350 CHEMICAL PROBLEMS 2024 no. 3 (22) ISSN 2221-8688
UDC 615.216
GREEN METHOD FOR THE SPECTROPHOTOMETRY DETERMINATION OF PHENYLEPHRINE AND TERBUTALINE PHARMACEUTICAL FORMULATIONS
Nagham N. Habeeb
Department of Chemistry, College of Education for Pure Science, University of Mosul, Mosul, Iraq. *Corresponding author: naghamdnbeel@uomosul.edu.iq
Received 23.03.2024 Accepted 09.05.2024
Abstract: Determination and evaluation active substances in chemical settings is extremely difficult, linked to chemical waste in water sewage, and may eventually have an influence on public health. As a result, efforts are being made globally to find other, perhaps less hazardous ways. Hereby, we aimed to determine two pharmaceutical products for the detection of phenylephrine hydrochloride and terbutaline sulphate using green chemistry. The procedure involves oxidizing phenylephrine hydrochloride and terbutaline sulphate using potassium permanganate as an oxidant and decolorizing the surplus of potassium permanganate in the reaction with Nile blue dye. The results confirmed that this method has provided easy and precise evaluation of phenylephrine hydrochloride and terbutaline sulphate at concentrations ranging from (0.4-4.5) pig /ml, with molar absorption capacity of (6.9x104) l-mol-1-cm-1 for phenylephrine hydrochloride and (1.44x 105) l-mol-1 ■cm for terbutaline sulphate. The methodologies have precisely determined the pharmaceutical dosage forms of the tested drugs, agreeing with previously tested and stated values and standard compounds.
Keywords: Phenylephrine, Nile blue dye, Potassium permanganate, Terbutaline. DOI: 10.32737/2221-8688-2024-3-350-360
1. Introduction
The science of "green analytical chemistry" employs chemical processes and strategies to minimize the usage of hazardous substances, toxic byproducts, and raw resources during the manufacturing process. It attempts to conserve the environment by developing new chemical processes that don't pollute the earth [1].
Phenylephrine hydrochloride (PPH.HCl), C9H14QNO2, [(1R)-1-(3 -hydroxyphenyl)-2-(methylamino)ethanol hydrochloride], and have the following chemical structure: C9H13NO2.HQ, M. wt (203.705) g-mol-1. PPH.HCl is used for relieving sinus congestion and pressure. It is also used to treat pharyngitis nasal, allergic conjunctivitis, and nonspecific conjunctivitis [2, 3], by directly acting on a-adrenergic receptor agonists [4]. Terbutaline sulphate (TEBS), bis [(1RS)-1-(3,5-dihydroxyphenyl)-2-[(1,1 -
dimethylethyl)amino] ethanol], sulfate [2]. TEBS, a p2-adrenergic receptor agonist, is widely used to treat pulmonary hypertrophy, asthma, and bronchobronchitis. It is an orally administered bronchodilator [5].
A variety of analytical approaches existed to determine phenylephrine hydrochloride and terbutaline sulphate, including
spectrophotometry [6-14], high-performance liquid chromatography [15-21], fluorescence [22], voltammetry [23-24], electrochemical [2527].
Oxidation of PPH.HCl by NBS in low pH environment, followed by bleaching color (e.g. methyl orange dye) with N-bromosuccinamide residue, whose intensity reciprocally proportional with PPH.HCl quantities [6]. The dualistic method based on oxidative coupling reaction of PPH.HCl with PABP catalyzed by KIO4 as an oxidant [7], with reaction of
CHEMICAL PROBLEMS 2024 no. 3 (22)
www.chemprob.org
PPH.HCl with NQS reagent in alkali milieu [8] The dualistic method based on oxidative coupling reaction PPH.HCl with DMPD.2HCl catalyzed by FeCl3 in alkaline media to form soluble green-blue coloring product [9], resulting in azo dye formation from Sodium sulfacetamide diazo reacts with sodium nitrite in the presence of chlorohydric acid to form diazonium salt, which is coupled with the PPH.HCl in alkaline medium [10]. TEBS reacts with antipyrine reagent in buffer medium catalyzed by ferric cyanide solution [11], generating TEBS and eosin binary complexes in aqueous acetate buffered medium[12]. Producing nucleophilic compensation by
interacting of TEBS with the reagent 9-chloroacridine in basic medium [13]. This method is on the oxidation of TEBS with Fe(lll)in the medium of nittic acid and resulting Fe(lll) subsequent chelation with 1,10-phenanthrolinein method and 2,2'-bipyridyl method B to create colored products [14].
The purpose of this green analytical method study is to develop a simple and accurate colourimetric assay In order to determine phenylephrine chloride terbutaline sulfate in pure and pharmaceutical products, eliminating the usage of hazardous ingredients and waste generation.
2. Experimental part
2.1. Instrumentation:
A Shimadzu (UV-1800, PC UV-visible double, spectrophotometer) was used to measure the absorbance and spectra.
2.2. Reagents and Chemicals:
The "State Company for Drug Industries and Medical Appliances" supplies terbutaline sulphate and phenylephrine hydrochloride. Every chemical used is of the standard of an analytical reagent.
PPH.HCl, and TEBS: Solutions (100)pg/mL were prepared via 0.01gram of each drug added and dissolved in (100 ml) of (D.W) in a container.
NB dye: To prepare Nile blue dye (50)pg/mL, 0.01gram was dissolved in absolute ethanol in a (200) mL container.
KMnO4: prepared using (0.016)g added to (100)ml of DW.
HCl: To prepare (1) M hydrochloric acid, (20) ml of concentrated HCl (5M) was diluted with DW in a (100) ml volumetric bottle.
2.3. Pharmaceutical preparation
Safadrop (1%): One millilitre of (1%)
safadrop diluted with (100)ml of DW to obtain (100)|g/mL of PPH.HCl pharmaceutical.
Pioneer drop (0.25%): To attain PPH.HCl at (100)|g/mL, (1)mL of 0.25% Pioneer drop mixed with (24)ml of DW.
Terbutaline sulphate (Bricanyl Inhalation powder, 120 doses, each dose containing (0.5) mg TERS, equivalent to (60) mg total was used, and the drug was diluted by DW to obtain (100) |g /ml solution.
Standard Operating Procedure: Two series of (10) mL containers were filled with aliquots of solutions containing (0.3) pg/mL of PPH, HCl, and TEBS separately. Followed by adding 0.8 mL (160) pg/mL of KMnO4 and 1 mL of (1M) HCl solution. After giving the solutions a gentle shake, they were allowed to oxidize for ten minutes at room temperature. Next, each solution received the addition of (2) mL (50) pg/mL NB dye. After adding DW to dilute the flasks to the appropriate level, were carefully mixed, and the absorbance at room temperature (638) nm was measured in comparison to the reagent blank.
3. Results and Discussion
The suggested method for determining phenolic medicines PPH, HCl, and TEBS comprises oxidizing them with KMnO4 in an acidic medium and bleaching the blue colour of
NB dye [28]. Adding KMnO4 to increasing amounts of the drug reduces oxidant concentration and increases NB dye absorbance (Figure 1).
Fig. 1. Proposed chemical reactions between the tested drugs and KMnO4.
3.1. Reaction condition optimization
Effect of Nile Blue Dye Concentration: Preliminary studies were conducted to establish the optimal concentration of NB dye using a spectrophotometer. The findings showed that (10) pg/mL of NB dye was an effective reaction agent (Figure 2A).
Effect of the type and concentration of the stabilizer: the reaction demonstrated that (0.8) mL of (160) pg/mL KMnO4 mixture was sufficient to achieve higher decolorizing of the colour of NB dye. This was suggested in further
studies (Figure 2B).
The Effect of Oxidant Reagents: it has been demonstrated that KMnO4 behaves as beneficial oxidants, alongside other oxidants tested in the present study [chloramine-T, N-bromosuccinamid, and bromate-bromide], these latter have no extra-advantage over KMnO4 (Figure 2C). The reaction confirmed that (0.8) ml of (160) pg /ml KMnO4 liquid was surplus to reach optimum decolorizing dependent NB dye, subsequently used in further steps.
Fig. 2. Optimization conditions of reactant and reaction (A) Calibration curve of NB dye (B) Calibration curves for measuring oxidant concentration in (10) pg/mL NB dye in acidic solution. (C) Testing KMnO4 compared to other types of oxidizing agents (D) Effect of acids on tested drugs
(E) Effect of HCl quantity on tested drugs
Acid Types and Concentrations: Experiments have shown that KMnO4 oxidizes NB dye and drugs in an acidic solution. To obtain high sensitivity, (3) pg/mL of each drug was tested against different acid types at concentrations of (1M) HCl was found to be the most proper acid for the reaction (Figure 2D). Furthermore, (0.5) mL of (1M) HCl was chosen as the optimal concentration for the two drugs (Figure 2E).
Time impacts on Oxidation: To test the impact of the reaction of oxidation duration on
PPH, HCl, and TEBS drugs, (0.8) mL of (160) pg/mL KMnO4 was mixed with (3) pg/mL of each drug in 0.5 mL of (1M HCl). The mixtures were concussed and leave it to stand at 25°C for various amounts of time. Next, add (2) ml of (50) pg/ml NB dye to each drug solution. The mixture was stirred and topped up to (10) mL. After five minutes of standing, the absorbance of leftover NB dye was detected at 638 nm against a blank solution. Table 1 indicates that drug oxidation takes 15 minutes and maintains a consistent absorbance for two hours.
Tablel. Oxidation
behaviour of the tested drugs versus NB dye regarding the time frame
Standing time before adding NB & Dilution (min) Absorbance/standing time after adding NBD & dilution(min)
5 10 15 20 25 30 40 50 60 120
Phenylephrine
After addition 0.540 0.536 0.532 0.530 0.527 0.526 0.524 0.521 0.520 0.515
5min 0.791 0.780 0.772 0.770 0.796 0.765 0.764 0.762 0.760 0.759
10min 0.835 0.830 0.828 0.828 0.827 0.826 0.824 0.824 0.823 0.822
15min 0.934 0.934 0.933 0.931 0.930 0.929 0.929 0.926 0.925 0.925
20min 0.906 0.909 0.906 0.904 0.903 0.901 0.909 0.908 0.907 0.906
Terbutaline
After addition 0.440 0.438 0.436 0.433 0.432 0.431 0.429 0.428 0.427 0.427
5min 0.544 0.545 0.547 0.548 0.549 0.549 0.550 0.551 0.553 0.555
10min 0.646 0.648 0.649 0.649 0.650 0.652 0.654 0.655 0.656 0.658
15min 0.683 0.685 0.688 0.690 0.692 0.693 0.695 0.697 0.697 0.699
20min 0.634 0.632 0.635 0.637 0.638 0.638 0.638 0.637 0.636 0.636
3.2. Calibration Curves
Standard calibration curves were created by graphing absorbance against concentration
for phenylephrine hydrochloride and terbutaline sulphate pharmaceuticals using NB dye under the experimental conditions stated (Figure 3).
TEBS jig/mL
Fig. 3. Calibration graphs of phenylephrine hydrochloride (A) and terbutaline sulphate (B)
The limits of "Beer's law" (BL), "molar sensitivity" (SS) [29] were assessed and listed in absorptivity" (MA) values, and "Sandell table 2, and the limits of detection (LOD) and
quantitation (LOQ) [30] were computed using the lowest amount
the subsequent formulas: LOQ = 10oClow/X and o= standard deviation of absorbance of LOD = 3oClow/X, where X=mean absorbance of minimum amount.
Table 2. Determination parameters of tested drugs (analytical and statistical)
Parameter Phenylephrine Terbutaline
Linearity range (^g/ml) 0.4 -4.5 0.5 -4.5
Slope 0.3418 0.2638
Intercept 0.1223 0.1193
R2 0.9976 0.9977
MA (l.mol-1.cm-1) 6.9x104 1.44x105
SS fag/cm2) 0.002925 0.0038
LOD* fag/ml) 0.0203 0.0263
LOQ* fag/ml) 0.0678 0.0879
*Average of six determinations of blank, R =Determination coefficient, MA=molar absorptivity values, SS=Sandell sensitivity, (LOD=limits of detection), (LOQ=limits of quantitation).
"Accuracy and Precision": By detecting the rate of the recovery and the reciprocal SD "(standard deviation)" of three distinct levels of each tested drug ingredient, the accuracy and
Analytical Applications of the method: The proposed approach was tested to determine phenylephrine hydrochloride and terbutaline sulphate in pharmaceutical dosage forms. Drug concentrations were evaluated using a direct
precision were assessed. The findings presented in Table 3, show that the proposed approach is very accurate and precise.
calibration curve (Table 4 and Table 5), and a standard addition approach (Figure 4). Both methods produced equivalent results, suggesting that the recommended approach is free of interference.
Table 4. Determination of study drugs in pharmaceutical dosage.
Commercial product Available dose Conc. used (|gml-1) Conc. detected (lg.ml-1 Recovery (%)
P îenylephrine hyc rochloride
Nazafrin Nasal drops (Safa Co, Diala, Iraq) 1% 1 0.978 97.80
2 1.937 96.85
3 3.14 103.66
3.5 3.51 102.31
Nasofen Nasal drops (Pioneer Co, Sulaimani, Iraq) 0.25% 1 0.980 98
2 1.987 99.35
Table 3. Determination parameters of tested drugs (accuracy and precision)
Durg Conc. of drug(^g/ml) Recovery* (%) Mean Recovery (%) RSD (%)
Conc. used Conc. detected
Phenylephrine 1 0.9546 95.46 98.57 1.99
2 1.952 97.60 1.154
3 3.08 102.66 0.983
Terbutaline 1 0.9715 97.15 98.61 2.35
2 1.949 97.45 1.07
3 3.037 101.23 0.989
* Average of three determinations.
3 3.102 103.4
3.5 3.564 101.82
Terbutaline su phate
Bricanyl Turbohaler Inhalation Powder (AstraZeneca, Switzerland) 1 0.967 96.70
0.5mg/dose 2 1.972 98.61
120 dose 3 3.01 100.3
3.5 3.393 96.96
1.2
•
c a 0.8
•C
L. 2 (1.6
< 0.4
0.2
Al
> - 0.277U + 0.2é»5 K> « 0.9969
1.2
1 • lu a M * £! <0.4 ' A2 • y ■ ■ ■ a V - u.:ui ♦ 0 JS72 K* = D.W7
0.2 1
-10 11 Cone, (ig/ml
1 2 S
Cone. Mg/ml
0.9 '
g 0.7 • SOJi < fo.5 wr y x Jr
<OJ «1 y = 0.2002» + (M9T5
B R' - 0.99SJ
-2 0 2 4
Cone, ng/ml
Fig. 4. Determination of phenylephrine hydrochloride (A1, A2) and terbutaline sulphate(B) using
standard addition technique.
Table 5. Detection of the studied drugs in the commercial products using present versus standard
methods.
Available dose Drug content found (mg)
Commercial product Recovery (%) Present method Standard addition
Phenylephrine hydrochloride
Nazafrin Nasal drops (Safa Co, Diala, Iraq) 1% 97.04 0.9780 0.9704
Nasofen Nasal drops
(Pioneer Co, Sulaimani, 0.25% 97.42 0.9809 0.9742
Iraq)
Terbutaline sulphate
Bricanyl Turbohaler Inhalation Powder (Astra Zeneca, 0.5mg/dose 120 dose 98.65 0.9677 0.9865
Switzerland)
3.3. Comparison of the proposed method with reported methods
The suggested reaction showed positive outcome compared to other available
spectrophotometry methods (Table 6), being easier, no buffer or surfactant or heating steps, with the color stays put for over an hour. Using magnesium permanganate as an oxidizing agent
provide ecofriendly method for Table 6). spectrophotometry evaluation (Figure 5 and
Table 6. Comparison of the suggested versus available spectrophotometry methods.
Present
Analytical parameter method using NB dye Literature method
s PPH.H Cl TEBS PPH.H Cl [6] PPH.HCl [7] PPH.H Cl [8] TEBS [11] TEBS [12] TEBS [13]
^max (nm) 638 638 518 512 484 550 545 589
Beer's
law 0.4-4.5 0.5-4.5 0.1-1.25 2-20 0-20 4-20 0.5-10 0.1-6
fog/ml)
Molar
absorptivi ty (L.mol- 6.9x104 1.44x10 5 107050 0.552x104 45214074 1.1905x 104 3.169x 103 1.0754105
'.cm"1)
Medium of method Acidic Acidic Acidic - Basic Acidic Acetate buffer Basic
Reagent NB dye NB dye Methyl orange p- aminobenzophe NQS Amino antipyrin EosinY 9- Chloroacrid
none e ine
Oxidati Oxidati Oxidati Oxidatio neucleophil ic substitution
Type of reaction on-reductio on-reductio on-reductio Oxidative coupling Sheffs base n- reductio Ion-pair
n n n n
RSD% 0.9831.99 0.9892.35 - 0.0212-0.0715 <3.321 1 0.937 <0.72 1.57
Sandell's sensitivity (S) ^/cm2 0.00292 5 0.0038 - 0.0368 0.0451 0.03688 44 - -
Correlatio
n Coefficie 0.9976 0.9977 0.9999 0.9986 0.9952 0.9993 0.9984 0.9994
nt R2
Limit of
detection LOD 0.0203 0.0263 - 0.0094 3.2260 0.0811 0.030 0.0983
(mg/l)
Limit of
quantifcat ion LOQ (mg/l) 0.0678 0.0879 - 0.0313 9.7758 0.2460 0.103 0.2978
Inhalati Nasal drops-tablets
Applicati on Nasal drops on Powder Nasal drops Drops -injection tablets tablets tablets
4. Conclusion
The present study has provided a new platform for the discovery of an easy, precise, and sensitive spectrophotometry technique for the evaluation and determination of phenylephrine hydrochloride and terbutaline sulphate in pharmaceutical products harnessing potassium permanganate as oxidant agents of
the two commercial drugs. The surplus of potassium permanganate was then quantified by reacting with Nile blue dye in a bleaching reaction, this method provide a good determination step of phenylephrine hydrochloride and terbutaline sulfate in pharmaceutical products.
References
1. Linthorst J.A. An overview: origins and development of green chemistry // Foundations of chemistry, 2010, V.12, p. 55-68.
2. Great Britain. Medicines Commission, General Medical Council (Great Britain). British pharmacopoeia. General Medical Council; 1864.
3. Goodman L.S. Goodman and Gilman's the pharmacological basis of therapeutics, New York: McGraw-Hill, 1996.
4. Gaglia Jr C.A. Phenylephrine hydrochloride. InAnalytical profiles of drug substances // Academic Press, 1974, V. 3, p. 483-512.
5. Singhal P., Jadoun G.S., Sinha M., Saraf S.A. Formulation and evaluation of buccal patches of terbutaline sulphate // Int J Res Pharm Sci., 2010, V. 4, p. 440-9.
6. Zakaria S.A. Simple spectrophotometric method for determination of phenylephrine hydrochloride in pure and pharmaceutical forms // Iraqi Natl J Chem. 2021, V. 21(1).
7. Ahmed H.H., Mohammed S.A. Spectrophotometric Estimation of Phenylephrine Hydrochloride via Oxidative
Coupling Reaction with p-Aminobenzophenone // Biomedicine and Chemical Sciences, 2023, V. 2(2), p. 83-9.
8. Ibrahim H.A., Hasan M.A., Abdullah H.M., Khalaf M.Y. Spectrophotometric determination of clotrimazole and Phenylephrine-HCl in pharmaceutical formulation using 1, 2-naphthoquinone-4-Sulphonic acid sodium salt (NQS) as a chromogenic reagent // Journal of the Indian Chemical Society, 2022, V. 99(3), 100373.
9. Ahmed A.M., Anwar S.M., Hattab AH. Spectrophotometric determination of phenylephrine hydrochloride in pharmaceutical preparations by oxidative coupling reaction // Int. J. Drug Delivery Technol. 2020, V. 10, p. 323-7.
10. Al-Uzri W.A. Determination of phenylephrine hydrochloride in pharmaceutical preparations using spectrophotometric method // Asian J. Pharm. and Clinical Rese, 2019, V. 12(5), p. 1-5.
11. Smith A.A., Manavalan R., Sridhar K. Spectrophotometric estimation of terbutaline
sulphate in pharmaceutical dosage forms // Int Res J Pharm, 2010, No.1, p. 213-9.
12. Dhamra M.Y., Theia'a N., Al-Ghabsha T.S. Spectrophotometric determination of Terbutaline Sulphate and tetracycline hydrochloride via ion pair complex formation using Eosin Y // Pakistan Journal of Analytical & Environmental Chemistry, 2014, V. 15(1), 9.
13. Jabar F.M., Al-Sabha T.A., Ismael S.O. Spectrophotometric Determination of Salbutamol and Terbutaline using 9-Chloroacridine Reagent // Egyptian Journal of Chemistry, 2022, V. 65(2), p. 61-70.
14. Al-Hammoodi I.A., Al-Enizz M.S., Saeed A.M. Spectorphotometric Methods for Determination of Terbutaline Sulphate in Pure and Pharamaceutical Formulation, Journal of Medicinal and Chemical Sciences, 2023, V. 6, p. 1032-1043.
15. Ragab M.A., Abdel-Hay M.H., Ahmed H.M., Mohyeldin S.M. Determination of ibuprofen and phenylephrine in tablets by high-performance thin layer chromatography and in plasma by highperformance liquid chromatography with diode array detection // Journal of Chromatographic Science, 2019, V. 57(7), p. 592-9.
16. Barabde G., Pataskar P., Gaikar T., Bagul V., Patil T. Development and Validation of Fast, Simple RP-HPLC Method for Simultaneous Estimation of Brompheniramine, Dextromethorphan HBr and Phenylphrine HCl in Pharmaceutical Dosage Form // JAC, 2022, V. 15(8), p. 10919.
17. Kumari A.S., Padmaja V., Swapna G., Prasanthi M. HPLC Quantitative Resolution of Acetaminophen, Dextromethorphan Hydrobromide, and Phenylephrine Hydrochloride in Powder Dosage Form by Chemometric Analysis Method // In Global J. Pharm. Sci., 2020, V. 10(1), p. 73-78.
18. Hashem H.A., Elmasry M.S., Hassan W.E., Tründelberg C., Jira T. Spectrophotometric and Stability-Indicating High-Performance Liquid Chromatographic Determinations of Terbutaline Sulfate // Journal of AOAC International, 2012, V. 95(5), p. 1412-7.
19. Kumar A., Nanda S. A validated high performance liquid chromatographic method for estimation of bromhexine and terbutaline in bulk and tablet dosage forms // Pharmaceutical methods, 2011, V. 2(4), p. 218-22.
20. Kim K.H., Kim H.J., Kim J.H., Shin S.D. Determination of terbutaline enantiomers in human urine by coupled achiral-chiral highperformance liquid chromatography with fluorescence detection // Journal of Chromatography B: Biomedical Sciences and Applications, 2001, V. 751(1), p. 69-77.
21. Doerge D.R., Bajic S., Blankenship L.R., Preece S.W., Churchwell M.I. Determination of P-agonist residues in human plasma using liquid chromatography/atmospheric pressure chemical ionization mass spectrometry and tandem mass spectrometry // Journal of Mass Spectrometry, 1995, V. 30(6), p. 9116.
22. Salem Y.A., Hammouda M.E., El-Enin M.A., El-Ashry S.M. Application of derivative emission fluorescence spectroscopy for determination of ibuprofen and phenylephrine simultaneously in tablets and biological fluids // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, V. 210, p. 387-97.
23. Yagmur S., Ture M., Saglikoglu G., Sadikoglu M., Yilmaz S.E. The quantitative detection of phenylephrine in pharmaceutical preparations and spiked human urine by voltammetry // Russian Journal of Electrochemistry, 2018, V. 54, p. 741-6.
24. Yilmaz N., Ozkan S.A., Uslu B., §enturk Z., Biryol I. Determination of terbutaline based on oxidation by voltammetry // Journal of pharmaceutical and biomedical analysis, 1998, V. 17(2), p. 349-55.
25. Habibi B., Ayazi Z., Zalvand F. Electrochemical Behavior and Determination of Phenylephrine at the Multi-Walled Carbon Nanotubes/ionic Liquid Nanocomposite Modified Electrode in the Presence of Acetaminophen // International Journal of Nanoscience and Nanotechnology, 2017, V. 13(3), p. 203-18.
26. Buleandrä M., Pätrascu A.A., Popa D.E., David I.G., Badea I.A., Ciucu A.A. Facile Electrochemical Sensor for Sensitive and Selective Determination of Guaifenesin, Phenylephrine and Paracetamol on Electrochemically Pretreated Pencil Graphite Electrode // Micromachines, 2022, V. 13(8), 1213.
27. Murugan E., Poongan A., Dhamodharan A. Electrochemical sensing of acetaminophen, phenylephrine hydrochloride and cytosine in drugs and blood serum samples using ß-AgVO3/ZrO2@ g-C3N4 composite coated GC electrode // Journal of Molecular Liquids, 2022, V. 348, 118447.
28. Saeed A., Salih E.S. Spectrophotometric
Determination of Mesalazine,
Carbamazepine and Diclofenac Sodium in Pharmaceutical Preparations by Using Nile Blue Dye // Journal of Education and Science, 2019, V. 28(4), p. 48-69.
29. Al Abdali Z.Z., Habeeb N.N., Salih E.S. Spectrophotometric Determination of Salbutamol Sulphate and Isoxsuprine Hydrochloride in Pharmaceutical Formulations // Baghdad Science Journal, 2023, V. 20(2), 0262.
30. Little T. Method validation essentials, limit of blank, limit of detection, and limit of quantitation // BioPharm International, 2015, V. 28(4).
fenílefírín уэ terbutalínín farmaseftík formalarinin
SPEKTROFOTOMETRÍK TЭYiNi ÛÇÛN YAÇIL ÜSUL Nagam N. Habib
Kimya Departamenti, , Mosul Universiteti, Mosul, iraq. e-mail: naghamdnbeel@uomosul.edu.iq
Xülasa: Kimyavi aktiv maddalarin su hövzalarinda mûayyan edilmasi va qiymatlandirilmasi çox çatin masaladir, cünki bu proses çirkab sulara atilan kimyavi tullantilarla alaqadardir va naticada ahalinin saglamligina tasir göstara bilar. Bu sababdan da potensial olaraq baçqa, daha az tahlükali alternativ metodlarin axtariçi ûçûn dünya miqyasinda saylar göstarilir. í§in maqsadi fenilefirin hidroxlorid va terbutalin sulfatin açkarlanmasi ûçûn yaçil kimyadan istifada etmakla iki aczaçiliq mahsulunun mûayyan edilmasi olmuçdur. Bu prosedurda oksidlaçdirici kimi kalium permanqanatdan istifada etmakla, fenilefirin hidroxlorid va terbutalin sulfat oksidlaçdirilir, kalium permanqanatin artigi isa Nil mavisi boyasi ila reaksiya naticasinda rangsizlaçdirilir. Naticalar göstarir ki, bu metod fenilefirin hidroxlorid va terbutalin sulfatin (0.4-4.5) pg/ml qatiliq intervalinda asan va daqiq qiymatlandirilmasini tamin etmiçdir (fenilefirin hidroxloridin molyar absorbsiyasi (6.9x104) l-mol-1 •cm- , terbutalin sulfat ûçûn isa (1,44x105) l-mol-1 •cm- ). Sinaqdan keçirilmiç darmanlarin farmasevtik formalari bu metod ila daqiq mûayyan edilmiçdir. Alinmiç naticalar avvallar sinaqdan keçirilmiç standart birlaçmalar va standart kimi qabul olunmuç qiymatlarla uygunluq taçkil edir.
Açar sözlar: Fenilefirin, Nil mavisi boyasi, Kalium permanqanat, Terbutalin.
ЗЕЛЕНЫЙ МЕТОД СПЕКТРОФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ФАРМАЦЕВТИЧЕСКИХ ФОРМ ФЕНИЛЭФРИНА И ТЕРБУТАЛИНА
Нагам Н. Хабиб
Кафедра химии, Мосульский университет, Мосул, Ирак. e-mail: naghamdnbeel@uomosul.edu.iq
Резюме: Определение и оценка активных веществ в химических средах чрезвычайно сложны, поскольку они связаны с химическими отходами в сточных водах и в конечном итоге могут оказать влияние на здоровье населения. По этой причине, по всему миру предпринимаются усилия по поиску других альтернативных, возможно, менее опасных путей. В данной работе мы стремились определить два фармацевтических продукта для обнаружения гидрохлорида фенилэфрина и сульфата тербуталина с использованием зеленой химии. Процедура включает окисление гидрохлорида фенилэфрина и сульфата тербуталина с использованием перманганата калия в качестве окислителя и обесцвечивание избытка перманганата калия в реакции с красителем Нильским-синим. Результаты подтвердили, что этот метод обеспечивает легкую и точную оценку гидрохлорида фенилэфрина и сульфата тербуталина в концентрациях в диапазоне (0.4-4.5) мкг/мл, с молярной абсорбционной способностью (6.9x10 ) л-моль- -см- для гидрохлорида фенилэфрина и (1.44* 105) л-моль -см 1 для сульфата тербуталина. Методиками точно были определены фармацевтические лекарственные формы испытуемых препаратов, согласующиеся с ранее протестированными и заявленными значениями и стандартными соединениями.
Ключевые слова: фенилэфрин, краситель нильский синий, перманганат калия, тербуталин.