Научная статья на тему 'GEOLOGICAL AND GEOCHEMICAL EXPLORATION METHODS FOR MINERAL RESOURCES (SKARN DEPOSITS AND RARE EARTH ELEMENTS)'

GEOLOGICAL AND GEOCHEMICAL EXPLORATION METHODS FOR MINERAL RESOURCES (SKARN DEPOSITS AND RARE EARTH ELEMENTS) Текст научной статьи по специальности «Науки о Земле и смежные экологические науки»

CC BY
261
77
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
SKARN MINERALIZATION / ORE DEPOSITS / RARE EARTH ELEMENTS / DISPERSION HALOS / GEOCHEMISTRY / METALLOGENY / MIASS REGION

Аннотация научной статьи по наукам о Земле и смежным экологическим наукам, автор научной работы — Ibrahim Abdalla Elsharif, Kotel’nikov Aleksandr Evgen’evich

Relevance and purpose of the work. Geological and geochemical methods have different results along the exploration process, therefore, using appropriate and frontier methods is significant. Although, huge methods have been applied in last recent years, however many methods are required to improve for more accuracy and reliable results. The aim of the paper is to review different geological and geochemical methods which lead to valuable outcome and discovery concealed ore deposits. Methods of research - search and review of the most effective methods of geochemical, geophysical, geological, and other methods, search in search of skarn mineralization. Results of the work. Remote sensing techniques have dynamic role in geological mapping and detecting features and spectrum characteristics. Combining geochemical and petrographic survey with remote sensing data to determine the anomaly and perspective zones, particularly for the elements in the surface (dispersion halos). Using frontier geochemical methods is a crucial to clarify the sources of magma and the evolutionary processes of skarn mineralization and associated minerals. Geophysics can provide vital impact for mineral exploration and well understanding of ore deposit models. Understanding regional geology, structures and tectonic setting using geophysical modelling can provide information about new mineral resources and extension of skarn mineralization. Metallogenic theories integrated with different methods are significant keys in mineralization genesis and indications of rare elements existence. Geostatistical analysis has become one of the most important approaches for mineral exploration such as multivariate statistical methods which have been used in geochemical exploration, bedrock mapping, and the identification of pathfinder and rare earth elements associated with skarn mineralization. Conclusions. Multiple geological exploration methods such as geochemistry, geophysics and remote sensing with field observation would provide a full insight about genetic exploration model and deep understanding of mineralization mechanism.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «GEOLOGICAL AND GEOCHEMICAL EXPLORATION METHODS FOR MINERAL RESOURCES (SKARN DEPOSITS AND RARE EARTH ELEMENTS)»

Науки о Земле _Earth sciences_

УДК 550.8+550.4+550.3 http://doi.org/10.21440/2307-2091-2022-2-7-15

Geological and Geochemical exploration methods for mineral resources (skarn deposits and rare earth elements)

Mohammed Abdalla Elsharif IBRAHIM* Aleksandr Evgen'evich KOTEL'NIKOV**

Peoples' Friendship University of Russia (RUDN University), Moscow, Russia Abstract

Relevance and purpose of the work. Geological and geochemical methods have different results along the exploration process, therefore, using appropriate and frontier methods is significant. Although, huge methods have been applied in last recent years, however many methods are required to improve for more accuracy and reliable results. The aim of the paper is to review different geological and geochemical methods which lead to valuable outcome and discovery concealed ore deposits.

Methods of research - search and review of the most effective methods of geochemical, geophysical, geological, and other methods, search in search of skarn mineralization.

Results of the work. Remote sensing techniques have dynamic role in geological mapping and detecting features and spectrum characteristics. Combining geochemical and petrographic survey with remote sensing data to determine the anomaly and perspective zones, particularly for the elements in the surface (dispersion halos). Using frontier geochemical methods is a crucial to clarify the sources of magma and the evolutionary processes of skarn mineralization and associated minerals. Geophysics can provide vital impact for mineral exploration and well understanding of ore deposit models. Understanding regional geology, structures and tectonic setting using geophysical modelling can provide information about new mineral resources and extension of skarn mineralization. Metallogenic theories integrated with different methods are significant keys in mineralization genesis and indications of rare elements existence. Geostatistical analysis has become one of the most important approaches for mineral exploration such as multivariate statistical methods which have been used in geochemical exploration, bedrock mapping, and the identification of pathfinder and rare earth elements associated with skarn mineralization.

Conclusions. Multiple geological exploration methods such as geochemistry, geophysics and remote sensing with field observation would provide a full insight about genetic exploration model and deep understanding of mineralization mechanism.

Keywords: Skarn mineralization, ore deposits, rare earth elements, dispersion halos, geochemistry, metallogeny, Miass region.

Introduction

Skarn deposits have an important role in sustainable economic development across the world [1]. A huge skarn deposits have been explored recent years using different methods such as clarifying genesis processes, geochemistry and geophysical techniques; conversely, these geological methods were incomplete and new exploration approach require an advanced scientific methodology which has been used in last recent year in geological resources to understand metallogeny of ore deposits, mineralization process and the origin of deposits [2]. Some conceptual methods and advanced geochemistry, geophysics and other techniques such as remote sensing, Geostatistic and 3D geological modelling that will guide to classify ore deposits and related elements as significant research methodology

according to literature review on my research [3]. Application of modern geophysics methods will be part in this report as effective tool in mineral resources in the few past years [4, 5].

Integration nemours exploration methods are valuable and effective technique in describing and understanding ore deposits. The main area of my research is understanding the genesis, geology, geochemistry, and general features of the skarn deposits. In addition, determination the origin of magma and fluid source which include a contamination and partial melting during ascent of magma which has been a source of mineralization in some skarn deposits worldwide [6-9]. Understanding the pattern of REE and distribution of trace element such as zircon is a key method to study skarn, mineral-

ED1042205090@rudn. university

https://orcid.org/0000-0002-5634-5695 "[email protected]

https://orcid.org/0000-0003-0622-8391

ization stages and hydrothermal evolution [10-14]. Hence, this paper will provide a review for modern and frontier methods which have been used in mineral exploration and prospecting for many different ore deposits. Besides, giving and overview of the important methods and concept to study the metalloge-ny, geology and geochemical characteristics of skarn alteration and associated elements. Interestingly, the skarn alteration was observed with marble deposits and granitoid intrusion (fig. 1, 2) in the southern Ural, Miass region; the observation was during the field trip of Department of mineral developing and oil&gas engineering, Engineering academy, Peoples' Friendship University of Russia. Skarn mineralization are widely distributed in southern Ural according to the literature review of several publication [15-18], as well as skarn alteration was identified in South Ural, Miass region associated with granitoids intrusions and Dark kingdom (marble deposit) [19].

Figure 1. Field photograph shows skarn alteration on the altered wall rock and associated minerals (garnet, diopside and epidote) Рисунок 1. Полевая фотография показывает изменение скарна в измененной вмещающей породе и сопутствующих минералах (гранат, диопсид и эпидсг)

1111111111111111111111111 |7Гф 1111111111111111111111111111111111111111111111111

Figure 2. Hand sample photograph shows the contacts between metasomatic alteration which formed at the alteration wall of carbonate rocks

Ря^носИ. Kohtxktki между мeтиcомaтичecкади изменениями KOTnpsie oбpикosaлинь в pнмeиeиныи теи^ющих карбонатных породах

Remote sensing for geological mapping and mineral exploration. Separately, processing different remote sensing dataset at each stage of mineral exploration is an effective method in newly discovered ore deposits in recent years. Appling remote sensing in the beginning of exploration to build a geological map, this map includes lithological units, dispersions halos linked to alteration zone as significant process in mineralization, regional structure analysis to determine perspective zones [20].

Remote sensing techniques have significant role to detect features and spectrum characteristics of mineral and integrated with geochemical data to determine the geochemical anomaly and perspective zones, particularly for the elements in the surface [21]. Implication geochemical methods are important in mapping and mineral exploration as traditional techniques to provide many geochemical data, in contrary, geochemical methods are expensive and coast time to cover a regional area. In addition, the results and prediction are not satisfactory in this domain, unless combined with geophysics or remote sensing to support and confirm the result.

Remote sensing could be important tool for regional and large-scale structural analysis and field mapping with high efficiency and accuracy imagery, typically, in the study areas with high terrain and hard to access. The advantage of using remote sensing is cheap and reduce the period of geological mapping [22].

Remote sensing for exploration combined with geochem-ical data and geophysical survey, considering as main tool in mining industries in many countries (USA, China, Canada, Germany, and Australia) in the last few years. Nemours ore deposits have been discovered using remote sensing data such as Aster data and Landsat-8 image (e. g., gold deposit in Red sea hills of NE Sudan, porphyry deposits in southern part of the Kerman copper belt in Iran and detected chromite deposit in the Logar Massif in Afghanistan [23, 24].

Geochemical methods. Using frontier geochemical methods categorising granitoid intrusions and carbonites rocks is a crucial to clarify the sources of magma and the evolutionary proces ses of granitic intrusions that intruded the carbonate rock; such asmarblein the study area. Understanding the origin of granite requires more information about the age, petrographic features, determine significant major and trace elements contents and isotopic constitutions such as zircon, Hf, Sr, Nd, O, C, etc. Many authors constrained origin of the granite and establish intensive survey to determine the age and evolutionary of intrusions to explore associated gold deposits and other related ore deposits [25].

These methods were used successfully to discover numerous ore deposits worldwide, based on guided understanding of the origin and mineralization processes. Using zircon indicators of fluid origin and magma source will give a clear insight and well understanding of ore genesis and mineralization system in the research. The potential zone of skarn deposits demanded understanding of the geological evolutionary processes for continental/oceanic crust and the magmas origin [26].

Geophysics methods. Progressively, geophysical methods have been developed to advances as technique in interpretation and visualization data. Based on the different physical feature between alteration zones and host rock. Geophysics can preside vitol impaot for mineral exploration and well understanding of skarn models improvements. Many geological

a

Figure 3. Examples of 3D models: a -predictive model of sedimentary fans to SEDEX deposits [31]; b - 3D model of the ore zone occurrence and extension, constructed using geophysical and geological data [32]

рисунок 3. Примеры 3D-моделей: а - прогнозная модель осадочных отложений месторождения SEDEX [31]; б - 3D-модель рудной зоны, построенная с использованием геофизических и геологических данных [32]

1000 100 1

0.1 (ррт'

2000 4000 6000 8000 10000 12000 14000(т)

------W^fl ост)

600 1200 I 1800 2400 _ü! 10-5ms-;

Г^Р'.Щ °(т) 600 1200

Figure 4. Examples of metallogenic models of ore mineralization: a - Magma skarn with different deposit type (numbers in circles): 1 -Magma-skarn type Mo(W) orebody, 2 - Skarn-type Mo/Zn orebody, 3 - Skarn-type Zn(Pb) orebody, 4 - Structure hydrothermal type Zn (Pb) orebody, 5 - Structure hydrothermal type Pb-Zn-Ag(Au) orebody; b - 3D model of skarn deposit; c - 3D geological model; d - Geophysical (gravity and magnetic residual) and geochemical sections; e - concealed granite-skarn deposits demonstrated by exploration section [30] рисунок 4. Примеры металлогенических моделей рудной минерализации: а - магматический скарн с различным типом месторождения (цифры в кружочках): 1 - скарновое магматическое рудное тело Mo(W), 2 - скарновое рудное тело Mo/Zn, 3 - скарновое рудное тело Zn(Pb), 4 - структурное гидротермальное рудное тело Zn (Pb), 5 - структурное гидротермальное рудное тело Pb-Zn-Ag(Au); б - 3D-модель месторождения скарна; в - 3D-геологическая модель; г - геофизические (гравитационные и магнитные остаточные) и геохимические разрезы; д - скрытые гранитно-скарновые отложения, изображенные на разведочном разрезе [30]

problems have been solved using geophysical methods in last recent years. Gravity techniques being used at large scale for exploration of gold perspective zones and hydrothermal alteration at limited area [27]. Therefore, as advance methods for skarn deposit modelling, geophysics would be a suitable tool to apply for further exploration in the study area.

Multiple geological exploration methods such as geochemistry, geophysics and remote sensing with field survey would give a full insight and the appropriate parameters for genetic exploration model and deep understanding of mineralization mechanism in the study area.

Predictive models of ore deposits. Geological investigation, geophysical methods, geochemistry and modern metallogenic theories are significant keys in mineralization progenesis and

three-dimensional geological modelling of concealed ore deposits [28-30].

Li and Xi (2015) proposed a genetic model method for sedimentary exhalative ore deposits and studied features of SEDEX mineralization in Pb and Zn ore deposits in specific province in China. Ore deposits 3D genetic model, the geochemistry of mineralization, concentration, ore deposit nature such as texture and structure, mineral grain and assembly have been investigated. Li and Xi (2015) proposed fan model for such SEDEX mineralization (fig. 3, a). Predictive model as a new method could be valuable for understanding the mineralization process and genesis mechanism of sedimentary fans of exhalative-sedimentary ore deposits [31]. Developing metal-logenic prediction and optimization for mineral exploration as

result of genetic model. Appling frontier methods considered as effective approach in different ore deposits with different mechanism and environment, this would give a good result to discover more concealed ore deposits.

A comprehensive analysis of geological information and geophysical data allows you to create models that more accurately reflect the real situation in the subsurface. An example of a three-dimensional model of gold mineralization of a skarn deposit is shown in the figure (fig. 3, b).

Geological information on a large scale clearly could be interpreted in 2D geographic information system (GIS), still, ore deposits and mechanism of ore-forming fluids required to be represented in 3D to 4D genetic model methods. Genesis and metallogenic using predictive geological 3D modelling are significant for ore deposits exploration. Based on geological, geophysical and geochemical data Wang et al. (2015) integrated 3D modelling for Mo to improve understanding the development of regional geology,

ore-forming mechanism and the metallogeny of ore mineralization (fig. 4). 3D geological modelling has significant impact in executive process about potential ore for mineral extraction.

Gold deposit, require appropriate post-mineralization and tectonic processes, therefore, the mineral systems model considers production of ore fluids source in a fit geodynamic setting through lithosphere and crustal structure and suitable conditions for ore hydrothermal transport to the trap which formed the mineral deposit (fig. 5) [33].

For understanding more about elemental system and its remobilization, regional area must be covered. In addition, the dispersion halos and altered rock provide well insight about mineralization distribution, therefore, holistic genetic model would be more reliable for gold deposits prediction. Several authors used mineral distribution, migration of elements and source of fluids technique [33] to confirm the orogenic gold models (hydrothermal models).

Figure 5. Diagrams demonstrate gold genetic model based on ore-forming source: a - metamorphic models with low depth crustal sources; b - hydrothermal models from heterogenic magmatic origin; c - metamorphic models [33]

Рисунок 5. Диаграммы показывают генетическую модель золотой минерализации, основанную на рудообразующем источнике:

а - метаморфические модели с источниками в земной коре малой глубины; б - гидротермальные модели гетерогенного магматического происхождения; в - метаморфические модели [33]

Geostatistical analysis. Geostatistical analysis will be applied to support the results using many techniques which suitable to identify associated elements such as cluster analysis. It has become one of the most important approaches for classifying variables or observations into meaningful multivariate homogenous groups; members of individual groups are distinguishable from members of other groups in recent years. The observations are mapped to clusters with centroids, which summarize the cluster information and provide a high-level understanding of the data structure. Cluster analysis algorithms can be divided into two types: hierarchical and non-hierarchical algorithms [34]. Multivariate statistical analysis is widely utilized in exploration geochemistry for a range of purposes. Multivariate statistical analysis is concerned with data that consists of sets of some set's measurements on a variety of individuals or objects [35, 36]. Appling factor and cluster analysis techniques to geochemi-cal data from the study area, to understand the predominant element associations, geochemical processes in multi-element data and ore deposit environment. Further, geochemical background based on pathfinder. Multivariate statistical methods have been used in geochemical exploration, bed-

rock mapping, and the identification of pathfinder elements for nemours deposits type [37, 38].

Conclusion

The most significant methods for mineral exploration including geochemistry, geophysics, remote sensing, geostatistical analysis and integrating these methods with ore deposits theories to understand metallogeny and paragenesis for skarn deposits. Using frontier geochemical methods is a crucial to clarify the sources of magma, mineralization, and the evolutionary processes of skarn deposits. Geophysics can provide vital impact for mineral exploration and well understanding of ore deposit models. Geophysics techniques being used at large scale for exploration. Geostatistical analysis has become one of the most important approaches for mineral exploration such as multivar-iate statistical methods which have been used in geochemical exploration, bedrock mapping, and the identification of pathfinder elements for mineralization. Further, improving the regional mapping techniques would be valuable to discover more mineralization in the region and geological observations could identify the structure controls on mineralization. Different exploration methods and techniques should be applied and develop tools to discover numerous concealed ore deposits.

Acknowle dgments

This paper has been supported by the RUDN University Strategic Academic Leadership Program. Declaration of the Competing Interest

The authors declare that they have no know competing financial interests or personal relationships that could have appeared to influence the work in this paper.

REFERENCES

1. Abu-Fatima M., Marignac C., Cathelineau M., Boiron M.-C. 2021, Metallogeny of a Pan-African Oceanic Arc: VHMS and Gold Deposits in the Ariab-Arbaat Belt, Haya Terrane, Red Sea Hills (Sudan). Gondwana Research, vol. 98, pp. 76-106. https://doi.org/10.1016/j.gr.2021.06.001

2. Maslennikov V. V., Maslennikova S. P., Large R. R., Danyushevsky L. V. 2009, Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Economic Geology, vol. 104, pp. 1111-1141. https://doi.org/10.2113/gsecongeo.104.8.1111

3. Belkovsky A. I., Nesterov A. R. 2018, Mineralogy of Manganese Skarns, Genetically Related to Alkaline Granites (on the Example of the Ufa Mine, Southern Urals). Lithosphere, vol. 18, no. 1, pp. 127-132. (In Russ.) https://doi.org/10.24930/1681-9004-2018-18-1-127-132

4. Chu S., Zeng Q., Liu J., Wang Y. 2019, Early-Middle Jurassic Magmatism and Skarn-Porphyry Mineralization in NE China: Geochronological and Geochemical Constraints from the Sankuanggou Skarn Fe-Cu-(Mo) Deposit, and Tectonic Implications. Journal of Geochemical Exploration, vol. 200, pp. 84-103. https://doi.org/10.1016Zj.gexplo.2019.01.013

5. Cumming W. 2016, Geophysics and Resource Conceptual Models in Geothermal Exploration and Development. In: Geothermal Power Generation: Developments and Innovation. Elsevier Ltd., pp. 33-75. http://dx.doi.org/10.1016/B978-0-08-100337-4.00003-6

6. Epanchintsev S. G., Popov V. A. 2015, Miarolitic minerals from the Maly Kuybas magnetite skarn deposit. Mineralogy, no. 1, pp. 49-58.

7. GeoJet exploration. Skarnified-type gold deposits. https://geojetexploration.com/en/primary-deposits/#

8. Georgievskiy A. F., Bugina V. M., Kotelnikov A. E., Georgievskiy A. A., Mahinja E., Gamil'ton Z. A. 2021, Vein-Rock in the Dark Kingdom Marble Deposit (South Ural) and Their Possible Connection with Gold Ore Mineralization. Earth science: International science and technology conference, vol. 666(2), pp. 1-8, article number 022024. https://doi.org/10.1088/1755-1315/666/2/022024

9. Siani M. G., Lentz D. R., Nazarian M. 2020, Geochemistry of Igneous Rocks Associated with Mineral Deposits in the Tarom-Hashtjin Metallogenic Province, NW Iran: An Analysis of the Controls on Epithermal and Related Porphyry-Style Mineralization. Ore Geology Reviews, vol. 126, September, article number 103753. https://doi.org/10.1016/j.oregeorev.2020.103753

10. Groves D. I., Santosh M., Zhang L. 2020, A Scale-Integrated Exploration Model for Orogenic Gold Deposits Based on a Mineral System Approach. Geoscience Frontiers, vol. 11, issue 3, pp. 719-738. https://doi.org/10.1016/j.gsf.2019.12.007

11. Han J., Kamber M. 2006, Data Mining: Concepts and Techniques, Mining Stream, Time-Series and Sequence Data. 2nd edition. San Francisco, CA: Morgan Kaufmann Publishers, pp. 383-408.

12. Ibrahim M., Kotelnikov F., Podolko P., Kotelnikova E. 2021, Remote Sensing Data for Geological Mapping and Gold Prospecting of Inteet Area, Northern Sudan. Ed. V. Kankhva. E3S Web of Conferences, vol. 258, pp. 1-9, article number 03009. https://www.e3s-conferences.org/10.1051/ e3sconf/202125803009

13. Kumah A. 2006, Sustainability and Gold Mining in the Developing World. Journal of Cleaner Production, vol. 14, issues 3-4, pp. 315-323. https://doi.org/10.1016/jjclepro.2004.08.007

14. Kumar P. J. S., Jegathambal P., James E. J. 2011, Multivariate and Geostatistical Analysis of Groundwater Quality in Palar River Basin. Internation journal of geology, vol. 5, issue 4, pp. 108-119.

15. Li H., Xi X.-S. 2015, Sedimentary Fans: A New Genetic Model for Sedimentary Exhalative Ore Deposits. Ore Geology Reviews, vol. 65, part 1, pp. 375-389. http://dx.doi.org/10.1016/j.oregeorev.2014.10.001

16. Manuel R., Brito M. D. G., Chichorro M., Rosa C. 2017, Remote Sensing for Mineral Exploration in Central Portugal. Minerals, vol. 7, issue 10, pp. 1-30. https://doi.org/10.3390/min7100184

17. Munteanu M., Yao Y., Wilson A. H., Chunnett G., Luo Y., He H., Cioaca M., Wen M. 2013, Panxi Region (South-West China): Tectonics, Magmatism and Metallogenesis. A Review. Tectonophysics, vol. 608, pp. 51-71. https://doi.org/10.1016/j.tecto.2013.09.008

18. Nabatian G., Li X.-H., Honarmand M., Melgarejo J. C. 2017, Geology, Mineralogy and Evolution of Iron Skarn Deposits in the Zanjan District, NW Iran: Constraints from U-Pb Dating, Hf and O Isotope Analyses of Zircons and Stable Isotope Geochemistry. Ore Geology Reviews, vol. 84, pp. 42-66. http://dx.doi.org/10.1016/j.oregeorev.2016.10.029

19. Nude P. M., Asigri J. M., Yidana S., M., Arhin E., Foli G., Kutu J. M. 2012, Identifying Pathfinder Elements for Gold in Multi-Element Soil Geochemical Data from the Wa-Lawra Belt, Northwest Ghana: A Multivariate Statistical Approach. International Journal of Geosciences, vol. 3, no. 1, pp. 62-70. http://dx.doi.org/10.4236/ijg.2012.31008

20. Pons J., Franchini M., Meinert L., Lopez-Escobar L., Maydagan L. 2010, Geology, Petrography and Geochemistry of Igneous Rocks Related to Mineralized Skarns in the NW Neuquen Basin, Argentina: Implications for Cordilleran Skarn Exploration. Ore Geology Review, vol. 38, issues 1-2, pp. 37-58. https://doi.org/10.1016/j.oregeorev.2010.05.006

21. Puchkov V. N. 2017, General Features Relating to the Occurrence of Mineral Deposits in the Urals: What, Where, When and Why. Ore Geology Reviews, vol. 85, pp. 4-29. http://dx.doi.org/10.1016/j.oregeorev.2016.01.005

22. Rasmussen K. L., Mortensen J. K. 2013, Magmatic Petrogenesis and the Evolution of (F : Cl : OH) Fluid Composition in Barren and Tungsten Skarn-Associated Plutons Using Apatite and Biotite Compositions: Case Studies from the Northern Canadian Cordillera. Ore Geology Reviews, vol. 50, pp. 118-142. http://dx.doi.org/10.1016/j.oregeorev.2012.09.006

23. Reif D., Grasemann B., Faber R. H. 2011, Quantitative Structural Analysis Using Remote Sensing Data: Kurdistan, Northeast Iraq. AAPG Bulletin, vol. 95, issue 6, pp. 941-956. https://doi.org/10.1306/11151010112

24. Reimann C., Filzmoser P., Garrett R. G. 2002, Factor Analysis Applied to Regional Geochemical Data: Problems and Possibilities. Applied Geochemistry, vol. 17, issue 3, pp. 185-206. https://doi.org/10.1016/S0883-2927(01)00066-X

25. Robert F., Brommecker R., Bourne B. T., Dobak P. J., McEwan C. J., Rowe R. R., Zhou X. 2007, Models and exploration methods for major gold deposit types. B. Milkereit (ed.). Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, pp. 691-711.

26. Roonwal G. S. 2018, Mineral Exploration: Practical Application. Springer Geology. Ch. 4. Remote Sensing in Mineral Exploration. Singapore: Springer, 298 p.

27. Rücker C., Günther T., Wagner F. M. 2017, PyGIMLi: An Open-Source Library for Modelling and Inversion in Geophysics. Computers and Geosciences, vol. 109, pp. 106-123. https://doi.org/10.1016Zj.cageo.2017.07.011

28. Sadeghi M., Billay A., Carranza E. J. M. 2015, Analysis and Mapping of Soil Geochemical Anomalies: Implications for Bedrock Mapping and Gold Exploration in Giyani Area, South Africa. Journal of Geochemical Exploration, vol. 154, pp. 180-193. http://dx.doi.org/10.1016/j. gexplo.2014.11.018

29. Shi K., Ulrich T., K., X., Li S., Wang R. 2020, Hydrothermal Evolution and Ore Genesis of the Laozuoshan Au Skarn Deposit, Northeast China: Constrains from Mineralogy, Fluid Inclusion, and O-C-S-Pb Isotope Geochemistry. Ore Geology Reviews, vol. 127(March), article number 103879. https://doi.org/10.1016/j.oregeorev.2020.103879

30. Shirmard H., Farahbakhsh E., Müller R. D., Chandra R. 2021, A Review of Machine Learning in Processing Remote Sensing Data for Mineral Exploration. Remote Sensing of Environment, vol. 268 (February 2021), article number 112750. https://doi.org/10.1016/j.rse.2021.112750

31. Song S., Mao J., Zhu Y., Yao Z., Chen G., Rao J., Ouyang Y. 2018, Partial-Melting of Fertile Metasedimentary Rocks Controlling the Ore Formation in the Jiangnan Porphyry-Skarn Tungsten Belt, South China: A Case Study at the Giant Zhuxi W-Cu Skarn Deposit. Lithos, vol. 304-307, pp. 180-199. https://doi.org/10.1016/j.lithos.2018.02.002

32. Sun M., Tang J., Chen W., Ma X., Song Y., Zhang Z., Liu Q. 2021, Timing and Origin of the Shesuo Skarn Cu-Polymetallic Deposit in the Northern Lhasa Subterrane, Central Tibet: Implications for Early Cretaceous Cu(Mo) Metallogenesis in the Bangong-Nujiang Metallogenic Belt. Ore Geology Reviews, vol. 129 (July 2020), article number 103919. https://doi.org/10.1016/j.oregeorev.2020.103919

33. Vikentyev I., Vikent'eva O., Tyukova E., Nikolsky M., Ivanova J., Sidorova N., Tonkacheev D., Abramova V., Blokov V., Spirina A., Borisova D., Palyanova G. 2021, Noble Metal Speciations in Hydrothermal Sulphides. Minerals, vol. 11(5), pp. 1-69. https://doi.org/10.3390/min11050488

34. Wang G., Li R., Carranza E. J. M., Zhang S., Yan C., Zhu Y., Qu J., Hong D., Song Y., Han J., Ma Z., Zhang H., Yang F. 2015, 3D Geological Modeling for Prediction of Subsurface Mo Targets in the Luanchuan District, China. Ore Geology Reviews, vol. 71 (March 2015), pp. 592-610. http://dx.doi.org/10.1016/j.oregeorev.2015.03.002

35. Wang G., Ma Z., Li R., Song Y., Qu J., Zhang H., Yan C., Han J. 2017, Integration of Multi-Source and Multi-Scale Datasets for 3D Structural Modeling for Subsurface Exploration Targeting, Luanchuan Mo-Polymetallic District, China. Journal of Applied Geophysics, vol. 139, pp. 269-290. http://dx.doi.org/10.1016/jjappgeo.2017.02.027

36. Wang L., Wu X., Zhang B., Li X., Huang A., Meng F., Dai P. 2019, Recognition of Significant Surface Soil Geochemical Anomalies Via Weighted 3D Shortest-Distance Field of Subsurface Orebodies: A Case Study in the Hongtoushan Copper Mine, NE China. Natural Resources Research, vol. 28(3), pp. 587-607. https://doi.org/10.1007/s11053-018-9410-7

37. Xiong X., Zhu L., Zhang G., Zheng J., Jiang H. 2021. Insights into the Skarn Cu Mineralization Processes of an Intracontinental Setting: A Case Study of the Xiaohekou Deposit, Southern Qinling Orogen, China. Journal of Geochemical Exploration, vol. 230(June), article number 106862. https://doi.org/10.1016/j.gexplo.2021.106862

38. Yang Q., Ren Y.-s., Hao Y.-j., Wang B., Sun Z.-m., Li J.-m. 2019, Ore Fluid, Geochronology and Tectonic Setting of Mesothermal Gold Metallogeny in Southeastern Jilin Province, Northeast China: A Case Study of the Shajingou Gold Deposit. Ore Geology Reviews, vol. 109 (April), pp. 229-252. https://doi.org/10.1016/j.oregeorev.2019.04.008

The article was received on April 3, 2022

УДК 550.8+550.4+550.3 http://doi.org/10.21440/2307-2091-2022-2-7-15

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Геолого-геохимические методы поисков и разведки полезных ископаемых (скарновые месторождения и редкоземельные элементы)

Мохаммед Абдалла Альшариф ИБРАХИМ" Александр Евгеньевич КОТЕЛЬНИКОВ"

Российский университет дружбы народов (РУДН), Москва, Россия Аннотация

Актуальность и цель работы. Геологические и геохимические методы дают разные результаты в процессе поисков и разведки, поэтому важно использовать эффективные и передовые методы. Несмотря на то, что в последние годы применялось множество различных методов, многие из них требуют усовершенствования для получения более точных и надежных результатов. Цель данной статьи - провести обзор различных геологических и геохимических методов, которые приводят к значимым результатам, позволяющим обнаруживать скрытые рудные месторождения.

Метод проведения работы - поиск и обзор наиболее эффективных методов геохимических, геофизических, геологических и других, используемых при поисках скарновой минерализации.

Результаты работы. Методы дистанционного зондирования играют важную роль при проведении геологического картирования, обнаружении отличительных признаков и спектральных характеристик. Информативным является сочетание геохимической и петрографической съемки с данными дистанционного зондирования при определении аномальных и перспективных зон, особенно для элементов на поверхности земли (ореолов рассеяния). Использование передовых геохимических методов имеет решающее значение для выяснения источников магмы и генетических процессов формирования скарнового оруденения и сопутствующих минералов. Применение геофизических методов может оказать существенное влияние на поиск и разведку полезных ископаемых и понимание моделей рудных месторождений. Знание региональной геологии, структурной и тектонической обстановки, опирающееся на геофизическое моделирование, может предоставить информацию о новых зонах скарнового оруденения, а также других полезных ископаемых. Теоретические представления о металлогении района, объединенные с различными методами, являются важными ключами к пониманию генезиса оруденения и выявления потенциальных для обнаружения зон редкометалльной минерализации. Геостатистический анализ стал одним из наиболее важных подходов при поисках и разведке полезных ископаемых, особенно многомерные статистические методы, которые широко используются в геохимической разведке, картировании коренных пород и обнаружении элементов-спутников и редкоземельных элементов, связанных со скарновой минерализацией.

Выводы. Многочисленные методы геологических поисков и разведки, такие как геохимические, геофизические и дистанционное зондирование с полевыми наблюдениями, в настоящий момент могут обеспечить наиболее полное представление о генетической модели рудных месторождений и глубокое понимание вопросов минералообразования.

Ключевые слова: скарновая минерализация, рудные месторождения, редкоземельные элементы, ореолы рассеяния, геохимия, металлогения, Миасский район.

ЛИТЕРАТУРА

1. Abu-Fatima M., Marignac C., Cathelineau M., Boiron M.-C. Metallogeny of a Pan-African Oceanic Arc: VHMS and Gold Deposits in the Ariab-Arbaat Belt, Haya Terrane, Red Sea Hills (Sudan). Gondwana Research. 2021. Vol. 98. P. 76-106. https://doi.org/10.1016/j.gr.2021.06.001

2. Maslennikov V. V., Maslennikova S. P., Large R. R., Danyushevsky L. V. Study of Trace Element Zonation in Vent Chimneys from the Silurian Yaman-Kasy Volcanic-Hosted Massive Sulfide Deposit (Southern Urals, Russia) Using Laser Ablation-Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS). Economic Geology. 2009. Vol. 104. P. 1111-1141. https://doi.org/10.2113/gsecongeo.104.8.1111

3. Белковский А. И., Нестеров А. Р. Минералогия марганцевых скарнов, генетически связанных со щелочными гранитами (на примере Уфимского рудника, Южный Урал). Литосфера. 2018. Т. 1. 18. № 1. С. 127-132. https://doi.org/10.24930/1681-9004-2018-18-1-127-132

4. Chu S., Zeng Q., Liu J., Wang Y. Early-Middle Jurassic Magmatism and Skarn-Porphyry Mineralization in NE China: Geochronological and Geochemical Constraints from the Sankuanggou Skarn Fe-Cu-(Mo) Deposit, and Tectonic Implications // Journal of Geochemical Exploration. 2019. Vol. 200. P. 84-103. https://doi.org/10.1016/j.gexplo.2019.01.013

5. Cumming W. Geophysics and Resource Conceptual Models in Geothermal Exploration and Development. In: Geothermal Power Generation: Developments and Innovation. Elsevier Ltd., 2016. P. 33-75. http://dx.doi.org/10.1016/B978-0-08-100337-4.00003-6

ED1042205090@rudn. university

https://orcid.org/0000-0002-5634-5695 "[email protected]

https://orcid.org/0000-0003-0622-8391

6. Епанчинцев С. Г., Попов В. А. Минералы миарол-скарново-магнетитового месторождения. Малый Куйбас. Минералогия. 2015. № 1.

C. 49-58.

7. GeoJet exploration. Skarnified-type gold deposits. https://geojetexploration.eom/en/primary-deposits/#

8. Georgievskiy A. F., Bugina V. M., Kotelnikov A. E., Georgievskiy A. A., Mahinja E., Gamil'ton Z. A. Vein-Rock in the Dark Kingdom Marble Deposit (South Ural) and Their Possible Connection with Gold Ore Mineralization. Earth science: International science and technology conference. 2021. Vol. 666(2). P. 1-8. Article number 022024. https://doi.org/10.1088/1755-1315/666/2/022024

9. Siani M. G., Lentz D. R., Nazarian M. Geochemistry of Igneous Rocks Associated with Mineral Deposits in the Tarom-Hashtjin Metallogenic Province, NW Iran: An Analysis of the Controls on Epithermal and Related Porphyry-Style Mineralization. Ore Geology Reviews. 2020. Vol. 126. September. Article number 103753. https://doi.org/10.1016/j.oregeorev.2020.103753

10. Groves D. I., Santosh M., Zhang L. A Scale-Integrated Exploration Model for Orogenic Gold Deposits Based on a Mineral System Approach. Geoscience Frontiers. 2020. Vol. 11, issue 3. P. 719-738. https://doi.org/10.1016/j.gsf.2019.12.007

11. Han J., Kamber M. Data Mining: Concepts and Techniques, Mining Stream, Time-Series and Sequence Data. 2nd edition. San Francisco, CA: Morgan Kaufmann Publishers, 2006. P. 383-408.

12. Ibrahim M., Kotelnikov F., Podolko P., Kotelnikova E. Remote Sensing Data for Geological Mapping and Gold Prospecting of Inteet Area, Northern Sudan. Ed. V. Kankhva. E3S Web of Conferences. 2021. Vol. 258. P. 1-9. Article number 03009. https://www.e3s-conferences. org/10.1051/e3sconf/202125803009

13. Kumah A. Sustainability and Gold Mining in the Developing World. Journal of Cleaner Production. 2006. Vol. 14, issues 3-4. P. 315-323. https://doi.org/10.1016/jjclepro.2004.08.007

14. Kumar P. J. S., Jegathambal P., James E. J. Multivariate and Geostatistical Analysis of Groundwater Quality in Palar River Basin. Internation journal of geology 2011. Vol. 5, issue 4. P. 108-119.

15. Li H., Xi X.-S. Sedimentary Fans: A New Genetic Model for Sedimentary Exhalative Ore Deposits. Ore Geology Reviews. 2015. Vol. 65, part 1. P. 375-389. http://dx.doi.org/10.1016/j.oregeorev.2014.10.001

16. Manuel R., Brito M. D. G., Chichorro M., Rosa C. Remote Sensing for Mineral Exploration in Central Portugal. Minerals. 2017. Vol. 7, issue 10. P. 1-30. https://doi.org/10.3390/min7100184

17. Munteanu M., Yao Y., Wilson A. H., Chunnett G., Luo Y., He H., Cioacä M., Wen M. Panxi Region (South-West China): Tectonics, Magmatism and Metallogenesis. A Review. Tectonophysics. 2013. Vol. 608. P. 51-71. https://doi.org/10.1016/j.tecto.2013.09.008

18. Nabatian G., Li X.-H., Honarmand M., Melgarejo J. C. Geology, Mineralogy and Evolution of Iron Skarn Deposits in the Zanjan District, NW Iran: Constraints from U-Pb Dating, Hf and O Isotope Analyses of Zircons and Stable Isotope Geochemistry. Ore Geology Reviews. 2017. Vol. 84. P. 42-66. http://dx.doi.org/10.1016/j.oregeorev.2016.10.029

19. Nude P. M., Asigri J. M., Yidana S., M., Arhin E., Foli G., Kutu J. M. Identifying Pathfinder Elements for Gold in Multi-Element Soil Geochemical Data from the Wa-Lawra Belt, Northwest Ghana: A Multivariate Statistical Approach. International Journal of Geosciences. 2012. Vol. 3. No. 1. P. 62-70. http://dx.doi.org/10.4236/ijg.2012.31008

20. Pons J., Franchini M., Meinert L., Lopez-Escobar L., Maydagan L. Geology, Petrography and Geochemistry of Igneous Rocks Related to Mineralized Skarns in the NW Neuquen Basin, Argentina: Implications for Cordilleran Skarn Exploration. Ore Geology Review. 2010. Vol. 38, issues 1-2. P. 37-58. https://doi.org/10.1016/j.oregeorev.2010.05.006

21. Puchkov V. N. General Features Relating to the Occurrence of Mineral Deposits in the Urals: What, Where, When and Why. Ore Geology Reviews. 2017. Vol. 85. P. 4-29. http://dx.doi.org/10.1016/j.oregeorev.2016.01.005

22. Rasmussen K. L., Mortensen J. K. Magmatic Petrogenesis and the Evolution of (F : Cl : OH) Fluid Composition in Barren and Tungsten Skarn-Associated Plutons Using Apatite and Biotite Compositions: Case Studies from the Northern Canadian Cordillera. Ore Geology Reviews. 2013. Vol. 50. P. 118-142. http://dx.doi.org/10.1016/j.oregeorev.2012.09.006

23. Reif D., Grasemann B., Faber R. H. Quantitative Structural Analysis Using Remote Sensing Data: Kurdistan, Northeast Iraq. AAPG Bulletin. 2011. Vol. 95, issue 6. P. 941-956. https://doi.org/10.1306/11151010112

24. Reimann C., Filzmoser P., Garrett R. G. Factor Analysis Applied to Regional Geochemical Data: Problems and Possibilities. Applied Geochemistry. 2002. Vol. 17, issue 3. P. 185-206. https://doi.org/10.1016/S0883-2927(01)00066-X

25. Robert F., Brommecker R., Bourne B. T., Dobak P. J., McEwan C. J., Rowe R. R., Zhou X. Models and exploration methods for major gold deposit types. B. Milkereit (ed.). Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 2007. P. 691-711.

26. Roonwal G. S. Mineral Exploration: Practical Application. Springer Geology. Ch. 4. Remote Sensing in Mineral Exploration. Singapore: Springer, 2018. 298 p.

27. Rücker C., Günther T., Wagner F. M. PyGIMLi: An Open-Source Library for Modelling and Inversion in Geophysics. Computers and Geosciences. 2017. Vol. 109. P. 106-123. https://doi.org/10.1016/j.cageo.2017.07.011

28. Sadeghi M., Billay A., Carranza E. J. M. Analysis and Mapping of Soil Geochemical Anomalies: Implications for Bedrock Mapping and Gold Exploration in Giyani Area, South Africa. Journal of Geochemical Exploration. 2015. Vol. 154. P. 180-193. Http://dx.doi.org/10.1016/j. gexplo.2014.11.018

29. Shi K., Ulrich T., K., X., Li S., Wang R. Hydrothermal Evolution and Ore Genesis of the Laozuoshan Au Skarn Deposit, Northeast China: Constrains from Mineralogy, Fluid Inclusion, and O-C-S-Pb Isotope Geochemistry. Ore Geology Reviews. 2020. Vol. 127(March). Article number 103879. https://doi.org/10.1016/j.oregeorev.2020.103879

30. Shirmard H., Farahbakhsh E., Müller R. D., Chandra R. A Review of Machine Learning in Processing Remote Sensing Data for Mineral Exploration. Remote Sensing of Environment. 2021. Vol. 268 (February 2021). Article number 112750. https://doi.org/10.1016/j.rse.2021.112750

31. Song S., Mao J., Zhu Y., Yao Z., Chen G., Rao J., Ouyang Y. Partial-Melting of Fertile Metasedimentary Rocks Controlling the Ore Formation in the Jiangnan Porphyry-Skarn Tungsten Belt, South China: A Case Study at the Giant Zhuxi W-Cu Skarn Deposit. Lithos. 2018. Vol. 304-307. P. 180-199. https://doi.org/10.1016/j.lithos.2018.02.002

32. Sun M., Tang J., Chen W., Ma X., Song Y., Zhang Z., Liu Q. Timing and Origin of the Shesuo Skarn Cu-Polymetallic Deposit in the Northern Lhasa Subterrane, Central Tibet: Implications for Early Cretaceous Cu(Mo) Metallogenesis in the Bangong-Nujiang Metallogenic Belt. Ore Geology Reviews. 2021. Vol. 129 (July 2020). Article number 103919. https://doi.org/10.1016/j.oregeorev.2020.103919

33. Vikentyev I., Vikent'eva O., Tyukova E., Nikolsky M., Ivanova J., Sidorova N., Tonkacheev D., Abramova V., Blokov V., Spirina A., Borisova

D., Palyanova G. Noble Metal Speciations in Hydrothermal Sulphides. Minerals. 2021. Vol. 11(5). P. 1-69. https://doi.org/10.3390/min11050488

34. Wang G., Li R., Carranza E. J. M., Zhang S., Yan C., Zhu Y., Qu J., Hong D., Song Y., Han J., Ma Z., Zhang H., Yang F. 3D Geological Modeling for Prediction of Subsurface Mo Targets in the Luanchuan District, China. Ore Geology Reviews. 2015. Vol. 71 (March 2015). P. 592-610. Http:// dx.doi.org/10.1016/j.oregeorev.2015.03.002

35. Wang G., Ma Z., Li R., Song Y., Qu J., Zhang H., Yan C., Han J. Integration of Multi-Source and Multi-Scale Datasets for 3D Structural Modeling for Subsurface Exploration Targeting, Luanchuan Mo-Polymetallic District, China. Journal of Applied Geophysics. 2017. Vol. 139. P. 269-290. http://dx.doi.org/10.1016/j.jappgeo.2017.02.027

36. Wang L., Wu X., Zhang B., Li X., Huang A., Meng F., Dai P. Recognition of Significant Surface Soil Geochemical Anomalies Via Weighted 3D Shortest-Distance Field of Subsurface Orebodies: A Case Study in the Hongtoushan Copper Mine, NE China. Natural Resources Research. 2019. Vol. 28(3). P. 587-607. https://doi.org/10.1007/s11053-018-9410-7

37. Xiong X., Zhu L., Zhang G., Zheng J., Jiang H. Insights into the Skarn Cu Mineralization Processes of an Intracontinental Setting: A Case Study of the Xiaohekou Deposit, Southern Qinling Orogen, China. Journal of Geochemical Exploration. 2021. Vol. 230(June). Article number 106862. https://doi.org/10.1016/j.gexplo.2021.106862

38. Yang Q., Ren Y.-s., Hao Y.-j., Wang B., Sun Z.-m., Li J.-m. Ore Fluid, Geochronology and Tectonic Setting of Mesothermal Gold Metallogeny in Southeastern Jilin Province, Northeast China: A Case Study of the Shajingou Gold Deposit // Ore Geology Reviews. 2019. Vol. 109 (April). P. 229-252. https://doi.org/10.1016/j.oregeorev.2019.04.008

Статья поступила в редакцию 3 апреля 2022 года

i Надоели баннеры? Вы всегда можете отключить рекламу.