Научная статья на тему 'Gyrotrons: towards to the design of powerful THz radiation source'

Gyrotrons: towards to the design of powerful THz radiation source Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»

CC BY
22
6
i Надоели баннеры? Вы всегда можете отключить рекламу.
i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Gyrotrons: towards to the design of powerful THz radiation source»

Gyrotrons: towards to the design of powerful THz radiation source

G.G. Denisov1, E.M. Tai12, A.N. Kuftin1, Y.K. Kalynov1, S.V. Samsonov1, A.V. Savilov1, E.A. Soluyanova12, A.P. Fokin12, M.Yu. Givavin1'

1-Institute of Applied Physics RAS,46 Ul'yanov str., Nizhny Novgorod, Russia 2- GYCOMLtd., 46 Ul'yanov str., Nizhny Novgorod, Russia

* [email protected]

Gyrodevices, in particular gyrotrons, currently are the most popular sources of powerful radiation in the sub-THz and THz frequency band [1,2]. The main area of gyrotron applicating associated with electron cyclotron resonance heating (ECH) and current drive in controlled thermonuclear fusion (NF) facilities. For the ITER project, GYCOM/IAP RAS implemented a CW (pulse duration of about 1000 sec) gyrotron with a MW power level at a frequency of 170 GHz [2,3]. Currently, in connection with an increase of ECH power from 24 MW (24 tubes) to 48 MW and, in the future, up to 80 MW, the possibility of 1.2 - 1.5 MW gyrotrons is being discussed. The solution connected to utilization of higher operating modes and using an external signal for frequency locking and suppression of parasitic oscillations [4]. For the next generation of NF installations this purpose, a powerful gyrotron with an operating frequency of 230 GHz has been developed [5]. The mastering of the terahertz frequency range by gyro-devices continues, and the main attention is paid not even to achieving record values of power and efficiency, but to controlling of the spectral characteristics [6] and searching for possibilities for smooth frequency tuning, which is due to the prospects of spectroscopy applications. Through the use of original methods of electronic and electrodynamic selection, stable single-mode generation at cyclotron harmonics was achieved at frequencies up to 1.2 THz [7-9]. Work is underway to create HTSC magnetic systems, which makes it possible to expect operating frequencies of gyrodevices up to 2 THz. The possibility of frequency multiplication has been demonstrated [10], which makes it possible to obtain tens of Watts in continuous mode at frequencies up to 1.5 THz. Using an original electrodynamic system based on quasi-optical elements, tuning of the generation frequency in a band of about one octave was demonstrated [11].

Development of gyro devices was supported, in particular, by the IAP RAS projects FFUF-2022-0007 and FFUF-2024-0027.

[1] G.S. Nusinovich, M.K.A. Thumm, M.I. Petelin, The Gyrotron at 50: Historical Overview, J Infrared Milli Terahertz Waves, 35, 325-381, (2014).

[2] M.K.A. Thumm, G.G. Denisov, K. Sakamoto, M.Q. Tran, High-power gyrotrons for electron cyclotron heating and current drive, Nuclear Fusion, 59, 7, 073001.

[3] A.G. Litvak, G.G. Denisov, M.Y. Glyavin, Russian Gyrotrons: Achievements and Trends, IEEE Journal of Microwaves, 1, 1, 260-268, (2021).

[4] A.N. Kuftin, G.G. Denisov, A.V. Chirkov, et al, First Demonstration of Frequency-Locked Operation of a 170 GHz/1 MW Gyrotron, IEEE Electron Device Letters, 44, 9, 1563-1566, (2023).

[5] M.Y. Glyavin, G.G. Denisov, E.M. Tai, A.G. Litvak, Russian gyrotrons: overview and challenge, 24th International Vacuum Electronics Conference (IVEC), Chengdu, China, (2023).

[6] G.G. Denisov, M.Y. Glyavin, A.E. Fedotov, et al, Theoretical and Experimental Investigations of Terahertz-Range Gyrotrons with Frequency and Spectrum Control, J Infrared Milli Terahertz Waves, 41, 1131-1143, (2020).

[7] I.V. Bandurkin, A.P. Fokin, M.Y. Glyavin, et al, Demonstration of a Selective Oversized Cavity in a Terahertz Second-Harmonic Gyrotron, IEEE Electron Device Letters, 41, 9, 1412-1415, (2020).

[8] I. Bandurkin, A. Fedotov, M. Glyavin, et al, Development of Third-Harmonic 1.2-THz Gyrotron with Intentionally Increased Velocity Spread of Electrons, IEEE Transactions on Electron Devices, 67, 10, 4432-4436, (2020).

[9] Y.K. Kalynov, I.V. Bandurkin, I.V. Osharin, A.V. Savilov, Third-Harmonic 1 THz Large-Orbit Gyrotron with an Improved Quasi-Regular Cavity, IEEE Electron Device Letters, 44, 10, 1740-1743, (2023).

[10] G.G. Denisov, I.V. Zotova, A.M. Malkin, et al, Boosted excitation of an ultra-high cyclotron harmonic based on frequency multiplication by a weakly relativistic beam of gyrating electrons, Phys. Rev. E 106, L023203, (2022).

[11] S.V. Samsonov, G.G. Denisov, A.A. Bogdashov, et al, Quasi-Optical Gyro-BWO With Zigzag Transmission Line As One-Octave Bandwith Sub-THz Source, 24th International Vacuum Electronics Conference (IVEC), Chengdu, China, 2023.

i Надоели баннеры? Вы всегда можете отключить рекламу.