Научная статья на тему 'Hydrodynamic modelling and simulations of collisional shockwaves in gas targets for the optimisation of collisionless shock acceleration of ions'

Hydrodynamic modelling and simulations of collisional shockwaves in gas targets for the optimisation of collisionless shock acceleration of ions Текст научной статьи по специальности «Физика»

CC BY
89
33
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Hydrodynamic modelling and simulations of collisional shockwaves in gas targets for the optimisation of collisionless shock acceleration of ions»

LM-PS-14

Hydrodynamic modelling and simulations of collisional shockwaves in gas targets for the optimisation of collisionless shock acceleration of ions

S. Passalidis1,2, O. Ettlinger2, G. Hicks2, N. Dover2'3, Z. Najmudin2, E.P. Benis4, E. Kaselouris1, N.A. Papadogiannis1, M. Tatarakis1, V. Dimitriou1

1Hellenic Mediterranean University, Institute of Plasma Physics & Lasers, Rethymno, Greece 2Imperial College, The John Adams Institute - The Blackett Laboratory, London, United Kingdom

3National Institutes for Quantum and Radiological Science and Technology (KPSI-QST),

Kansai Photon Science Institute, Kyoto, Japan

4University of Ioannina, Department of Physics, Ioannina, Greece

A study on hydrodynamic modelling and simulations of collisional shockwaves in gaseous targets towards the optimisation of collisionless shock acceleration (CSA) of ions is performed. The models developed correspond to the specifications required for experiments with the CO2 laser at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory (BNL) as well as to the Vulcan Petawatt system at Rutherford Appleton Laboratory (RAL). In both cases, a laser prepulse is simulated to interact with hydrogen gas targets. The energy is deposited in five different areas across the gas jet, having values in the range of 0.1 mJ to 100 mJ for BNL and 5 mJ to 1 J for RAL, respectively. It is demonstrated that by controlling the pulse energy, the deposition area and the backing pressure, a blast wave suitable for generating nearly monoenergetic accelerated ion beams can be formed. Depending on the energy absorbed and the deposition area, an optimal temporal window may be determined for the acceleration considering both the necessary overdense state of plasma and the required short scale-lengths for monoenergetic ion beam production.

i Надоели баннеры? Вы всегда можете отключить рекламу.