4. Бабаев А.И., Щечель Ш.И., Данишевский Б.С., Бекиров Р.М. Способ выделения изобутилена из углеводородной смеси. АСССР. № 963224.
Список литературы на английском языке /References in English
1. Ibragimov Ch.Sh., Babayev A.I., Gulieva S.N. Kinetic studies of the process of obtaining vysokochistogo of isobutene from the isobutane-isobutylene fractions of pyrolysis. TSNIITENEFTEKHIM, the magazine "Refining and petrochemicals". № 5, 2016. Р. 15.
2. Ibragimov Ch.Sh., Babayev A.I. Scientific basis and practical problems of chemical Cybernetics. Baku, ASOA Isadella, 2015. 387 с.
3. Ramazanova E.E., Ibragimov Ch.Sh., Guliyeva S.N., Nabiyev N. аnd Dashdamirov A.F. Analysis of the reaction for producing the isobutylene from the pyrolysis gas. "Azerbaijan oil industry". № 11, 2016. Р. 52-57.
4. Babayev A.I., Shechel Sh.I., Danishevskii B.S., Bakirov R.M. Method of vydeleniya of isobutene from hydrocarbon mixture. With SSR. № 963224.
GEOTECHNICS. TECHNOLOGICAL GEOTECHNICAL
ENGINEERING Kadylbekova Kh.M.1, Tulegenova M.K.2, Kapasova A.Z.3 (Republic of Kazakhstan) Email: [email protected]
1Kadylbekova Khalida Muratzhanovna - Master Student; 2Tulegenova Madina Kazhimkanovna - Master of Arts, Senior Lecturer; 3Kapasova Aizada Zarlykovna - Candidate of Technical Sciences, Senior Lecturer, DEPARTMENT OF SURVEYING AND GEODESY, KARAGANDA STATE TECHNICAL UNIVERSITY, KARAGANDA, REPUBLIC OF KAZAKHSTAN
Abstract: the article deals with technological geotechnical engineering, its innovation, main areas of research, goals and responsibilities. The induced geotechnical processes from large-scale technologic activities in the extraction of minerals, the relevance of research in the mining Urals. An equally complex problem arises in the development of the underground space of large cities in connection with the construction of underground structures under high-rise buildings, which create large additional loads on the structures of these structures.The research program includes the determination of geodetic site displacements near the site of large-scale extraction of minerals to refine the geotechnical model, geophysical studies of structural heterogeneities in the rock massif, computer simulation of induced geotechnical processes.
Keywords: mountain ranges, landslides, excavation, quarry, tectonics, geophysics, underground mines, mineral resources.
ГЕОТЕХНИКА. ТЕХНОЛОГИЧЕСКАЯ ГЕОТЕХНИЧЕСКАЯ
ТЕХНИКА
Кадылбекова Х.М.1, Тулегенова М.К.2, Капасова А.З.3 (Республика Казахстан)
1 Кадылбекова Халида Муратжановна - магистрант;
2Тулегенова Мадина Кажимкановна - магистр искусств, старший преподаватель;
3Капасова Айзада Зарлыковна - кандидат технических наук, старший преподаватель, кафедра маркшейдерского дела и геодезии, Карагандинский государственный технический университет, г. Караганда, Республика Казахстан
Аннотация: в статье рассматриваются технологическая геотехническая инженерия, ее инновации, основные направления исследований, цели и обязанности. Наведенные геотехнические процессы от крупномасштабных технологических мероприятий по добыче полезных ископаемых, актуальность исследований в добыче Урала. Не менее сложная проблема возникает в развитии подземного пространства крупных городов в связи со строительством подземных сооружений в высотных зданиях, которые создают большие дополнительные нагрузки на структуры этих сооружений. Программа исследования включает в себя определение геодезического участка смещения вблизи места крупномасштабной добычи полезных ископаемых для уточнения геотехнической модели, геофизические исследования структурных неоднородностей в горном массиве, компьютерное моделирование индуцированных геотехнических процессов.
Ключевые слова: горные хребты, оползни, выемка грунта, карьера, тектоника, геофизика, подземные рудники, полезные ископаемые.
Everything that is related to the mechanics of the Earth is called geotechnical engineering. Consider an underground geotechnical engineering, the artificial method of changing mountain ridges departing from larger underground mine workings is called technological geotechnical engineering [1, 161]. The main directions of scientific research in technological geotechnical engineering:
• Natural physical methods in mountain ranges;
• Physical methods in mountain ranges and the connection of the state of ridges;
• Dependence of the physical methods of the ridge on the geological state of the deposit;
• Preparation of methods of technological geotechnical engineering and scientifically to establish ways of their use;
•The purpose of the research work is to prove scientifically the relationship between underground mining and mine development [1, 161].
Duties of scientific research:
1. To understand the physical and mechanical properties of mine workings, depending on the geological state of the deposit in each layer;
2. Knowledge of the condition and condition of mine workings in ridges;
3. Physic-mechanical properties of mine workings in the ridge to document and prepare scientific methods [1, 162].
4. To justify scientifically the landslides of each layer of mine workings in the ridge.
Innovation in scientific research:
1. Methods for describing the physical and mechanical properties of mine workings in the ridge;
2. Scientific substantiation of underground mining technology;
3. Scientific methods of substantiation of technological geotechnical engineering types [2, 27].
Outputs are produced in two situations: in construction and mining. Objects included in the construction: the need for daily life in small towns; energy and production; military security. Opening of minerals is made by opening and mining workings. During excavations a scientifically based method is used.
The induced geotechnical processes from large-scale technological activities in the extraction of minerals
The large-scale development of mineral deposits is associated with a powerful technological impact on the earth's crust. Long term exploitation of deposits, large volumes of transported rocks, concentration of production in limited areas, all this contributes to the violation of the initial stress-strain state of the earth's crust in vast areas [2, 28].
fQ übmbpíI fo
Fig. 1. Tectonic movements along structural blocks
As a result of this influence, along with natural geotechnical processes, such as tectonic movements along structural blocks, natural earthquakes, so-called induced geotechnical processes are created that are caused by man's technological activity. Such processes are comparable to natural ones due to the strength of their manifestation, and their danger is aggravated by the fact that they occur in the areas of concentration of human economic activity. Each of the forms of manifestation of induced geotechnical processes can produce serious disruptions to residential and industrial facilities, including environmentally hazardous ones, such as nuclear and thermal power stations, chemical enterprises.
Fig. 2. Geomechanical model of technological impact on the lithosphere: a - the initial stress field of the mining area; b - secondary stress field; c - is static vertical displacements of the earth's surface
The urgency of the research is due to the fact that only in the region of the mining Urals there exist on less than seven areas potentially dangerous by the manifestation of one of the forms of induced geotechnical processes due to the scale of production achieved [2, 29].
As factors of man's technological impact on the earth's crust, either the movement of masses of rocks - excavation from quarries and underground mines and storage of overburden and waste enrichment in dumps, or violation of the hydrogeological regime in connection with the evacuation of groundwater [2, 30]. The source of the formation of induced geotechnical processes is the disturbance of the initial equilibrium in the stressed state of the upper part of the earth's crust as a result of the extraction of the mineral.
The secondary stress field is formed due to the formation of depressions and voids in the mountain massif and due to is stasis imbalance due to the movement of large volumes of rocks, especially with open-cast mining (Fig. 2). In the extraction of solid
minerals, concomitant factors are the evacuation of groundwater, the formation of depression funnels. While extracting oil and gas, mass pumping of groundwater, these factors may prove to be leading [2, 31].
The source of the formation of induced geotechnical processes is the disturbance of the initial equilibrium in the stressed state of the upper part of the earth's crust as a result of the extraction of the mineral.
The secondary stress field is formed due to the formation of depressions and voids in the mountain massif and due to is stasis imbalance due to the movement of large volumes of rocks, especially with open-cast mining (Fig. 2).
Fig. 3. Geomechanical model of technological impact on the lithosphere: a - a section of the earth's crust is represented by a lower half-space of infinite dimensions; b - a section of the earth's crust is presented in the form of a shell offinite thickness and infinite dimensions in plan
In the extraction of solid minerals, concomitant factors are the evacuation of groundwater, the formation of depression funnels. While extracting oil and gas, mass pumping of groundwater, these factors may prove to be leading.
With the external complexity of the phenomena occurring in the mining area, the geotechnical model of deformation can be represented by fairly simple constructions. The main element of the model is the external mapping of the earth's crust [3, 201]. Depending on the existing notions of the structure of the upper part of the earth's crust, the geotechnical model of its section subject to technological impact can be represented either by a lower half-space of infinite size in terms of area and depth (Figure 3a), or in accordance with global plate tectonics, in the form of a shell of finite thickness and infinite dimensions in a plan located on a viscous layer of the asthenosphere (Fig. 3b). The boundary conditions of the geotechnical model include lateral horizontal forces and the volume weight. In the second case, a hydrostatic force acts on the section between the lithosphere and the asthenosphere, balancing the weight of the lithospheric plate. Lateral horizontal forces consist of horizontal tectonic forces, equal in depth and lateral distance from gravitational forces proportional to depth. Technological forces correspond to the weight of the rocks being moved during development. At the extraction site, in the quarry or in the underground mining zone, the massif is unloaded, and in the dumping site the massif is loaded, causing the moment of forces to appear in the massif [3, 202].
The mathematical apparatus for investigating the behavior of a geotechnical model is based on classical solutions of the Businezsk problem for calculating a model represented by an infinite half-space and calculating shells for calculating a model
corresponding to modern concepts of global plate tectonics. It is not ruled out that in the area subject to technological impact, both models will manifest themselves to some extent. The enlarged calculations for both models, carried out at this stage of geotechnical model studies, are given in the table below.
The level of vertical displacements under anthropogenic load is comparable with the movements obtained from the results of geodetic surveys in areas of powerful earthquakes related to the filling of large reservoirs. In this case, it is necessary to take into account two features of loading of the earth's crust under technological impact from the development of minerals. First, the depths of quarries are 2-2.5 times higher than the depths of artificial reservoirs, which, given the density of rocks, causes large specific loads in 5-6 times. Secondly, some of the mined rocks are stored in adjacent areas, which causes opposite loads in the direction. In this case, the earth's crust is subjected to moment loading [3, 204]. In addition, the models reflecting the shells were evaluated for stability against lateral loads of boundary conditions. The results showed that the boundary loads are several times higher than the critical loads capable of breaking the stability of the shell. Consequently, in the lithospheric plates there are real opportunities for the occurrence of catastrophic deformations without anthropogenic impact. Depending on the combination of many factors, they can occur either in a dynamic form in the form of earthquakes, or in the form of relatively quiet displacements along the existing structural disturbances. Both forms present a danger to surrounding objects.
The study of the technological impact of mining operations and the accompanying induced geotechnical processes is currently at an early stage. The most studied are the mountain strikes that accompany the mining of mineral deposits [3, 206]. The question of predicting the manifestations of induced geotechnical processes from mining operations is of the most urgent importance. A major step is the creation of the Ural Center for the Study of the Technological Disasters Nature with the support of the Russian Foundation for Basic Research. The research program includes the determination of geodetic site displacements near the site of large-scale extraction of minerals to refine the geotechnical model, geophysical studies of structural heterogeneities in the rock massif, computer simulation of induced geotechnical processes.
References in English / Список литературы на английском языке
1. Sabdenbekuly O. Technogenic geomechanics - the basic factor of technogenic action technology. 111- International collection of scientific teachings of Baikonurov. The Zhezkazgan museum, 2003. P. 231-233. (in Kazakh).
2. Sashurin A.D. Phenomena of isostasy in the development of mineral deposits // Application of the results of the study of stress fields to the solution of mining problems and engineering geology. Apatita: Kolskyfil. AN SSSR, 1985. P. 27-31.
3. Sashourin A.D. Formation of centers of technogeneous catastrophes in the area of intense mineral mining // Mining in the Arctic, Trondheim, Norway, 1996. P. 201-206. (Formation of man-made disasters in areas of intensive mining).
References / Список литературы
1. Сабденбекулы О. Техногенная геомеханика-основной фактор технологии техногенного действия. 111-Международная коллекция научных учений Байконурова. Музей Жезказгана, 2003. С. 231-233 (на казахском языке).
2. Сашурин А.Д. Явления изостазия в разработке месторождений полезных ископаемых // Приложение результатов исследования полей напряжений к решению задач горного и инженерной геологии. Apatita: Kolskyfil. СССР, 1985. С. 27-31.
3. Сашурин А.Д. Формирование центров техногенных катастроф в зоне интенсивной добычи полезных ископаемых // Горнодобывающая промышленность Арктики, Тронхейм, Норвегия, 1996. С. 201-206. (Формирование техногенных катастроф в районах интенсивной добычи полезных ископаемых).
TECHNOLOGY REVIEW "BIG DATA" AND SOFTWARE FACILITIES APPLICABLE FOR IT ANALYSIS AND PROCESSING Nazarenko Yu.L. (Russian Federation) Email: Nazarenko431 @scientifictext.ru
Nazarenko Yuri Leonidovich - Student, DEPARTMENT OF INFORMATICS AND COMPUTER SCIENCE, DON STATE TECHNICAL UNIVERSITY, ROSTOV-ON-DON
Abstract: the article is devoted to the review of the technology of large data (Big Data) and its features. The main characteristics that allow to distinguish this technology among others, the principles of working with it, allowing to conduct the analysis as efficiently as possible are presented. The necessity of using and promising application of Big Data technologies is grounded, the results of using this technology are considered. The analysis of existing software and hardware used for analysis and processing of large data such as Hadoop, MadReduce and NoSQL is carried out, their advantages and features are highlighted.
Keywords: large data, big data, Hadoop, MapReduce, NoSQL, statistical analysis, scalability.
ОБЗОР ТЕХНОЛОГИИ «БОЛЬШИЕ ДАННЫЕ» (BIG DATA) И ПРОГРАММНО-АППАРАТНЫХ СРЕДСТВ, ПРИМЕНЯЕМЫХ ДЛЯ ИХ АНАЛИЗА И ОБРАБОТКИ Назаренко Ю.Л. (Российская Федерация)
Назаренко Юрий Леонидович - студент, факультет информатики и вычислительной техники, Донской государственный технический университет, г. Ростов-на-Дону
Аннотация: статья посвящена обзору технологии «большие данные» (Big Data) и её особенностей. Приведены основные характеристики, позволяющие выделить эту технологию среди прочих, принципы работы с ней, позволяющие проводить анализ максимально эффективно. Обоснованы необходимость использования и перспективность применения технологий Big Data, рассмотрены результаты применения этой технологии. Проведен анализ существующих программно-аппаратных средств, использующихся для анализа и обработки больших данных, таких как Hadoop, MapReduce и NoSQL, выделены их преимущества и особенности. Ключевые слова: большие данные, Big Data, Hadoop, MapReduce, NoSQL, статистический анализ, масштабируемость.
Введение. Большие данные (англ. big data) — совокупность подходов, инструментов и методов обработки структурированных неструктурированных данных огромных объёмов и значительного многообразия для получения воспринимаемых человеком результатов, эффективных в условиях непрерывного прироста,