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1. Introduction

The main purpose of GLONASS navigation equipment (receiver) is to receive and process 
navigation satellite’s (NS) signals in order to define consumer̀ s spatiotemporal data, his velocity 
vector, attitude reference, etc.

The most common method of solving satellite navigation problem is a pseudorange method. It is 
based on pseudorange measurement up to NS with the given position and subsequent calculation of its 
spatiotemporal coordinates. Pseudorange is a range measured with the use of non-inquiry method, i.e. 
the sum of propagation time and difference of a signal source and a receiver timescales. 

The total positional error using pseudorange method is defined by the:
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1. Introduction 

The main purpose of GLONASS navigation equipment (receiver) is to receive and 

process navigation satellite’s (NS) signals in order to define consumer`s spatiotemporal data, his 

velocity vector, attitude reference, etc. 

The most common method of solving satellite navigation problem is a pseudorange 

method. It is based on pseudorange measurement up to NS with the given position and 

subsequent calculation of its spatiotemporal coordinates. Pseudorange is a range measured with 

the use of non-inquiry method, i.e. the sum of propagation time and difference of a signal source 

and a receiver timescales.  

The total positional error using pseudorange method is defined by the: 

POS R PDOPΔ = Δ ⋅ , 	

ΔR is the pseudorange measurement error, PDOP (Position Dilution of Precision) is the attitude 
geometric factor.

Pseudorange measurement error in its turn includes several essential components and might be 
described like the following [2]:

RΔ  is the pseudorange measurement error, PDOP (Position Dilution of Precision) is the attitude 

geometric factor. 

Pseudorange measurement error in its turn includes several essential components and 

might be described like the following [2]: 

eph atm rel M REC RR εΔ = Δ + Δ + Δ + Δ + Δ + , 

ephΔ  is the contribution to pseudorange measurement error due to ephemeris error, i.e. signal-in-

space range error (SISRE), atmΔ  is the contribution due to navigation signal delay in the 

atmosphere, relΔ  are the contribution due to relativistic and gravitational effects (RGE), MΔ  is the 

supply due to NS multiple propagation, RECΔ  is the contribution due to instrumental pseudorange 

measurement error, Rε  are the other error components. 

Table 1 contains all the above described components. The residual values of each errors 

are given in accordance with [3]. 

Table 1. Components of pseudorange measurement error of GLONASS receivers  

Source of error Residual error Comment 

SISRE 0.7 by 2018 

Atmosphere 0.4 Dual-frequency measurements, 

application of models [1], [2], [3]  

RGE 0.1 Application of models [3] 

Multiple propagation 0.5 Antenna structure, processing 

algorithm [1], [2], [3] 

Instrumental error >2  

 

One can see from Table 1 that considering GLONASS system development prospects 

receiver’s instrumental error makes the most significant contribution to the total pseudorange 

measurement error. 

2. Problem definition 

In order to reach potential precision of location (time) definition that a consumer is able 

to get by receiving GLONASS signals one must provide crucially small value of instrumental 

receiver’s pseudorange measurement error comparing with the SISRE (minimum 3 times 

smaller). Thus, the requirements for instrumental receiver’s pseudorange measurement are 

possible to describe with the value of 0.2 m (requirements for the system of the year 2018). 

The main reason of instrumental receiver’s measurement error is a navigation signal 

delay in receiver’s path. Receiver’s radio-frequency path includes frequency-dependent elements 

	

Δeph is the contribution to pseudorange measurement error due to ephemeris error, i.e. signal-in-space 
range error (SISRE), Δatm is the contribution due to navigation signal delay in the atmosphere, Δrel are 
the contribution due to relativistic and gravitational effects (RGE), ΔM is the supply due to NS multiple 
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requirements for instrumental receiver’s pseudorange measurement are possible to describe with the 
value of 0.2 m (requirements for the system of the year 2018).

The main reason of instrumental receiver’s measurement error is a navigation signal delay in 
receiver’s path. Receiver’s radio-frequency path includes frequency-dependent elements the navigation 
signal propagation delay of which depends on the signal spectral characteristics. GLONASS system 
applies signals frequency division in several frequency band that is why the delay of all received signals 
will be different. This fact explains the presence of instrumental receiver’s pseudorange measurement 
error. The values of this error might reach some meters values for different letters within the one 
frequency range and exceed 10 meters for signals from different frequency ranges. Due to its nature, 
instrumental receiver’s measurement error has a systematic character that means it might be defined 
according to calibration results and used in measurements. Calibration here and elsewhere means a 
procedure of systematic component of instrumental pseudorange measurement error (bias) definition.

One must provide a residual receiver’s error not bigger than 0.2 m. Consequently combined 
standard receiver calibration uncertainty must not exceed 0.1 m (with a sweep ratio equal to 2). 

3. Theory

As it was said above the measured pseudorange has a systematic error  the value of which 
depends on operational frequency of navigation signal and is caused by group delay (GD) dependence 
in receiver’s radiofrequency path. Radiofrequency path might be divided in two basic components: 
antenna feeder device (AFD) with a cable and receiving-measuring device path. It is evident that 
each component contributes to the total systematic pseudorange measurement error. Thus receiver 
calibration in the part of systematic component of instrumental pseudorange measurement error (bias) 
means the calibration of separate components.

AFD calibration comes down to GD measurement in antenna path as well for different operational 
frequencies values, different elevation and azimuth. The measurements are effected with the help of 
specially developed equipment set for AFD parameters measurement. The set includes a standard unit 
of group delay in receiver’s antenna within the frequency range from 1.1 GHz up to 1.7 GHz, that is 
traced to the primary special standard length unit National Standard 199-2018 and to primary standard 
of wave resistance in coaxial waveguide NS 75-2011.

The calibration method of receiving-measuring device is based on seminatural modeling of 
navigation signal with the use of GNSS signals simulators which serve as standard navigational signal 
source. The measuring diagram is presented at Fig. 1.

As one can see from the diagram the simulator and the receiver uses the same reference frequency 
and their timescales are synchronized. That means that the simulator timescale (TS) simultaneously is 
both a TS of a system and a TS of a consumer. This fact allows eliminating pseudorange component 
caused by the difference of these timescales. 

One set up formation of navigation circumstances on the simulator with the following 
parameters:

•	 traffic model – solid point;
•	 shaping signals – all that can be received by receiver’s-measuring device;
•	 atmospheric effects shaping – off;
•	 formation of ephemeris-temporal supply – off.
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Considering the above mentioned circumstances the model of shaping pseudorange for every time 
moment is represented in the following way:
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	 (1)

where: i is the stands for the combination of a certain NS and signal types (for instance, standard 
precision signal within the frequency range L1 NS №1 of GLONASS system), j is the epoch number 
on which the measurement has been received, RIM,i ( j) is the shaping pseudorange, ρi ( j) is the shaping 
geometric range, bIM,i is the systematic component of instrumental pseudorange measurement error 
by GNSS signals simulator expressed in meters, εIM are the random components of pseudorange 
measurement error, normally distributed random process.

Pseudorange measured with the receiving-measuring device in its turn is described like 
this:
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, 	 (2)

where Rrec,i ( j) is the pseudorange measured with the receiving-measuring device, brec,i is the systematic 
component of instrumental pseudorange measurement error measured with the receiving-measuring 
device expressed in meters, εrec is the random component of pseudorange measurement error, normally 
distributed random process.

These measurements are effected within the period of not less than 24 hours in order to provide 
measurements of all NS. The measurements must be performed within 8 days in order to estimate 
stability brec,i for the reason that during this period GNSS GLONASS satellite constellation will be 
entirely repeated [1].

The difference between pseudorange of the receiving device and standard data from the 
simulator in accordance with equations (1), (2) are described in the following way:

These measurements are effected within the period of not less than 24 hours in order to 

provide measurements of all NS. The measurements must be performed within 8 days in order to 

estimate stability ,rec ib  for the reason that during this period GNSS GLONASS satellite 

constellation will be entirely repeated [1]. 

The difference between pseudorange of the receiving device and standard data from the 

simulator in accordance with equations (1), (2) are described in the following way: 

( ) ( ), , , ,rec i IM i IM i rec iR j R j b b ε− = − − − , 

where ε  is the total random simulator pseudorange error and receiving-measuring device, 

normally distributed random process. 

Measurement noise � is eliminated with the help of statistic processing [4]. Therefore the 

value of ,rec ib  can be find according to the formula: 

( ) ( )( ), , , ,
1

N

rec i IM i rec i IM i
j

b b R j R j
=

= − − −∑ . 

As indicated earlier, systematic instrumental CNE error is caused by the total navigation 

signal propagation delay in the path of the antenna-feeder device and the receiving-measuring 

device. Thus systematic instrumental CNE error is defined with the following equation: 

( ) ( )( )A, , , ,
1

N

i i IM i rec i IM i
j

b b c b R j R j
=

= ⋅ − − −∑ ,  (3) 

Where: c  is the light speed, A,ib  is the i-navigation signal propagation delay in AFD path 

multiplied by light, ,IM ib  is the systematic instrumental error of pseudorange formation by GNSS 

signals simulator [5]. 

Table 2 contains the calculated budget of calibration uncertainty in compliance with 

Formula (3) [6]. 

Table 2. Receiver calibration uncertainty budget  

Source of uncertainty Absolute value, m Comments 

AFD calibration uncertainty  0.045 Standard measurements uncertainty of 

equipment set for AFD parameters 

measuring. Symbol �B��� 

Systematic pseudorange 
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0.03 GNSS signals simulator uncertainty 
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As indicated earlier, systematic instrumental CNE error is caused by the total navigation signal 
propagation delay in the path of the antenna-feeder device and the receiving-measuring device. Thus 
systematic instrumental CNE error is defined with the following equation:

These measurements are effected within the period of not less than 24 hours in order to 

provide measurements of all NS. The measurements must be performed within 8 days in order to 

estimate stability ,rec ib  for the reason that during this period GNSS GLONASS satellite 

constellation will be entirely repeated [1]. 

The difference between pseudorange of the receiving device and standard data from the 

simulator in accordance with equations (1), (2) are described in the following way: 

( ) ( ), , , ,rec i IM i IM i rec iR j R j b b ε− = − − − , 

where ε  is the total random simulator pseudorange error and receiving-measuring device, 

normally distributed random process. 

Measurement noise � is eliminated with the help of statistic processing [4]. Therefore the 

value of ,rec ib  can be find according to the formula: 

( ) ( )( ), , , ,
1

N

rec i IM i rec i IM i
j

b b R j R j
=

= − − −∑ . 

As indicated earlier, systematic instrumental CNE error is caused by the total navigation 

signal propagation delay in the path of the antenna-feeder device and the receiving-measuring 

device. Thus systematic instrumental CNE error is defined with the following equation: 

( ) ( )( )A, , , ,
1

N

i i IM i rec i IM i
j

b b c b R j R j
=

= ⋅ − − −∑ ,  (3) 

Where: c  is the light speed, A,ib  is the i-navigation signal propagation delay in AFD path 

multiplied by light, ,IM ib  is the systematic instrumental error of pseudorange formation by GNSS 

signals simulator [5]. 

Table 2 contains the calculated budget of calibration uncertainty in compliance with 

Formula (3) [6]. 

Table 2. Receiver calibration uncertainty budget  

Source of uncertainty Absolute value, m Comments 

AFD calibration uncertainty  0.045 Standard measurements uncertainty of 

equipment set for AFD parameters 

measuring. Symbol �B��� 

Systematic pseudorange 

formation uncertainty by 

signals simulator  

0.03 GNSS signals simulator uncertainty 

Symbol �B���� 

	 (3)

Where: c is the light speed, RA,i is the i-navigation signal propagation delay in AFD path multiplied by 
light, bIM,i is the systematic instrumental error of pseudorange formation by GNSS signals simulator [5].

Table 2 contains the calculated budget of calibration uncertainty in compliance with Formula (3) [6].
The final calibration uncertainty is calculated using the following formula (4) [6].
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The final GLONASS receiver calibration uncertainty in the pseudorange bias does not exceed 
0.06 m. 

4. Experiments results

The influence of calibration amendments to systematic component of instrumental receiver’s 
pseudorange measurement error on the error of navigation problem solution is shown in Fig. 2, 3. 
The figures describe the errors of coordinates definition in the plane in the statistic mode on geodesic 
site with given coordinates. The solution of satellite navigation problem was obtained using the least 
square method in dual-frequency mode within the period of 24 hours with 30 sec interval according 
GLONASS signals with open access applying ephemeris-temporal information. Fig. 2 explains the 
result of navigation task solution without calibration amendments, Fig. 3 – with them. The center is a 
true receiver’s position.

Standard error of estimate of coordinates definition error in the plane decreased from 3.6 m to 
2.2 m, i.e. by more than 30% 

5. Conclusion

The article represents the developed method of calibration GLONASS receivers in the 
pseudorange bias with traceability up to primary standard values of Russian Federation. Calculation 
method uncertainty does not exceed 0.06 m in case of direct calibration. Consideration of calibration 

Table 2. Receiver calibration uncertainty budget 

Source of uncertainty Absolute value, m Comments

AFD calibration uncertainty 0.045
Standard measurements uncertainty 
of equipment set for AFD parameters 
measuring. Symbol uB(A)

Systematic pseudorange formation 
uncertainty by signals simulator 0.03 GNSS signals simulator uncertainty Symbol 

uB(IM)
Other errors 0.02 Standard uncertainty of А-type. Symbol uA

In total <0,06
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Fig. 2. Coordinates definition error in the plane with-
out calibration amendments in meters
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amendments to GLONASS receiver’s pseudorange measurement provides the increasing precision of 
location definition by more than 30%.
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