Научная статья на тему 'HIGH POWER DIODE-PUMPED ERBIUM LASER EMITTING AT NEAR 1.5 μM'

HIGH POWER DIODE-PUMPED ERBIUM LASER EMITTING AT NEAR 1.5 μM Текст научной статьи по специальности «Медицинские технологии»

CC BY
142
31
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
ERBIUM / YTTERBIUM / BORATE CRYSTALS / DIODE-PUMPED / CONTINUOUS-WAVE LASER OPERATION

Аннотация научной статьи по медицинским технологиям, автор научной работы — Gorbachenya K. N., Kisel V. E., Yasukevich A. S., Koporulina E. V., Volkova E. A.

Solid-state lasers emitting in the 1.5-1.6 μm spectral range are very promising for eye-safe laser range finding, ophthalmology, fiber-optic communication systems, and optical location. The aim of this work is the investigation of spectrosposcopic and laser properties of gain medium based on borate crystal for abovementioned lasers.Spectroscopic and laser properties of Er,Yb:YAl3(BO3)4 crystals with different concentrations of dopants were investigated. Polarized absorption and emission cross-section spectra were determined. The ytterbium- erbium energy transfer efficiency was estimated. The maximal energy transfer efficiency up to 97 % was obtained for Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal.The laser operation of heavily doped crystals with erbium concentration up to 4 аt.% (2.2^1020 cm^3) was realized. By using of Er(2 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal continuous- wave (CW) output power of 1.6 W was obtained at 1522 nm with slope efficiency of 32 %. By using of Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal peak output power up to 2.2 W with slope efficiency of 40 % was realized in quasi-continuous-wave regime of operation. The spatial profile of the output beam was close to TEM00 mode with M2 < 1.2 during all laser experiments.Based on the obtained results, it can be concluded that Er,Yb:YAl3(BO3)4 crystals are promising active media for lasers emitting in the spectral range of 1.5-1.6 pm for the usage in laser rangefinder and laser- induced breakdown spectroscopy systems, and LIDARs.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «HIGH POWER DIODE-PUMPED ERBIUM LASER EMITTING AT NEAR 1.5 μM»

High Power Diode-Pumped Erbium Laser Emitting at Near 1.5 ^m

11 1 2 2 K.N. Gorbachenya, V.E. Kisel , A.S. Yasukevich , E.V. Koporulina , E.A. Volkova ,

V.V. Maltsev2, N.I. Leonyuk2,

N.V. Kuleshov1

Center for Optical Materials and Technologies, Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus 2M.V. Lomonosov Moscow State University, Leninskie Gory, 1, Moscow 119991, Russia

Received 14.05.2021

Accepted for publication 16.06.2021

Abstract

Solid-state lasers emitting in the 1.5-1.6 ^m spectral range are very promising for eye-safe laser range finding, ophthalmology, fiber-optic communication systems, and optical location. The aim of this work is the investigation of spectrosposcopic and laser properties of gain medium based on borate crystal for abovementioned lasers.

Spectroscopic and laser properties of Er,Yb:YAl3(BO3)4 crystals with different concentrations of dopants were investigated. Polarized absorption and emission cross-section spectra were determined. The ytterbiumerbium energy transfer efficiency was estimated. The maximal energy transfer efficiency up to 97 % was obtained for Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal.

The laser operation of heavily doped crystals with erbium concentration up to 4 at.% (2.2-1020 cm3) was realized. By using of Er(2 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal continuous-wave (CW) output power of 1.6 W was obtained at 1522 nm with slope efficiency of 32 %. By using of Er(4 at.%),Yb(11 at.%):YAl3(BO3)4 crystal a maximal peak output power up to 2.2 W with slope efficiency of 40 % was realized in quasi-continuous-wave regime of operation. The spatial profile of the output beam was close to TEM00 mode with M2 < 1.2 during all laser experiments.

Based on the obtained results, it can be concluded that Er,Yb:YAl3(BO3)4 crystals are promising active media for lasers emitting in the spectral range of 1.5-1.6 ^m for the usage in laser rangefinder and laser-induced breakdown spectroscopy systems, and LIDARs.

Keywords: erbium, ytterbium, borate crystals, diode-pumped, continuous-wave laser operation. DOI: 10.21122/2220-9506-2021-12-2-91-97

Адрес для переписки: Горбаченя К.Н.

Центр оптических материалов и технологий, Белорусский национальный технический университет, пр-т Независимости, 65, г. Минск 220013, Беларусь e-mail: gorby @bntu.by

Address for correspondence:

Gorbachenya K.N.

Center for Optical Materials and Technologies, Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus e-mail: gorby @bntu.by

Для цитирования:

K.N. Gorbachenya, V.E. Kisel, A.S. Yasukevich, E.V. Koporulina,

E.A. Volkova, V.V. Maltsev, \N.I. Leonyuk, \N.V. Kuleshov.

High Power Diode-Pumped Erbium Laser Emitting at Near 1.5 цт.

Приборы и методы измерений.

2021. - Т. 12, № 2. - С. 91-97.

DOI: 10.21122/2220-9506-2021-12-2-91-97

For citation:

K.N. Gorbachenya, V.E. Kisel, A.S. Yasukevich, E.V. Koporulina,

E.A. Volkova, V.V. Maltsev, | N.I. Leonyuk,] N.V. Kuleshov.

High Power Diode-Pumped Erbium Laser Emitting at Near 1.5 ^m.

Devices and Methods of Measurements.

2021, vol. 12, no. 2, pp. 91-97.

DOI: 10.21122/2220-9506-2021-12-2-91-97

Эрбиевый лазер, излучающий в области 1.5 мкм,

с высокой выходной мощностью

11 1 2 2 К.Н. Горбаченя , В.Э. Кисель , А.С. Ясюкевич , Е.В. Копорулина , Е.А. Волкова ,

2 2 1 В.В. Мальцев , Н.И. Леонюк , Н.В. Кулешов

1 Центр оптических материалов и технологий, Белорусский национальный технический университет, пр-т Независимости, 65, г. Минск 220013, Беларусь 2Московский государственный университет имени М.В. Ломоносова, Ленинские горы, 1, г. Москва 119991, Россия

Поступила 14.05.2021 Принята к печати 16.06.2021

Твердотельные лазеры, излучающие в спектральной области 1.5-1.6 мкм, находят широкое применение в дальнометрии, офтальмотологии, волоконно-оптических системах и оптической локации. Целью данной работы являлось исследование спектроскопических и генерационных свойств активной среды на основе кристалла бората для указанных лазеров.

Проведено исследование спектроскопических и генерационных свойств кристаллов ег^ь^а13(в03)4 с различным содержанием ионов-активаторов. В результате определены спектры поперечных сечений поглощения и стимулированного испускания в поляризованном свете. Проведена оценка эффективности переноса энергии от ионов иттебия на ионы эрбия. Максимальная эффективность переноса энергии достигала 97 % для кристалла Ег(4 а!%)ДЬ(11 а!%)^А13(В03)4.

Реализована лазерная генерация для кристаллов с высоким содержанием ионов эрбия до 4 ат.% (2.2-1020 см-3). При использовании кристалла Ег(2 а!%)ДЬ(11 а!%)^А13(В03)4 получен непрерывный режим генерации с максимальной выходной мощностью до 1,6 Вт на длине волны 1522 нм при дифференциальной эффективности 32 %. В квазинепрерывном режиме генерации для кристалла Ег(4 а1.%)ДЬ(11 а1.%)^А13(В03)4 максимальная пиковая мощность достигала 2,2 Вт при дифференциальной эффективности по поглощённой мощности накачки 40 %. Профиль распределения интенсивности в поперечном сечении лазерного пучка хорошо аппроксимировался функцией Гаусса рассчитанное значение параметра распространения лазерного пучка М не превышало 1,2, что соответствует ТЕМ00 моде резонатора.

На основе полученных результатов, можно сделать вывод, что данные кристаллы являются перспективными активными средами, для лазеров, излучающих в спектральном диапазоне 1.5-1.6 мкм, для применения в составе систем лазерной дальнометрии, лазерно-искровой эмиссионной спектрометрии и лидаров.

Ключевые слова: эрбий, иттербий, бораты, диодная накачка, непрерывная лазерная генерация. БОТ: 10.21122/2220-9506-2021-12-2-91-97

Адрес для переписки: Горбаченя К.Н.

Центр оптических материалов и технологий, Белорусский национальный технический университет, пр-т Независимости, 65, г. Минск 220013, Беларусь e-mail: gorby @bntu.by

Address for correspondence:

Gorbachenya K.N.

Center for Optical Materials and Technologies, Belarusian National Technical University, Nezavisimosty Ave., 65, Minsk 220013, Belarus e-mail: gorby @bntu.by

Для цитирования:

K.N. Gorbachenya, V.E. Kisel, A.S. Yasukevich, E.V. Koporulina,

E.A. Volkova, V.V. Maltsev, \N.I. Leonyuk, \N.V. Kuleshov.

High Power Diode-Pumped Erbium Laser Emitting at Near 1.5 цт.

Приборы и методы измерений.

2021. - Т. 12, № 2. - С. 91-97.

DOI: 10.21122/2220-9506-2021-12-2-91-97

For citation:

K.N. Gorbachenya, V.E. Kisel, A.S. Yasukevich, E.V. Koporulina,

E.A. Volkova, V.V. Maltsev, | N.I. Leonyuk,] N.V. Kuleshov.

High Power Diode-Pumped Erbium Laser Emitting at Near 1.5 ^m.

Devices and Methods of Measurements.

2021, vol. 12, no. 2, pp. 91-97.

DOI: 10.21122/2220-9506-2021-12-2-91-97

Introduction

Laser radiation at 1.5-1.6 pm is located in the eye-safe wavelength range and sensitive region of Ge and InGaAs photodiodes. Other advantages of this radiation are high transparency in atmosphere and fused-silica waveguides. All this makes efficient solid-state laser sources emitting in this spectral range very attractive for compact laser range finding, optical location and fiber-optic communication systems.

The 4Ii3/2—>4Ii5/2 transition of erbium ions is a simple and reliable method for obtaining 1.5-1.6 pm laser operation. However, erbium ions suffer from low pump absorption at the wavelength of commercially available laser diodes near 980 nm. This fact obliges to use additional co-doping with ytterbium ions that strongly absorb pump radiation and transfer it to the erbium ions. For efficient operation of such Er-Yb co-doped lasers two main spectroscopic conditions should be satisfied. The first is short lifetime of the 4I11/2 energy level that prevents up-conversion processes and depopulation of this level by means of energy back transfer. The second condition is high enough 4I13/2 level lifetime to keep quite low laser threshold. These conditions are well satisfied in Er,Yb-glasses, but the glasses suffer from poor thermo-mechanical properties (thermal conductivity of 0.85 W*m-1xK-1) [1], which limits the CW output power by a few hundred milliwatts. A maximal CW output power for Er,Yb-glasses didn't exceed 353 mW with slope efficiency of 26 % [2].

The borate crystals co-doped with erbium and ytterbium ions satisfy abovementioned spectroscopic characteristics and possess high thermo-mechanical properties(thermal conductivityofEr,Yb:YAl3(BO3)4 is 7.7 Wxm-1xK-1 and 6 Wxm-1xK-1 along a and c axes, respectively) for efficient laser operation [3]. Room-temperature laser operation was demonstrated for following Er,Yb-codoped borate crystals: GdCa4O(BO3)3 [4], LaSc3(BO3)4 [5], YCa4O(BO3) [6], GdAl3(BO3)4 [7, 8], LuA^^^ [9]. Efficient high power laser performance of diode-pumped Er,Yb:YAl3(BO3)4 (YAB) crystals was demonstrated recently [10-12]. The maximal output power up to 1 W with slope efficiency of 35 % at several wavelengths between 1522 and 1602 nm was obtained using crystal with dopant concentrations of 1.5 at.% (0.8-1020 cm3) for erbium and 11 at.% (6.0-1020 cm 3) for ytterbium ions, respectively [10]. However, the optimization

of erbium concentration and determination of its influence on the laser performance for oxoborate crystals weren't performed. Here we present the investigation of the effect of erbium concentration on the laser performance of Er,Yb:YAl3(BO3)4 crystals and as a result efficient laser operation at near 1.5 pm.

Crystal growth and spectroscopic properties

Er,Yb:YAl3(BO3)4 single crystals with different erbium concentrations were grown by dipping seeded high-temperature solution growth at a cooling rate 0.2 °C-0.5 °C per day in the temperature range of 1060 °C-1000 °C using K2Mo3O10-based flux [13]. As a result, Er,Yb:YAB crystals with high optical quality and the size up to 20x10x10 mm have been obtained The concentrations of the dopants were measured by microprobe analysis to be

0.8-1020 cm 3 (1.5 at.%),

1.1-1020 cm 3 (2.0 at.%),

1.7-1020 cm3 (3.0 at.%) and 2.2-1020 cm"3 (4.0 at.%)

and

6.0-1020 cm 3 (11 at.%) for ytter-

for erbium bium ions.

The polarized absorption cross-section spectra of Er,Yb:YAB crystal around 980 nm at room-temperature are depicted in Figure 1. The 2F7/2^2F5/2 absorption band is centered at 976 nm with a maximum absorption cross-section of about 2.75x10^° cm2 and bandwidth of 17 nm (FWHM) in o polarization.

Figure 1 - Room-temperature polarized spectra of Er,Yb:YAB crystal at 1 pm

absorption

The stimulated emission cross-section spectra calculated by the reciprocity method using the Stark energy level scheme of 4I13/2 and 4I15/2 manifolds [3] are plotted in Figure 2. A number of local maxima are observed in both o and n polarizations.

The energy transfer efficiency was measured by the estimation of 2F5/2 level lifetime shortening

in Er,Yb-codoped and Yb-single doped crystals according to the formula [6]:

n = k/t-1 = t(1 / t-1 / t0),

where k is the energy transfer rate, t is the ytterbium 2F5/2 level lifetime in Er,Yb-codoped crystal, and t0 is the ytterbium 2F5/2 level lifetime in Yb single-doped crystal.

2 -1

W

it - polarization JW-VaA

a - polarization ; fJ —.-1-.-.-1-1-1-■ ■ 1

1450

1500

1550

Wavelength, nm

1600

1650

Crystal

Er3+ ions, at. %

Yb3+ ions, at. %

F5/2> F5/2. Energy

^s (Yb (Yb,Er transfer

single- co- efficiency,

doped) doped) %

1.5 60 88

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

2.0 30 94

YAB 11.0 480

3.0 20 96

4.0 17 97

elements was kept at 18 °C. As a pump source a 15 W fiber-coupled (0 105 pm, NA = 0.22) laser diode emitting near 976 nm was used. Pump beam was collimated by a 80 mm focal length doublet and then focused into 100 ^m spot inside Er,Yb:YAB crystal with another 80 mm length doublet. The cavity-mode diameter at the active element was close to the pump beam waist. The output couplers with the transmittance of 1 %, 2 %, 5 % and 10 % were used during laser experiments. The setup for laser experiments is presented in Figure 3.

Table 2

The details of active elements

Crystal Er3+ ions, at. % Yb3+ ions, at. % Width, mm Orientation

1.5 c-cut

2.0 c-cut

YAB 11.0 1.5

3.0 c-cut

4.0 a-cut

Figure 2 - Emission cross-section spectra of Er,Yb:YAB crystal near 1.5 ^m

The values of energy transfer efficiencies in Er,Yb:YAB crystals with different erbium and constant ytterbium concentrations are shown in Table 1. The energy transfer efficiency amplifies with the increasing of erbium concentration up to the value of 97 % for Er(4 at.%),Yb(11 at.%):YAB crystal.

Table 1

The energy transfer efficiencies in Er,Yb:YAB crystals

Laser experiments

The laser experiments were performed in Z-shaped cavity. The details of active elements used during laser experiments are plotted in Table 2.

The temperature of mounted on the thermoelectrically cooled copper heatsink active

Figure 3 - Setup for laser experiments

The laser experiments were started with Er(1.5 at.%),Yb(11 at.%):YAB crystal, which was studied in our previous investigations [10, 14]. The best laser performance was demonstrated with 5 % output coupler transmittance. Input-output characteristics of continuous-wave laser are plotted in Figure 4. The laser threshold was measured to be about 1.5 W of absorbed pump power. The maximum CW output power of 1.2 W with slope efficiency near 26 % was obtained at 1522 nm at about 6.2 W of absorbed pump power. After further increasing of pump power, the rising of output laser power wasn't observed. It provides evidence for the influence of thermal load in the crystal on laser performance. To reduce the thermal load, laser experiments with quasi-CW (QCW) pumping were performed. By using a chopper with a duty cycle of 1:5 in the pumping channel, the maximal output peak power up to 2 W with slope efficiency of 35 % was obtained at the absorbed peak pump power of 7.3 W (Figure 4).

Figure 4 - Input-output characteristics of CW and QCW Er(1.5 at.%),Yb(11 at.%):YAB diode-pumped laser

For Er(2 at.%),Yb(11 at.%):YAB the CW laser emission with a slope efficiency of near 27 % was observed at 1543 nm and 1.7 W laser threshold of absorbed pump power; however at an absorbed pump power of more than 4 W the emission wavelength switched to 1522 nm and the slope efficiency was increased to 32 %. The maximal output power of 1.6 W was obtained in that case. The similar situation with switching of emission wavelength was observed for QCW regime of operation at an absorbed pump peak power of more than 5.5 W. The maximal output peak power of 2.7 W with slope efficiency up to 41 % was obtained at an absorbed pump peak power of more than 9 W (Figure 5). The wavelength switching can be explained by the laser wavelength dependence on the inversion density (or intracavity losses). The intracavity losses depend on the output coupler transmittance and thermal effects inside the pumped volume of the crystal. Changes in the losses during laser operation may lead to changing of the wavelengths [7, 15].

Figure 6 shows input-output diagrams of CW and QCW Er(3 at.%),Yb(11 at.%):YAB diode-pumped laser. For CW operation the slope efficiency was reduced to 23 %. The maximal output power of 0.5 W in this case was limited by the damage of active element. To our mind, this damage can be caused by the residual internal stress for highly erbium doped crystals. To prevent destruction of the crystal further experiments were carried out with quasi-CW pumping. The maximal output peak power of 2.5 W with slope efficiency of 35 % was obtained at 1522 nm.

3.0 1

Ppeak = 2.5 W

n = 35 %

Absorbed pump power (W)

Figure 6 - Input-output characteristics of CW and QCW Er(3 at.%),Yb(11 at.%):YAB diode-pumped laser

Laser experiments in QCW regime of operation were held with available a-cut Er(4 at.%),Yb(11 at.%):YAB crystal. In case of usage c-cut and a-cut crystals the lasers demonstrate close slope efficiencies at the slightly different wavelengths (1522 and 1531 nm), respectively [10, 14]. The laser threshold was measured to be about 2.6 W of absorbed peak pump power. The maximum QCW output peak power of 2.2 W with slope efficiency near 40 % was obtained at 1531 nm at about 9 W of absorbed peak pump power (Figure 7).

Figure 5 - Input-output characteristics of CW and QCW Er(2 at.%),Yb(11 at.%):YAB diode-pumped laser

Figure 7 - Input-output characteristics of QCW Er(4 at.%),Yb(11 at.%):YAB diode-pumped laser

Laser characteristics of Er,Yb:YAl3(BO3)4 crystals with different erbium concentrations are plotted in Table 3. The highest slope efficiency was demonstarated with the output coupler transmittance of 5 % for crystals with different erbium concentrations. The increasing of the laser threshold values up to

2.6 W for crystal with the erbium concentration of 4 at.% was observed. This fact is explained by the increasing of reabsorption losses because of quasi-three level scheme of laser operation. The spatial profile of the output beam was close to TEM00 mode with M2 < 1.2 during all laser experiments.

Table 3

Laser performance of Er,Yb:YAB crystal with different erbium concentrations

Crystal

и 3+ •

Er ions, at. %

Yb3+ CW QCW

ions,

at. % Pabs, W n, % P W max' * * Pabs, W n, % P W max

1.4 26 1.2 1.4 35 2

1.7 32 1.6 1.7 41 2.7

11.0

2.2 23 0.6 2.2 35 2.5

YAB

1.5 2.0 3.0 4.0

2.6

40

2.2

Conclusion

In conclusion, the effect of high erbium concentration on the laser performance ofEr,Yb:YAB crystals was investigated. The results demonstrate that there is no degradation of QCW laser performance for erbium concentration up to 2.2-1020 cm3 (4.0 at.%). It is rather different in comparison with Er,Yb-glasses where decreasing of laser slope efficiency begins from the erbium concentration of 1.0-1020 cm3 [4]. Maximal CW output power of 1.6 W with slope efficiency of 32 % and QCW peak output power of 2.7 W with slope efficiency of 41 % was obtained for Er(2 at.%),Yb(11 at.%):YAB crystals. The obtrained result shows the prosperity of Er,Yb:YAB crystal usage as an active medium of eye-safe 1.5-1.6 ^m lasers for rangefinding applications.

Acknowledgements

This research was supported by Russian Science Foundation grant (project No. 19-12-00235).

References

1. Taccheo S., Sorbello G., Laporta P., Karlsson G., Laurell F. 230-mW diode-pumped single-frequency Er,Yb laser at 1.5 ^m. IEEE Photonics Technology Letters, 2001, vol. 13, no. 1, pp. 19-21. DOI: 10.1109/68.903207

2. Danger T., Huber G., Denker B.I., Galagan B.I., Sverchkov S.E. Diode-pumped cw laser around 1.54 ^m using Yb, Er-doped silico-boro-phosphat glass in

Conference on Lasers and Electro-Optics, D. Scifres and

A. Weiner, eds., (Optical Society of America, 1998), paper CTuM71.

3. Tolstik N.A., Huber G., Maltsev V.V., Leo-nyuk N.I., Kuleshov N.V. Excited state absorption, energy levels, and thermal conductivity of Er3+:YAB. Appl. Phys.

B, 2008, vol. 92, no. 4, pp. 567-571. DOI: 10.1007/s00340-008-3101-8

4. Denker B., Galagan B., Ivleva L., Osiko V., Sverchkov S., Voronina I., Hellstrom J.E., Karlsson G., Laurell F. Luminescent and laser properties of Yb,Er activated GdCa4O(BO3)3 - a new crystal for eyesafe 1.5 micrometer lasers. Appl. Phys. B, 2004, vol. 79, no. 5, pp. 577-581. DOI: 10.1007/s00340-004-1605-4

5. Diening A., Heumann E., Huber G., Kuzmin O. High-power diode-pumped Yb, Er:LSB laser at 1.56 ^m in Conference on Lasers and Electro-Optics (CLEO). Vol. 6 of 1998 OSA Technical Digest Series (Optical Society of Amerika, 1998), pp. 299-300, paper CWM5.

6. Burns P., Dawes J., Dekker P., Pipper J., Jiang H., Wang J. Optimization of Er,Yb:YCOB for cw laser operation. IEEE J. Quantum Electronics, 2004, vol. 40, no. 11, pp. 1575-1582.

DOI: 10.1109/JQE.2004.834935

7. Gorbachenya K.N., Kisel V.E., Yasukevich A.S., Maltsev V.V., Leonyuk N.I., Kuleshov N.V. High efficient continuous-wave diode-pumped Er,Yb:GdAl3(BO3)4 laser. Opt. Lett, 2013. vol. 38, pp. 2446-2448.

DOI: 10.1364/OL.38.002446

8. Chen Y., Lin Y., Gong X., Luo Z., Huang Y. Spectroscopic properties and laser performance of Er3+ and Yb3+ co-doped GdAl3(BO3)4 crystal. IEEE J. Quantum

Electronics, 2007, vol. 43, no. 10, pp. 950-956. DOI: 10.1109/JQE.2007.904308

9. Chen Y., Lin Y., Huang J., Gong X., Luo Z., Huang Y. Spectroscopic and laser properties of Er3+:Yb3+:LuAl3(BO3)4 crystal at 1.5-1.6 pm. Opt. Express, 2010, vol. 18, no. 13, pp. 13700-13707.

DOI: 10.1364/0E.18.013700

10. Tolstik N.A., Kurilchik S.V., Kisel V.E., Ku-leshov N.V., Maltsev V.V., Pilipenko O.V., Koporu-lina E.V., Leonyuk N.I. Efficient 1 W continuous-wave diode-pumped Er,Yb:YAl(B03)4 laser. Opt. Lett., 2007, vol. 32, no. 22, pp. 3233-3235.

DOI: 10.1364/0L.32.003233

11. Chen Y.J., Lin Y.F., Gong X.H., Luo Z.D., Huang Y.D. 1.1 W diode-pumped Er:Yb laser at 1520 nm. Opt. Lett., 2008, vol. 32, no. 18, pp. 2759-2761.

DOI: 10.1364/0L.32.002759

12. Chen Y.J., Lin Y.F., Gong X.H., Tan Q.G., Luo Z.D., Huang Y.D. 2.0 W diode-pumped Er:Yb:YAl3(BO3)4

laser at 1.5-1.6 pm. Appl. Phys. Lett., 2006, vol. 89, pp. 241111.

DOI: 10.1063/1.2404969

13. Pilipenko O.V., Maltsev V.V., Koporulina E.V., Leonyuk N.I., Tolstik N.A., and Kuleshov N.V. Growth of (Er,Yb):YAl3(BO3)4 laser crystals. Crystallography Reports, 2008, vol. 53, pp. 336-338.

DOI: 10.1134/S1063774508020260

14. Tolstik N.A., Kisel V.E., Kuleshov N.V., Mal-tsev V.V., Leonyuk N.I. Er,Yb:YAl3(BO3)4 - efficient 1.5 pm laser crystal. Appl. Phys. B, 2009, vol. 97, no. 2, pp. 357-362.

DOI: 10.1007/s00340-009-3694-6

15. Loiko P.A., Mateos X., Kuleshov N.V., Pav-lyuk A.A., Yumashev K.V., Petrov V., Griebner U., Aguilo M., Diaz F. Thermal-lens-driven effects in -cut Yb-and Tm-doped monoclinic KLu(W04)2 crystals. IEEE Journal of Quantum Electronics, 2014, vol. 50, pp. 1-8. DOI: 10.1109/JQE.2014.2332496

i Надоели баннеры? Вы всегда можете отключить рекламу.