УДК 669.131.7
ГИДРОАБРАЗИВНАЯ ИЗНОСОСТОЙКОСТЬ ЧУГУНОВ С РАЗНОЙ ФОРМОЙ ГРАФИТА, ЛЕГИРОВАННЫХ Си, Сг, N1 И Мо
С.И. Бондаренко, доцент, к.т.н., И.П. Гладкий, профессор, к.т.н., ХНАДУ
Аннотация. Установлено, что легирование Си, Сг, М и Мо чугунов с разной формой графита существенно повышает гидроабразивную износостойкость за счет получения перлитной или перлитно-цементитной основы. Приближение формы графита к шаровидной повышает гидроабразивную износостойкость как легированных, так и нелегированных чугунов.
Ключевые слова: легированный чугун, пластинчатый графит, вермикуляр-ный графит, шаровидный графит, гидроабразивная износостойкость.
Введение
Проточные части насосов оросительных систем работают в условиях гидроабразивного и кавитационно-эррозионного изнашивания в сочетании с коррозией.
Интенсивный износ проточных деталей насосов приводит к ухудшению эксплуатационных характеристик насосов, сокращению межремонтных сроков и преждевременному выходу из строя.
Неблагоприятная форма графита и наличие феррита в структуре матрицы чугуна СЧ 20, применяющегося в настоящее время для деталей насосов, вызывает повышенную коррозию и гидроабразивный износ.
В связи с этим возникает необходимость замены чугуна СЧ 20 более износостойким материалом.
Анализ публикаций
В настоящее время все шире используются в качестве износостойких материалов для изготовления дробеметных лопаток, поршневых колец и т.п. чугуны с вермикулярной и шаровидной формой графита и перлитной основой, полученной легированием &, №, Мо, Sn и другими элементами [1].
В работах [2,3] было исследовано влияние формы графита и микролегирования Sn, Sb на гидроабразивную износостойкость чугу-нов.
В работе [4] была изучена возможность применения легированных ^, &, №, и Мо чу-гунов для изготовления деталей проточных частей насосов. Была показана эффективность легирования серых и высокопрочных чугунов с целью повышения твердости, предела прочности и абразивной износостойкости.
Представляло интерес провести дальнейшие исследования формы графита и легирования на абразивную и гидроабразивную износостойкость чугунов.
Цель исследования и постановка задачи
Целью работы было исследование гидроабразивной стойкости легированных ^, &, №, и Мо чугунов с пластинчатой, вермикуляр-ной и шаровидной формой графита (ЧПГ, ЧВГ и ЧТТТГ)
Необходимо было разработать методику испытаний чугунов на гидроабразивный износ, наиболее приближенных к условиям эксплуатации деталей проточных систем насосов.
Исследование гидроабразивной износостойкости
Материалом исследования служили нелегированные и легированные Си, Сг, №, и Мо чугуны с разной формой графита. Условия выплавки чугунов были аналогичны приведенным в работе [4].
Химический состав чугунов приведен в табл. 1.
Металлографическое исследование чугунов осуществлялось с помощью металлографического микроскопа при увеличениях 100 и 500. Микроструктура исследованных чугу-нов представлена на рис. 1.
В серых чугунах плавок 0 и 1 пластинчатый графит имеет аналогичные размеры и распределение (рис. 1, а, б). Чугун плавки 4 содержит шаровидный графит правильной и компактной формы. Чугун плавки 5 содержит вермикулярный графит утолщенной формы с неравномерным распределением и небольшое количество (до 15%) шаровидного графита правильной и компактной формы. Структура металлической основы нелегированных чугунов с пластинчатым (плавка 0) и шаровидным (плавка 7) графитом перлитно-ферритная (53 и 40% феррита соответственно). Структура матрицы легированных чугунов (рис. 1, б—г) содержит дисперсный перлит (тростит), иногда 10 - 15% бейнита (плавка 5) и до 6 - 30% цементита (ледебурита).
Гидроабразивная стойкость чугунов определялась на специально разработанной установке с горизонтальным расположением вала
и возможностью одновременно испытывать большое количество образцов [2, 3].
Для испытаний на гидроабразивное изнашивание использовались цилиндрические образцы диаметром 25 мм, толщиной 10 мм с центральным отверстием диаметром 10 мм для крепления на стенде. В качестве абразива был использован кварцевый песок с размером песчинок ~ 0,2 мм. Концентрация абразива составляла 1%.
Результаты испытаний гидроабразивной стойкости чугунов, определяемые по потере массы образцов за 1 час испытания в разные периоды работы, приведены в табл. 2. Данные представляют собой среднеарифметические значения величин, полученных на 3 - 4 образцах.
Таблица 2 Результаты испытаний гидроабразивной стойкости чугунов
№ плавки Потеря массы образца за 1 час, г
от 1 до 2 час работы от 2 до 12 час работы от 12 до 22 час работы
0 0,0032 0,0089 0,0211
1 0,0052 0,0058 0,0107
4 0,0026 0,0051 0,0129
5 0,0026 0,0050 0,0184
7 0,0104 0,0078 0,0184
Как следует из представленных данных, скорость изнашивания всех чугунов со временем заметно возрастает. Исключение составляет высокопрочный чугун с перлитно-ферритной структурой (плавка 7), который имеет наименьшую скорость изнашивания в период от 2-х до 12-ти часов работы.
Таблица 1 Химический состав исследованных чугунов
№ плав- ки Тип чугуна Содержание элементов, % мас
С 81 Мп Р 8 Сг N1 Мо Си Мм
0 ЧПГ нелегир. (СЧ20) 3,4 2,4 0,60 0,08 0,12 - - - - -
1 ЧПГ легир. 2,63 1,93 0,67 0,076 0,024 0,4 0,47 - 1,17 -
4 ЧШГ легир. 3,53 2,04 0,60 0,093 0,015 0,63 1,08 0,21 0,95 0,02
5 ЧВГ легир. 3,5 1,69 0,67 0,103 0,039 0,67 1,1 0,3 0,9 -
7 ЧШГ нелегир. 3,6 2,0 0,4 0,05 0,008 0,2 0,1 - - 0,04
Рис. 1. Структура исследованных чугунов: а - плавка 0; б - плавка 1; в - плавка 4; г - плавка 5; х100
По-видимому, в течение этих 20 часов имеет место приработка материалов, сопровождаемая снижением шероховатости, коррозией по микротрещинам, порам, границам фаз, пластической деформацией рабочей поверхности чугунов и т.п.
Следует отметить, что при одинаковой пер-литно-ферритной структуре металлической матрицы большую скорость износа имеет серый чугун по сравнению с высокопрочным.
К 22 часам работы прослеживается снижение стойкости чугунов с большим количеством цементита и включениями ледебурита. Можно предположить, что такое снижение стойкости обусловлено охрупчиванием поверхности чугунов, причем в большей мере при структуре с включениями ледебурита и вер-микулярной формой графита.
Выводы
Гидроабразивный износ нелегированного ЧШГ с перлитно-ферритной структурой матрицы заметно меньше, чем у нелегированного ЧПГ с такой же структурой матрицы (за исключением начального этапа испытаний).
Легирование чугунов с разной формой графита с образованием перлитной или перлит-но-цементитной матрицы существенно повышает их стойкость в водно-абразивной среде. Для серого чугуна она повышается почти вдвое, для высокопрочного - на 40%.
Наличие в легированных чугунах значительных количеств ледебурита или цементита снижает их гидроабразивную стойкость.
В целом следует заметить, что для обоснованных выводов об относительной (или абсолютной) стойкости чугунов в водноабразивной среде следует продолжить испытания до стабилизации скорости разрушения чугунов. Это тем более необходимо, что время работы деталей насосов составляет тысячи часов.
Литература
1. Ахунов Т.А., Алов В. А. и др. Новые изно-
состойкие чугуны для деталей дробе-метных камер // Соврем. литейн. мат. и технол. получ. отливок: матер. науч.-техн. конф. - Харьков, 1991. - С. 26 - 27.
2. Бондаренко С.И., Гладкий И.П. Влияние
структуры и механических свойств на гидроабразивную износостойкость чугуна // Вестник ХНАДУ. - Харьков: ХНАДУ. - 2008. - Вып. 41. - С. 68 - 70
3. Бондаренко С.И., Демьянец К.А. Исследо-
вание гидроабразивной износостойкости серых и высокопрочных чугунов, мик-ролегированных оловом и сурьмой // Вестник ХНАДУ. Харьков: ХНАДУ. -2008. - Вып. 42. - С. 90 - 93.
4. Бондаренко С.И., Гладкий И.П. Повыше-
ние эксплутационных свойств чугунов, работающих в условиях гидроабразивного износа // Вюник харювськ. дер-жавн. техшч. ушверситету сшьського господарства. - Харюв. - 2003. - Вип. 41. - С. 68 - 70.
Рецензент: В.И. Мощенок, профессор, к.т.н., ХНАДУ.
Статья поступила в редакцию 6 июля 2009 г.