Секция « Техническая эксплуатация электросистем и авионика »
многорежимного приемника (MMR). С его помощью пилот в полете выбирает систему посадки конкретного аэропорта и выполняет заход на посадку и посадку, например, по процедуре системы ILS, или какой-то другой. На последних сериях самолетов фирм Boeing и Airbus устанавливаются MMR, кроме того для замены старого оборудования самолетов предшествующих серий используются цифровые и аналоговые блоки. Фирма Rockwell получила заказов от авиакомпаний на 3000 приемников MMR. в том числе от авиакомпаний British Airways, United Airlines и Continental Airlines.
Таким образом, дальномерный метод, используемый в спутниковых навигационных системах совместно с контрольно-корректирующими станциями (ККС), в системах WAAS и SCAT-1 обеспечивает I категорию метеоминимума с погрешностью наведения 7 м. Дифференциальный метод позволяет в значительной мере сократить тропосферную и, главное, ионосферную погрешность. К сожалению, в высокоширотных регионах состояние ионосферы существенно отличается от средних широт и остаточная составляющая ионосферной погрешности оказывается более значительной.
Аппаратурный состав систем посадки.
В состав наземной Аппаратуры WAAS входит оборудование, которое содержит аппаратуру потребителя GPS и аппаратуру связи, которая обеспечивает формирование и передачу потребителям посредством геостационарных спутников широкозонных дифференциальных поправок и информации о целостности используемых навигационных спутников GPS.
Бортовая Аппаратура WAAS обеспечивает прием и обработку навигационных поправок для формирования точной посадочной информации по первой категории метеоминимума стандарта ИКАО.
Система LAAS является наземной системой наведения для местного региона. Аппаратура контрольно-корректирующей станции непрерывно передает на борт ВС дифференциальные поправки DGPS. На бору ВС производится уточнение его координат в режиме посадки. В состав системы LAAS входит точная GPS аппаратура потребителя, бортовая и наземная аппаратура связи и аппаратно-программные средства.
Как было отмечено, некоторые авиационные фирмы создали многорежимного приемника (MMR), который может использоваться в четырех режимах посадки.
Библиографические ссылки
1. URL: http://www.gps.gov/systems/gps/index.php.
2. URL: http://www.glonass-ianc.rsa.ru/pls/htmldb/ f?p=201:20:741675961550334::NÜ.
3. URL: http://www.chinagi.com.cn/yw/gsjjxx.asp.
4. URL: http://www.livemint.com/2007/09/05002237 /India-to-build-a-constellation.html.
5. URL: http://www.esa.int/esaNA/galileo.html.
6. URL: http://www.faa.gov/about/office_org/head-quarters_offices/ato/service_units/techops/nav ser-vices/gnss/library/factsheets/media/GBAS_QFactsht_081 610.pdf.
© Карлов Н. В., 2012
УДК 669.713.7
М. В. Ковель Научный руководитель - М. В. Тюпкин Сибирский государственный аэрокосмический университет имени академика М. Ф. Решетнева, Красноярск
ГИРОСКОПИЧЕСКИЕ ДАТЧИКИ, ИХ ПОГРЕШНОСТИ И МАТЕМАТИЧЕСКАЯ МОДЕЛЬ
В настоящее время важнейшими составляющими курсовой системы летательных аппаратов являются гироскопические приборы. Поэтому очень важно знать их математическую модель и погрешности.
Гироскопом называют вращающееся вокруг оси симметрии с большой угловой скоростью тело вращения (ротор), одна из точек которого неподвижна. Ось ъ симметрии ротора 1 (рис. 1) называют осью фигуры или осью ротора гироскопа.
В большинстве гироскопических приборов для обеспечения свободы вращения ротора гироскопа вокруг неподвижной точки применяют карданов подвес, который состоит из двух рамок 2 и 3. Ротор 1 гироскопа с большой угловой скоростью Wy вращается вокруг оси у1 относительно внутренней рамки 2, которая может поворачиваться вокруг оси ъ относительно рамки 3, а последняя - вокруг оси х относительно неподвижной подставки 4.
Карданов подвес обеспечивает ротору гироскопа свободу вращения относительно трех осей (х, у1 и ъ).
Поэтому гироскоп, установленный в кардановом подвесе, называют гироскопом с тремя степенями свободы. Если центр масс гироскопа совпадает с точкой пресечения осей карданова подвеса, то такой гироскоп называется астатическим.
Для рассмотрения математической модели гироскопа обратимся к рис.2. Положение ротора относительно подставки (оси хЬъ) определяется тремя углами а, Ь и g, которые получаются при последовательных поворотах гироскопа и отклонении его собственных осей х, у и ъ от осей неподвижного основания.
Согласно рисунку Н - кинетический момент гироскопа; 1х и 1у - моменты инерции ротора гироскопа относительно осей х и у.
Уравнения движения гироскопа согласно принципу Д'Аламбера имеют вид
Актуальные проблемы авиации и космонавтики. Технические науки
Уравнения (1) можно переписать так:
(1)
где мж и Му - внешние моменты, действующие вокруг осей х и у (моменты от сил сопротивления трения в осях карданова подвеса, момент от силы тяжести, моменты, накладываемые на гироскоп специальными коррекционными устройствами и т. д.).
Рис. 1. Гироскоп в кардановом подвесе: 1 - ротор гироскопа; 2 - внутренняя рамка гироскопа; 3 - наружная рамка гироскопа; 4 - подставка; Шу - собственная угловая скорость вращения ротора гироскопа; ^тх - вектор переносной угловой скорости
Рис. 2. Маховик с тремя степенями свободы - гироскоп
(2)
Т ^Р-Н* I А*а I Н^
где "¿2 полное инерцион-
ное сопротивление, развиваемое гироскопом при действии на него внешних моментов мж и М7-
В теоретической механике при изучении законов движения гироскопа различают свободное и вынужденное движение гироскопа; свободное движение гироскопа, называемое нутацией, представляет собой движение по инерции, когда моменты внешних сил не действуют на гироскоп. Движение гироскопа, нагруженного моментом внешних сил, представляет собой совокупность вынужденного и свободного движения. Вынужденное движение гироскопа называется прецессией.
Закон нутационного движения можно получить, приняв в уравнениях (2) М,= Му= 0.
Тогда
(3)
Решая систему уравнений (3) получаем дифференциальные уравнения, описывающие нутационное движение гироскопа.
(4)
Закон прецессии гироскопа можно получить из уравнений (2), если пренебречь инерционными мо-
ментами
«гр
Ш И
Лга
по сравнению с гироскопи-
(Ш ¿а
II™ Н—
ческими моментами Ли . Тогда имеем
(5)
Наиболее важными бортовыми гироскопическими приборами являются авиагоризонты, указатели поворота, гирополукомпасы, а также выключатели коррекции.
© Ковель М. В., 2012