
8. Шелухин О.И., Осин А.В., Тенякшев А.М. Фрактальные процессы в телекоммуникациях. М.: Радиотехника, 2003. 480 с.
9. Бахарева Н.Ф., Тарасов В.Н. Аппроксимативные методы и модели массового обслуживания. Исследование компьютерных сетей. Самара: Самарский научный центр РАН, 2011. 327 с.
10. Ануфренко А.В., Васильев Е.Л., Канаев А.К., Субботин Д.В. Модели узла агрегации в телекоммуникационной сети / Труды II межвузовской научно-практической конференции "Проблемы технического обеспечения войск в современных условиях". Спб. 2017. С. 63-65.
11. Городецкий А.Я., Заборовский B.C. Информатика. Фрактальные процессы в компьютерных сетях: учебное пособие. СПб.: Издательство СПбГТУ, 2000. 102 с.
12. Ануфренко А.В., Баранцев А.В., Канаев А.К. Обеспечение отказоустойчивости сетей связи, функционирующих на базе пакетно-ориентированных технологий / Юбил. 70-я Всерос. Научн.-технич. конференция, посвященная Дню радио. СПб.: ЛО ЦНИИС, 2015. С. 304-306.
13. Олифер В., Олифер Н. Компьютерные сети. Принципы, технологии, протоколы: учебник для вузов. 4-е изд. СПб.: Питер, 2012. 944 с.
14. Камер Д. Сети ТСР/1Р. Том 1. Принципы, протоколы и структура, 4-е изд. М.: Издательский дом "Вильяме", 2003. 848 с.
15. Коцыняк М.А., Осадчий А.И., Коцыняк М.М., Лаута О.С., Дементьев В.Е., Васюков Д.Ю. Обеспечение устойчивости информационно-телекоммуникационных сетей в условиях информационного противоборства. СПб.: ЛО ЦНИИС, 2014. 126 с.
16. Привалов А.А. Метод топологического преобразования стохастических сетей и его использования для анализа систем связи ВМФ. Спб.: ВМА, 2001. 186 с.
17. Вишневский В.М. Теоретические основы проектирования компьютерных сетей. М.: Техносфера, 2003. 512 с.
18. МСЭ Т Recommendation Y. 1540. IP Packet Transfer and Availability Performance parameters//December 2002. URL: http://niits.ru/pub-lic/2008/2008-006.pdf (дата обращения: 3.03.2017 года).
19. Сахарова М.А., Сахарова М.А. Моделирование процессов обработки потоков IP-пакетов с различными типами информационных составляющих на основе глубокого анализа трафика / Бюлл. результатов научных исследований. 2014. №3 (12). С. 85-93. URL: http://cyberleninka.ru/article/n (дата обращения: 10.02.2017 года).
20. Ануфренко А.В., Бенета Э.В., Канаев А.К. Имитационная модель узла агрегации для исследования влияния структурных параметров узла агрегации на параметры агрегированного трафика // Транспорт Урала. Екатеринбург. 2017 г. №2 (53). С. 47-50.
Информация об авторах:
Ануфренко Александр Винторович, Военная академия связи им. С.М. Буденного, ФГКВОУ ВО ВАС научный сотрудник научно-исследовательского центра, Санкт-Петербург, Россия
Мешков Илья Сергеевич, Военная академия связи им. С.М. Буденного, ФГКВОУ ВО ВАС адъюнкт кафедры "Военных систем космической, радиорелейной, спутниковой связи и навигации", Санкт-Петербург, Россия
Снятков Максим Александрович, Военная академия связи им. С.М. Буденного, ФГКВОУ ВО ВАС курсант факультета "Многоканальных телекоммуникационных систем", Санкт-Петербург, Россия