Научная статья на тему 'HEAT EXCHANGE PROCESSES IN A SHELL-AND-TUBE HEAT EXCHANGER'

HEAT EXCHANGE PROCESSES IN A SHELL-AND-TUBE HEAT EXCHANGER Текст научной статьи по специальности «Физика»

CC BY
170
37
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Science and innovation
Область наук
Ключевые слова
heat exchangers / shell-and-tube heat exchanger / geometry of the heat exchange surface / heat transfer coefficient / thermal and hydraulic calculations / теплообменники / кожухотрубный теплообменник / геометрия поверхности теплообмена / коэффициент теплопередачи / тепловые и гидравлические расчеты.

Аннотация научной статьи по физике, автор научной работы — N. Husanov, Sh. Abdukhalilova

the article presents methods for calculating heat exchangers by design, size and surfaces.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

ТЕПЛООБМЕННЫЕ ПРОЦЕССЫ В КОРПУСНО-ТРУБНОМ ТЕПЛООБМЕННИКЕ

В статье представлены методы расчета теплообменников по конструкции, размерам и поверхностям.

Текст научной работы на тему «HEAT EXCHANGE PROCESSES IN A SHELL-AND-TUBE HEAT EXCHANGER»

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

HEAT EXCHANGE PROCESSES IN A SHELL-AND-TUBE HEAT EXCHANGER

Husanov Nurmukhammad

Senior lecturer Sh.B. Abdukhalilova

AssistantFerghana Polytechnic Institute https://doi.org/10.5281/zenodo.7315775 Abstract. the article presents methods for calculating heat exchangers by design, size and surfaces.

Keywords: heat exchangers, shell-and-tube heat exchanger, geometry of the heat exchange surface, heat transfer coefficient, thermal and hydraulic calculations

ТЕПЛООБМЕННЫЕ ПРОЦЕССЫ В КОРПУСНО-ТРУБНОМ

ТЕПЛООБМЕННИКЕ Аннотация. В статье представлены методы расчета теплообменников по конструкции, размерам и поверхностям.

Ключевые слова: теплообменники, кожухотрубный теплообменник, геометрия поверхности теплообмена, коэффициент теплопередачи, тепловые и гидравлические расчеты.

INTRODUCTION

Based on the analysis of various geometries of heat exchange surfaces, it is possible to distinguish the heat exchange surfaces of the following geometry (Figure 3):

- flat surface;

- round surface (convex or concave).

Figure 3 - Geometry of heat transfer surfaces: a - flat surface; b - round surface In the heat exchanger proposed by us (see Figure 2), as a heat exchange surface, there are both surfaces of circular geometry (ribs, tube) and flat (plates).

To determine the heat transfer coefficient of a liquid, it is advisable to investigate the process of heat exchange between the heated liquid and the heat exchange surface (rib and plate). It is necessary to determine the temperature distribution over the surface of the rib and plate. MATERIALS AND METHODS Mathematical modeling

It is known that the coefficient of heat transfer from a heated solid (for example, a plate, a

cylinder) to a liquid, W / (ml* K), is determined by the formula [1]:

a = (1.2) l

where the coefficient of thermal conductivity of the liquid, W / (m • K), Nu is the Nusselt number, l is the defining geometric parameter of the surface (for the plate - length, m, and for the cylinder - its diameter), m.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

The fundamental research of the heat transfer process, for example, from a heated solid surface of a certain geometry, was carried out by prominent Soviet scientists - academicians Mikheev M.A. and Kutatelladze S.S. [2].

The Nusselt number Nu, used by them to calculate the heat transfer coefficient a, W/(m2K), from a heated surface to a cold liquid, contained the criterion values of the Reynolds (Re) and Prandtl (Pr) numbers.

RESULTS

Mikheev M.A. proposed to use the ratio [2] to determine the coefficient of heat transfer from a flat plate to a liquid:

It should be noted that the multiplier (Rg / Rg) 0.25 is an amendment that takes into account the effect of changes in the physical parameters of the coolant with a change in temperature on heat transfer. This multiplier characterizes the dependence of heat transfer on the magnitude of the heat flow. This ratio is applicable when the temperature of the plate does not change along the length.

However, when calculating the Nusselt number for the design of the proposed heat exchanger, it is necessary to take into account the turbulence value of the fluid flow.

With the transverse flow of a single pipe (cylinder) in the vicinity of the frontal point, the heat transfer coefficient is calculated:

Where U0 is the velocity at the frontal point of the cylinder, m/s, d is its diameter, M.

Kutatelladze S.S. to determine the average heat transfer coefficient of the plate, he also proposed a dependence that differs somewhat from the ratio of M.A. Mikheev (1.1) by a multiplier before the number Pr and the value of the exponent at the numbers Pr and Re, as well as the absence of the multiplier (Rgj / Rgst) is 0.25 [3].

DISCUSSION

Kutateladze S.S. proposed to calculate the heat transfer of a single cylinder to determine the number Nu by the formula:

where the coefficients C and m depend on the values of the number Re [4].

Zhukauskas A.A. obtained a dependence for calculating the number Nu, also with other coefficients for the numbers Pr and Re [5]. He took into account the turbulence of the flow when flowing around a single cylinder at the frontal point.

To determine the heat transfer coefficient of the liquid a1, we need to investigate the process of heat exchange between the heated liquid and the heat exchange surface (rib and plate).It is necessary to obtain a temperature distribution over the surface of the rib and plate.

Thus, in order to determine the heat transfer coefficient from the outer surface of the heat exchange tube a2, when calculating the Nusselt number characterizing heat exchange at the

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

wall-liquid interface, it is necessary to investigate the turbulence of the liquid flow and obtain the value of the turbulence coefficient Tu, %.

CONCLUSION

1. Shell-and-tube heat exchangers are used at thermal power plants, thermal power plants, nuclear power plants, steam and hot water boilers, central and individual heating points.

2. Intensification of thermal processes of shell-and-tube apparatuses is an important task, since the dimensions, the number of sections and the cost of the heat exchanger depend on them.

3. One of the promising ways to intensify heat exchange processes in shell-and-tube heat exchangers is to change the geometry of the heat exchange surface.

4. A patent-protected design of a shell-and-tube heat exchanger with increased turbulence of the heated liquid flow and heat exchange intensity is proposed.

5. Based on the analysis of work on modeling thermal and hydraulic processes, the purpose and objectives of the research are formulated.

REFERENCES

1. Hamdamalievich S. A., Nurmuhammad H. Analysis of Heat Transfer of Solar Water Collectors //Middle European Scientific Bulletin. - 2021. - Т. 18. - С. 60-65.

2. Xamdamaliyevich, S. A., & Rahmankulov, S. A. (2021, July). Investigation of heat transfer processes of solar water, air contact collector. In E-Conference Globe (pp. 161-165).

3. Madaliev, M. E. U., Rakhmankulov, S. A., & Tursunaliev, M. M. U. (2021). Comparison of Finite-Difference Schemes for the Burgers Problem. Middle European Scientific Bulletin, 18, 76-83

4. Abdullayev, B. X., & Rahmankulov, S. A. (2021). Modeling Aeration in High Pressure Hydraulic Circulation. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 2(12), 127-136.

5. Abdukarimov, B. A., O'tbosarov, S. R., & Tursunaliyev, M. M. (2014). Increasing Performance Efficiency by Investigating the Surface of the Solar Air Heater Collector. NM Safarov and A. Alinazarov. Use of environmentally friendly energy sources.

6. Rashidov, Y. K., & Ramankulov, S. A. (2021). Improving the Efficiency of Flat Solar Collectors in Heat Supply Systems. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 2(12), 152-159

7. Madraximov, M. M., Nurmuxammad, X., & Abdulkhaev, Z. E. (2021, November). Hydraulic Calculation Of Jet Pump Performance Improvement. In International Conference On Multidisciplinary Research And Innovative Technologies (Vol. 2, pp. 20-24).

8. Akramov, A. A. U., & Nomonov, M. B. U. (2022). Improving the Efficiency Account

Hydraulic of Water Supply Sprinklers. Central Asian Journal of Theoretical and Applied Science, 3(6), 364-370.

9. Умурзакова, М. А., Усмонов, М. А., & Рахимов, М. Н. (2021). АНАЛОГИЯ РЕЙНОЛЬДСА ПРИ ТЕЧЕНИЯХ В ДИФФУЗОРНО-КОНФУЗОРНЫХ КАНАЛАХ. Экономика и социум, (3-2), 479-486.

10. Сатторов, А. Х., Акрамов, А. А. У., & Абдуразаков, А. М. (2020). Повышение эффективности калорифера, используемого в системе вентиляции. Достижения науки и образования, (5 (59)), 9-12.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

11. Усаров, М. К., and Г. И. Маматисаев. "Вынужденные колебания коробчатой конструкции панельных зданий при динамических воздействиях." Проблемы механики 2 (2010): 23-25. Shavkatjon o'g'li, T. B. (2022). Proving The Inequalities Using a Definite Integral and Series. Texas Journal of Engineering and Technology, 13, 64-68.

12. Madaliev, M. E. U., Maksudov, R. I., Mullaev, I. I., Abdullaev, B. K., & Haidarov, A. R.

(2021). Investigation of the Influence of the Computational Grid for Turbulent Flow. Middle European Scientific Bulletin, 18, 111-118.

13. Hamdamalievich S. A. Determination of the deposition of particles contained in the water passing through the sump well //Central asian journal of theoretical & applied sciences. -2022. - Т. 3. - №. 6. - С. 244-251.

14. ugli Mo'minov, O. A., Maqsudov, R. I., & qizi Abdukhalilova, S. B. (2021). Analysis of Convective Finns to Increase the Efficiency of Radiators used in Heating Systems. Middle European Scientific Bulletin, 18, 84-89.

15. Maqsudov, R. I., & qizi Abdukhalilova, S. B. (2021). Improving Support for the Process of the Thermal Convection Process by Installing. Middle European Scientific Bulletin, 18, 5659.

16. Усаров, Махаматали Корабоевич, and Гиёсиддин Илхомидинович Маматисаев. "КОЛЕБАНИЯ КОРОБЧАТОЙ КОНСТРУКЦИИ КРУПНОПАНЕЛЬНЫХ ЗДАНИЙ ПРИ ДИНАМИЧЕСКИХ ВОЗДЕЙСТВИЯХ." Научный форум: технические и физико-математические науки. 2019.

17. Usmonova, N. A., & Khudaykulov, S. I. (2021, April). SPATIAL CAVERNS IN FLOWS WITH THEIR PERTURBATIONS IMPACT ON THE SAFETY OF THE KARKIDON RESERVOIR. In E-Conference Globe (pp. 126-130

18. Nosirov A.A., №sirov I.A. Simulation of Spatial Own of Vibrations of Axisymmetric Structures EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE https://emjms.academicjournal.io

19. Shavkatjon o'g'li, T. B. (2022). SOME INTEGRAL EQUATIONS FOR A MULTIVARIABLE FUNCTION. Web of Scientist: International Scientific Research Journal, 3(4), 160-163.

20. Рашидов, Ю. К., Орзиматов, Ж. Т., Эсонов, О. О. У., & Зайнабидинова, М. И. К.

(2022). СОЛНЕЧНЫЙ ВОЗДУХОНАГРЕВАТЕЛЬ С ВОЗДУХОПРОНИЦАЕМЫМ МАТРИЧНЫМ АБСОРБЕРОМ. Scientific progress, 3(4), 1237-1244.

21. Рашидов, Ю. К., Орзиматов, Ж. Т., & Исмоилов, М. М. (2019). Воздушные солнечные коллекторы: перспективы применения в условиях Узбекистана. ББК 20.1 я43 Э 40.

22. Abobakirovich, A. B., Sodikovich, A. Y., & Оgli, M. I. I. (2019). Optimization of operating parameters of flat solar air heaters. Вестник науки и образования, (19-2 (73)), 6-9.

23. Abbasov, Y. S., & ugli Usmonov, M. A. (2022). Design of an Effective Heating System for Residential and Public Buildings. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 3(5), 341-346.

24. Usmonova, N. A. (2021). Structural Characteristics of the Cavern at a Fine Bubbled Stage of Cavitation. Middle European Scientific Bulletin, 18, 95-101.

INTERNATIONAL SCIENTIFIC JOURNAL VOLUME 1 ISSUE 7 UIF-2022: 8.2 | ISSN: 2181-3337

25. Nasirov Ismail Azizovich. On The Accuracy of the Finite Element Method on the Example of Problems about Natural Oscillations. EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE https://emjms.academicjournal.io

26. Nosirov A.A., №sirov I.A. Simulation of Spatial Own of Vibrations of Axisymmetric Structures EUROPEAN MULTIDISCIPLINARY JOURNAL OF MODERN SCIENCE http s://emjms.academicj ournal .i o

27. Madaliev, E. U., & qizi Abdukhalilova, S. B. (2022). Repair of Water Networks. CENTRAL ASIAN JOURNAL OF THEORETICAL & APPLIED SCIENCES, 3(5), 389-394.

28. . Malikov, Z. M., & Madaliev, E. U. (2019). Mathematical simulation of the speeds of ideally newtonovsky, incompressible, viscous liquid on a curvilinearly smoothed pipe site. Scientific-technical journal, 22(3), 64-73.

29. Мадхадимов, М. М., Абдулхаев, З. Э., & Сатторов, А. Х. (2018). Регулирования работы центробежных насосов с изменением частота вращения. Актуальные научные исследования в современном мире, (12-1), 83-88.

30. Mo'minov, O. A. O'tbosarov Sh. R."Theoretical analysis of the ventilation emitters used in low-temperature heat supply systems, and heat production of these emitters" Eurasian journal of academic research, 495-497.

i Надоели баннеры? Вы всегда можете отключить рекламу.