С.А. МАРТЫНОВ, к.м.н., М.С. БИРАГОВА, М.Ш. ШАМХАЛОВА, д.м.н., М.В. ШЕСТАКОВА, д.м.н., профессор, ФГБУ «Эндокринологический научный центр» Минздрава России
ГИПЕРФОСФАТЕМИЯ
ПРИ ХРОНИЧЕСКОЙ БОЛЕЗНИ ПОЧЕК
Почки играют ведущую роль в регуляции и поддержании физиологического уровня фосфора в организме. В норме уровень фосфора в сыворотке крови составляет от 0,81 до 1,45 ммоль/л [1].
Ключевые слова: болезни почек, гиперфосфатемический синдром, севеламера гидрохлорид
Наибольший объем потребляемого с пищей фосфора экскретируется почками (800-900 мг из 1 200-1 500 мг), остальная часть с фекалиями (400-600 мг). В почках, в эпителии проксимальных канальцев, происходит реаб-сорбция фильтруемого фосфора при помощи натрий-зависимых переносчиков - IIa, IIc и PIT2. Ведущими гормонами, регулирующими гомеостаз фосфора в организме, являются паратиреоидный гормон (ПТГ), вырабатываемый паращито-видными железами и фактор роста фибробластов 23 (ФРФ-23), продуцируемый остеобластами (ростковые клетки костной ткани, предшественники остеоцитов) и остеоцитами в костях. У здоровых людей повышение потребления продуктов, содержащих фосфор, вызывает компенсаторное увеличение образования ПТГ и ФРФ-23 для усиления фосфатурии посредством снижения экспрессии транспортеров фосфора в канальцах. Кроме того, ФРФ-23 снижает продукцию кальцитриола (1,25 (ОН)2 D3) в почечной ткани путем подавления 1а-гидроксилазы и стимуляции 24-гидроксилазы и тем самым уменьшает объем абсорбируемого фосфора в кишечнике [2, 3]. Исследование Health Professional Follow-up Study, проведенное среди 1 261 чел. с преобладанием лиц с сохранной почечной функцией, подтвердило наличие прямой связи между потреблением фосфора с пищей и уровнем ФРФ-23 в крови [4].
Среди причин, вызывающих развитие гиперфосфатеми-ческого синдрома, таких как идиопатический гиперпарати-реоз, псевдогипопаратиреоз, дефицит ФРФ-23, распад опухоли и другие, поражение почек стоит на особом месте в связи с неуклонным ростом числа больных с хронической болезнью почек (ХБП) во всем мире. Уменьшение выведения фосфора с мочой и повышение его концентрации в крови развивается при снижении фильтрационной функции почек до 4 и 5 стадии ХБП, т. е. при скорости клубочковой фильтрации (СКФ) менее 30 мл/мин/1,73 м2. Выявлено, что до достижения этого значения СКФ нормофосфатемия поддерживается гиперпродукцией ФРФ-23, которая при наличии почечной патологии наблюдается уже при начальном снижении азото-выделительной функции почек - со 2-й стадии ХБП (СКФ менее 90 мл/мин/1,73 м2), и намного превышает образование самого ПТГ (рис. 1) [5].
Одним из начальных звеньев, вовлеченных в патогенез гиперфосфатемии, считалось снижение образования кальци-
триола пораженными (склерозированными) почками. При этом уменьшается абсорбция кальция в кишечнике с развитием гипокальциемии, которая стимулирует продукцию ПТГ. В свою очередь ПТГ, кроме увеличения экскреции фосфора почками, повышает реабсорбцию кальция в канальцах, абсорбцию кальция в кишечнике путем индукции синтеза кальцитриола. Результатом действия ПТГ является повышение концентрации кальция в крови и снижение содержания кальция в костях (деминерализация костного матрикса) и фосфора в крови. Однако, по современным представлениям,
■ Повышение сывороточного фосфора прямо и независимо ассоциированы с общей и сердечно-сосудистой смертностью больных на преддиализной стадии ХБП и на диализе
инициатором развития вторичного гиперпаратиреоза может явиться ФРФ-23, повышенная продукция которого уже на ранних стадиях ХБП подавляет образование кальцитриола почками и тем самым запускает механизм «гипокальцемия -гиперпродукция ПТГ». Считается, что повышение концентрации циркулирующего ФРФ-23 при снижении фильтрационной функции почек имеет и ретенционный характер, т. к. катаболизм и деградация ФРФ-23 происходит в почечной ткани [2-5]. Необходимо отметить, что у больных, находящихся на лечении диализом, его уровень в крови превышает физиологический в 1 000 раз [6]. Более того, при почечной недостаточности нивелируется один, возможно, положительный эффект ФРФ-23 - подавление экспрессии гена ПТГ в паращитовидных железах путем стимуляции митоген-активируемой протеинкиназы (МАРК). Это связано с уменьшением количества основного ко-рецептора ФРФ-23 - К1оШо при уремии, который формирует активный комплекс ФРФ-23-К1оШо-рецептор (FGFR1c) в паращитовидных железах и почках, и инактивацией лизинов в этом комплексе [5, 7]. Недавние исследования показали, что повышение ФРФ-23 связано с прогрессированием почечной недостаточности, гипертрофией левого желудочка и увеличением смертности больных ХБП от сердечно-сосудистых событий [8].
Эпидемиологические исследования продемонстрировали, что повышение сывороточного фосфора прямо и независимо ассоциированы с общей и сердечно-сосудистой смертностью
больных на преддиализной стадии ХБП и на диализе [9]. Роль гиперфосфатемии в выживаемости больных с ХБП на диализе была убедительно продемонстрирована в крупном ретроспективном исследовании, проведенном на базе данных регистра US Renal Data System и Dialysis Morbidity and Mortality Study Wave [10]. Исследование показало, что относительный риск смерти от всех причин при уровне фосфора сыворотки более чем 6,5 мг/дл (2,09 ммоль/л) составлял 1,27 по сравнению с популяцией больных со значением фосфора сыворотки от 2,4 (0,77 ммоль/л) до 6,5 мг/дл. При этом факторами риска повышения фосфора крови, кроме гиперкреатининемии, явились формирование в молодом возрасте терминальной стадии почечной недостаточности, наличие сахарного диабета, женский пол, курение. Похожий уровень риска смерти (1,27 (95% ДИ 1,02-1,58) был выявлен в исследовании CARE (Cholesterol And Recourent Events) среди 4 127 больных с перенесенным инфарктом миокарда на повышение уровня фосфора крови на каждые 1 мг/дл (0,32 ммоль/л) [11]. Исследования, проведенные среди больных ХПБ, четко продемонстрировали, что превышение фосфора в сыворотке более 3,5 мг/дл (1,13 ммоль/л) было связано с существенным ростом риска смерти, а его повышение на каждые 1 мг/дл увеличивало его на 18% [12, 13].
Популяционное исследование The Framingham Offspring Study показало, что повышение фосфора на каждые 1 мг/дл на 1,31 раз (95% ДИ 1,05-1,63) увеличивало риск развития сердечно-сосудистых катастроф (стенокардия, сердечная недостаточность (СН), мозговой инсульт, заболевания периферических артерий) [14]. У 10% участников 15-летнего проспективного исследования CARDIA (Coronary Artery Risk in Young Adults) было отмечено, что первоначальный уровень фосфора в сыворотке имеет тесную связь с кальцификацией коронарных артерий [15]. Выявлена тесная ассоциация гиперфосфатемии и гипертрофии левого желудочка (ЛЖ), формирование которой является предиктором летальности больных с ХБП. Так, среди 208 больных на 2-4 стадии ХБП (среднее значение фосфора составляло 1,1 ммоль/л) была
выявлена ассоциация между повышением фосфора в сыворотке и индексом массы миокарда ЛЖ (ИМЛЖ), измеренной при помощи магнитного резонанса [16]. Более того, даже высоко-нормальный уровень фосфора в крови в пределах референсных значений был связан с повышением риска развития гипертрофии ЛЖ, который составлял 1,27 (95% ДИ 1,09-1,47) у 4 055 молодых людей с нормальной почечной функцией [17]. Риск выявления СН увеличивался в 1,74 раза на повышение фосфора в крови на каждые 1 мг/дл у 3 300 участников исследования без СН и ХБП, где оценивалось наличие связи между уровнем фосфора в крови с эхокардио-графическими признаками гипертрофии ЛЖ [18].
Помимо ухудшения податливости артерий и усиления их жесткости, гиперфосфатемия тесно вовлечена в механизмы развития и прогрессирования кальцификации сосудов, включающие минерализацию сосудистых гладкомышечных клеток (СГМК) посредством потока фосфора через натрий-зависимые транспортеры, апоптоз СГМК, подавление дифференциации моноцитов/макрофагов в остеокласт-подобные клетки, повышение уровня ФРФ-23 и изменение экспрессии ко-рецептора Klotho. Сосудистая кальцификация как исход нарушения минерального метаболизма тесно ассоциирована с усилением костной резорбции и адинмическим ремодели-рованием кости, но часто предшествует костным изменениям. Следовательно, гиперфосфатемия и изменение баланса индукторов и ингибиторов кальцификации, наличие системного воспаления, оксидативного стресса способствуют формированию медиакальциноза при ХБП [19-22]. Как и в выше упомянутой работе CARDIA, в исследовании MESA (MultiEthnic Study of Atherosclerosis) была выявлена связь гипер-фосфатемии с кальцификацией. Так, у 439 больных ХБП молодого и среднего возраста с нормальной функцией почек повышение уровня фосфора в сыворотке на каждые 1 мг/дл было связано с учащением формирования кальцификации коронарных артерий на 21%, аортального и митрального клапанов на 25% и 62% соответственно [23].
Гиперфосфатемия способствует не только прогрессирова-нию почечной недостаточности (удвоение креатинина крови, наступление терминальной стадии почечной недостаточности), но и снижению нефропротективного эффекта ингибитора ангиотензин-превращающего фермента рамиприла, что было продемонстрировано в исследовании REIN (Ramipril Efficacy In Nephropathy Study) с участием 331 больного ХБП с альбуминурией и со СКФ от 20 до 70 мл/мин/1,73 м2 [24]. Кроме того, в исследовании Framingham Heart Study было показано, что превышение уровня фосфора сыворотки предела 2,5-3,49 мг/дл (0,80-1,13 ммоль/л) увеличивал риск развития ХБП в 2,14 раза (95% ДИ 1,07-4,28), что подтверждается данными исследования NHANES III (the Third National Health and Nutritional Examination Survey), где было выявлено, что повышение фосфора более 4 г/дл (1,29 ммоль/л) увеличивало относительный риск развития терминальной почеч-| ной недостаточности на 1,9 раза (95% ДИ 1,03-3,53) [25].
■ Одним из эффективных фосфат-биндеров, недавно зарегистрированных в России, является севеламера гидрохлорид -синтетический, нерастворимый в воде полимер, не содержащий кальций
В настоящее время контроль уровня фосфора в крови у больных ХБП занимает одну из ведущих позиций в комплексе лечебно-диетических мероприятий у больных ХБП. Целевое значение фосфора в крови у больных на додиализ-ной стадии ХБП и на диализе не должно превышать 1,45 ммоль/л [1]. Основными мерами, позволяющими корригировать гиперфосфатемию, являются модификация диеты (ограничение фосфора до 0,8-1 г в сут., в особых случаях до 0,40,7 г.) и применение фосфат-биндеров. Теоретически гипо-фосфатная диета должна рекомендоваться уже с 3-4-й стадии ХБП даже при отсутствии повышения уровня фосфора в крови по лабораторным данным. Исследования показали, что низкое потребление фосфатов с пищей вплоть до вегетарианской диеты приводило к нормализации уровня фосфора в крови, снижению фосфатурии и уровня ФРФ-23 в сыворотке [26]. Но ограничение фосфора с потребляемой пищей весьма затруднено в связи с очень высоким содержанием фосфатов в современных продуктах и напитках, отсутствием в описании содержимого продовольственного товара массы фосфатов. Наличие в белковой пище фосфатов вынуждает к ограничению количества белка и у диализных больных, т. е. при трудно-контролируемой гиперфосфатемии необходимо учитывать фосфорно-белковый коэффициент продукта.
Действие большинства фосфат-биндеров основано на соединении препарата с ионами фосфора с дальнейшей преципитацией в кишечнике, в виде нерастворимых и неабсор-бируемых комплексов, выводящихся с фекалиями [5]. Первыми фосфат-биндерами, применяемыми с 1970-х гг., являются препараты, содержащие алюминий (Al) (соли алюминия). Дополнительным эффектом гидроксида алюминия в регуляции нарушения обмена фосфора считается его воз-
можность образовывать с ионами фосфора в крови «соединение», которое маскирует сам фосфор. Хотя соли алюминия имели высокую эффективность, но при накоплении (в кишечнике всасывается 0,1% А1) приводили к алюминиевой интоксикации. Это проявляется когнитивными нарушениями (А1 проникает через гемато-энцефалический барьер), развитием остеомаляции (А1 блокирует минерализацию остеоида) и усилением анемии (А1 связывается с ферритином и транс-феррином) [27]. В настоящей практике их применяют кратковременно (2-4 нед.) в качестве «скорой помощи» при необходимости быстро устранить чрезмерную гиперфосфа-темию.
Широкое использование в качестве фосфат-биндеров получили соли кальция и магния. Одним из нежелательных эффектов солей кальция является развитие персистирующей гиперкальциемии у каждого второго пациента, особенно при совместном назначении с аналогами витамина Д, что усиливает процессы кальцификации тканей [28]. Следовательно, максимальная суточная доза препаратов должна составлять не более 1,5 г элементарного кальция в сутки с условием динамического контроля уровня кальция в крови [1]. Карбонат кальция имеет длительное время распада, связывается с фосфором в кислой среде желудка (рН 5,0), ощелачивая ее, и там же частично теряет свою эффективность вследствие конкурирования ионов водорода с фосфором. Поэтому действие карбоната кальция может быть ограничено при приеме больными ХБП ингибиторов протонной помпы. Преимуществом ацетата кальция считается, что он в 3 раза меньше вызывает гиперкальциемию и во столько же раз эффективнее связывает фосфор, чем карбонат кальция, но вызывает большее число побочных эффектов со стороны желудочно-кишечного тракта. Менее используемыми солями кальция являются кальция альгинат, кальция лактат и кальция кетоглутарат [5].
Альтернативой алюминий- и кальций-содержащим фосфат-биндерам, но менее эффективными считаются препараты, содержащие соли магния. Хотя в некоторых исследованиях было показано, что эти препараты предохраняют от сосудистой кальцификации, улучшают толщину интимы-медии сонной артерии у больных на диализе, их эффект остается не до конца изученным. В эксперименте было показано, что магний оказывает негативное действие на сосудистую кальцификацию и остеогенную дифференциацию путем увеличения и восстановления активности рецепторов потенциального канала типа меластатина 7 и повышения экспрессии антикальцификационных протеинов (остеопон-тин, костный морфогенетический протеин (ВМР-7) и G1a-протеин), а также снижает уровень ПТГ в сыворотке. Новый комбинированный фосфат-биндер, состоящий из ацетата кальция и карбоната магния, показал хороший фосфат-связывающий эффект у диализных больных, кроме некоторого повышения общего кальция в крови без изменения со стороны ее ионизированной фракции и развития асимпто-матической гипермагниемии [5].
Лантана карбонат, открытый в 1839 г., только с недавнего времени успешно применяется в США и Европе. Кроме отсутствия в нем кальция, одним из преимуществ препарата явля-
ется то, что его фосфор-связывающее действие может происходить при колебании pH от 1 до 7, т. е. он одинаково эффективен в кислой среде желудка и при более высокой pH двенадцатиперстной и тонкой кишки. Более того, лантана карбонат является высоконерастворимым соединением, и только 0,001% препарата абсорбируется в кишечнике. При его назначении необходимо учитывать, что препарат имеет свойство ингибировать цитохром 450, что может привести к нарушению метаболизма различных фармакологических препаратов [5].
Одним из эффективных фосфат-биндеров, недавно зарегистрированных в России, является севеламера гидрохлорид -синтетический, нерастворимый в воде полимер, не содержащий кальций (поли(аллиламина гидрохлорид)). Препарат, помимо высокоэффективного фосфор-связывающего действия, в желудочно-кишечном тракте соединяется с желчными кислотами, что считается причиной снижения уровня липопротеидов низкой плотности в крови. Исследования, инициированные компанией Genzyme Corp., не подтвердили связывание севеламера гидрохлорида с широко используемыми липофильными лекарственными препаратами, такими как эналаприл, метопролол, дигоксин и варфарин [29, 30]. Более того, применение севеламера гидрохлорида приводило к улучшению податливости артериальной стенки у больных на гемодиализе. Так, прием препарата в течение 11 мес. способствовал достоверному снижению скорости пульсовой волны, что в большей степени объясняется отсутствием кальция в препарате [31, 32]. Эти дополнительные эффекты препарата
могут замедлить развитие атеросклероза и кальцификации сосудов, сократить частоту развития неблагоприятных сердечно-сосудистых осложнений, тем самым снижать общую и кардиоваскулярную смертность в популяции больных ХБП.
Последние данные по эффективности различных фосфат-биндеров будут получены в результатах недавно завершенных клинических исследований A Double Blind Randomized Placebo Trial of Maintenance of Normal Serum Phosphorus in CKD (сравнение эффекта применения ацетата кальция, лантана карбонат, севеламера гидрохлорид с плацебо на жесткость артерий и коронарную кальцификцию у больных ХБП с СКФ 20-45 мл/мин/1,73 м2), Effects of Phosphate Binding With Sevelamer in Stage 3 Chronic Kidney Disease (изучение влияния севеламера гидрохлорида по сравнению с плацебо на ИМЛЖ и жесткость артерий) и инициированном в конце 2011 г. исследовании Impact of Phosphate Reduction On Vascular End-points in CKD (оценка влияния лантана карбоната на жесткость артерий и кальцификацию аорты у больных с 3б и 4 стадией ХБП) [33-35].
Таким образом, раннее выявление гиперфосфатемии, предписание гипофосфатной диеты и назначение современных эффективных фосфор-связывающих препаратов с тщательным мониторингом показателей фосфорно-кальциевого баланса является одним из первоначальных диетических и терапевтических подходов, позволяющих предупредить развитие тяжелых инвалидизирующих осложнений не только со стороны минерально-костного обмена, но и сердечнососудистой системы.
ЛИТЕРАТУРА
1. Национальные рекомендации по минеральным и костным нарушениям при хронической болезни почек // Нефрология и диализ. 2011. Т. 13. №2. С. 33-51.
2. Hruska K.A., Mathew S., Lund R. et al. Hyperphosphatemia of chronic kidney disease // Kidney International. 2008. №74. Р. 148-157.
3. Jüppner H. Phosphate and FGF-23 // Kidney Int. 2011. №79. S24-S27.
4. Gutiérrez O.M., Wolf M., Taylor E.N. Fibroblast growth factor 23, cardiovascular disease risk factors, and phosphorus intake in the health professionals follow-up study // Clin. J. Am. Soc. Nephrol. 2011. №6. Р. 2871-2878.
5. Hutchison A.J., Smith C.P., Brenchley P.E.C. Pharmacology, efficacy and safety of oral phosphate binders // Nat. Rev. Neprol. 2011. №7. Р. 578-589.
6. Imanishi Y., Inaba M., Nakatsuka K. et al. FGF-23 in patients with end-stage renal disease on hemodialysis // Kidney Int. 2004. №65. Р. 1943-1946.
7. Kuro-o M. Phosophate and Klotho // Kidney Int. 2011. №79. S20-S23.
8. Heine G.H., Seiler S., Fliser D. FGF-23: the rise of a novel cardiovascular risk marker in CKD // Nephrol. Dial. Transplant. 2012. №27. Р. 3072-3081.
9. Kestenbaum B., Sampson J.N., Rudser K.D. et al. Serum phosphate levels and mortality risk among people with chronic kidney disease // J. Am. Soc. Nephrol. 2005. №16. Р. 520-528.
10. Block G., Hulbert-Shearon T. et al. Association of serum phosphorus and calcium x phosphate product with mortality risk in chronic hemodialysis patients: A national study // Am. J. Kidney Dis. 1998. №31. Р. 607-617.
11. Tonelli M., Sacks F., Pfeffer M. et al. Relationship between serum phosphate level and cardiovascular event rate in people with coronary disease // Circulation. 2005. №112. Р. 2627-2633.
12. Kestenbaum B., Sampson J.N., Rudser K.D. et al. Serum phosphate levels and mortality risk among people with chronic kidney disease // J. Am. Soc. Nephrol. 2005. №16. Р. 520-528.
13. Palmer S.C., Hayen A., Macaskill P. et al. Serum levels of phosphorus, parathyroid hormone, and calcium and risks of death and cardiovascular disease in individuals with chronic kidney disease: A systematic review and meta-analysis // JAMA. 2011. №305. Р. 1119-1927.
14. Dhingra R., Sullivan L., Fox S. et al. Relations of serum phosphorus nd calcium levels to the incidence of cardiovascular disease in the community // Arch. Int. Med. 2007. №167. Р. 879-885.
15. Foley R.N., Collins A.J., Herzog C.A. et al. Serum phosphorus levels associate with coronary atherosclerosis in young adults // J. Am. Soc. Nephrol. 2009. №20. Р. 397-404.
Полный список литературы вы можете запросить в редакции.