УДК 9.91.911.9
DOI: 10.24412/1728-323X-2024-4-96-101
GEO-ECOLOGICAL ASSESSMENT OF THE LOCAL GEOSYSTEM AND THE POSSIBILITY OF USING RENEWABLE ENERGY
B. I. Kochurov, Ph. D. (Geography), Dr. Habil, Professor, Institute of Geography RAS, camertonmagazin@mail.ru, Moscow, Russia,
N. A. Marunich, Ph. D. (Geography), Associate Professor, Bendery Polytechnic Branch, Shevchenko PSU, e-mail: maruni484@mail.ru, Bender, Moldova,
Kh. Sh. Zaburaeva, Ph. D. (Geography), Dr. Habil, Chief Researcher, Kh. I. Ibragimov Complex Institute of the Russian Academy of Sciences, 21a V. Alieva St., e-mail: eveggne@mail.ru, Grozny 364051, Russia, A. A. Shchankin, Ph. D. (Biology), MIREA — Russian Technological University, aachankin@yandex.ru, Moscow, Russia
Abstract.
The relevance of research. The growth of energy consumption leads to a geo-ecological catastrophe. The absence of a unified system for assessing resources significantly complicates the search for the ways to optimize the functioning of geosystems. The definition of a renewable energy resource is extremely important for the sustainable development of Moldova and neighboring regions.
The purpose of the article. To perform a geo-energy assessment of the local geosystem — the Kalagur oak forests, to determine the most promising natural energy flows for the development of renewable energy.
Subject and results of the study. The geo-energetic approach and the methodology based on it makes it possible to perform quantitative calculations for the assessment of local geosystems taking into account qualitative indicators. Given the pressing energy problems and the exhaustion of energy resources, it is urgently necessary to develop and implement an effective alternative energy system. Moldova is considered as a single geo-energy and physical-geographical space, where the main resource potential of green energy is solar and wind energy. Having determined the energy components of the forest geosystem of Moldova, the authors assessed the potential of renewable energy sources of the republic. Applying the authors' methodology and modern techniques of neighboring regions, the natural sources of green energy are innovatively evaluated for Moldova.
Conclusions. Having assessed the resource potential of solar, hydro and wind energy, the authors found out that the minimum reserves of water resources and the limiting factor of precipitation due to the arid climate of the region require a review of approaches to the use of hydropower as a source of renewable energy, so as not to aggravate the geo-ecological crisis.
Scope of application. Forestry, energy industry, management of hydropower resources of the region, modern geographical and geo-ecological education.
Аннотация. Актуальность исследования. Рост потребления энергоресурсов ведет к геоэкологической катастрофе. Отсутствие единой системы оценки ресурсов существенно затрудняет поиск путей оптимизации функционирования геосистем. Определение ресурса возобновляемой энергетики чрезвычайно важно для устойчивого развития Молдавии и сопредельных регионов. Цель статьи. Выполнить геоэнергетическую оценку локальной геосистемы дубравы Калагур, определить наиболее перспективные потоки природной энергии для развития возобновляемой энергетики. Предмет и результаты исследования. Геоэнергетический подход и основанная на нем методика позволяет выполнить количественные расчеты по оценке локальных геосистем с учетом качественных показателей. Учитывая насущные энергетические проблемы и исчерпаемость энергетических ресурсов, срочно требуется развивать и внедрять результативную систему альтернативной энергетики. Молдавия рассматривается как единое геоэнергетическое и физико-географическое пространство, где главным ресурсным потенциалом зеленой энергетики обладает энергия солнца и ветра. Определив энергетические составляющие лесной геосистемы Молдавии, автор оценил потенциал возобновляемых источников энергии республики. Применив авторскую методику и современные методики сопредельных регионов инновационно для Молдавии, были определены природные источники зеленой энергетики. Выводы. Оценив ресурсный потенциал солнечной, гидро- и ветровой энергий, автор определил, что минимальные запасы водных ресурсов и лимитирующий фактор осадков из-за засушливого климата региона требуют пересмотра подходы к использованию гидроэнергетики, как источника возобновляемой энергии, чтобы не усугубить геоэкологический кризис. Область применения. Лесное хозяйство, энергетическая отрасль, управление гидроэнергетическими ресурсами региона, современное географическое и геоэкологическое образование.
Keywords: geo-energy, forest ecosystems, sustainable development, environmental management.
Ключевые слова: геоэнергетика, лесные экосистемы, устойчивое развитие, рациональное природопользование.
Introduction. History. The geo-energy approach is a unique system for quantifying the functioning of systems in international units of energy, joules, taking into account the quality indicators of the system. The approach takes into account the spatial and geographical distribution of different types of energy (natural, anthropogenic) in natural and anthropogenic systems. The main goal of the geo-energy approach is to determine the optimal balance of natural (energy of the sun, soil, precipitation) and anthropogenic energy sources (fixed and circulating means of production
and labor resources) in the energy structure of the an-thropogenically changed landscape geosystem and landscape, with geo-energy assessment of the local geosystem in a unified system of energy assessment.
In the structure of new generating capacities, renewable energy sources account for more than 50 %. The share of renewable energy sources in global energy consumption in 2018 was already more than 10 %. However, at the moment there is no single strict generally accepted methodology, the theoretical and methodological foundations for assessing the po-
tential for the use of renewable energy systems have not been developed.
Energy problems come to the fore in the world among the most important problems and tasks to be solved by society in the 21st century and in the third millennium as a whole. The existing energy resource base, on which all the economic activity of the humanity is based, is exhaustible, and in the foreseeable future. In this regard, the issues of energy saving, development and implementation of alternative energy systems are becoming one of the most relevant in the implementation of business planning on the principles of sustainable development.
To date, the leaders of the world economy in terms of the GDP are four countries — China, the USA, India, Germany. In a number of regions of the world, in recent years, the growth rates of generating capacities based on renewable energy sources have significantly exceeded the growth rates of capacities of all other types of energy resources. Among the key growth points for renewable energy, one can first of all single out the states of China, India, the United States, as well as the countries of the European Union. An important role in the development of the renewable energy in these countries was played by a high level of technological development, favorable financial conditions, and support from the state. Recently, China has been the undisputed leader in renewable energy. The US policy towards the development of renewable energy remains rather uncertain, largely due to the powerful lobby from the oil and gas and coal industries [1].
The level of energy generation based on the RES in Russia is extremely low and is less than 1 %. But if we calculate the volume of electricity from nuclear power plants, hydroelectric power plants and gas (the Russian leadership classifies it as a low-carbon fuel), then the share of carbon-free and low-carbon energy in total exceeds 50 % [2]. As of the end of 2020, the Belgorod Region was included in the first comprehensive investment rating of Russian regions in terms of renewable energy sources, becoming the leader in bioenergy in Russia. Amorphous solar panels are actively used in the region, capable of operating even in cloudy weather. Renewable energy sources can meet the needs of 75 % of the population of the region [3].
In Moldova, renewable energy accounts for 3 % of all generated capacity. In Transnistria, 1.8 % of energy is produced by a hydroelectric power plant on the Dniester River, solar and wind energy generation is practically non-existent.
Research methodology
The basis of the developed geo-energetic approach and methods for assessing the effectiveness of the functioning of geosystems are the fundamental laws of
thermodynamics and scientific research of the energy school of professor A. V. Pozdnyakov [4—8]. The geo-energetic model of the geosystem was based on a geo-energetic assessment, which includes a number of sequential procedures developed by the authors:
a) general characteristics of natural conditions;
b) assessment of the geo-ecological state of geo-systems and landscapes;
c) ecological-geographical and comparatively geographical analyzes of the study area;
d) spatial typology;
e) geo-energy assessment of solar energy, wind energy, soil potential and precipitation in the form of rain and snow;
f) geo-ecological and economic assessment in digital geo-energy coupons;
g) formation of a geo-energy matrix of various forest geosystems to determine the strength of the emergent effect being formed [9, 10];
h) geo-energy balance and options for geo-energy optimization of geosystems and landscapes.
As a local geosystem, the authors chose a test area of the forest — the Kalagur oak forest in the north of Transnistria, Moldova. The facies was not chosen by chance, it is one of the few preserved natural objects of the republic with the predominant forest-forming species of the region, i.e. oak petiolate [11—13].
To assess energy sources potentially promising for renewable energy, the author's assessment formulas were used in international energy units — joules.
To assess solar energy, the main energy source of the geosystem and landscape, the formula takes into account the influx of solar radiation according to weather stations in Moldova
Es = S x I x K, (1)
where: S — area of the study area, m2; I — solar radiation, kW/m2 per year; K — conversion factor from watts per year to joules per year.
To estimate water resources in units of energy, a formula was used, derived by the authors from the formula for assessing the energy potential of precipitation falling in the form of rain and snow on the study area by Professor A. V. Pozdnyakov [4, 5]:
Ees = Vs x G, (2)
where: Vs — water flow volume, m3/year; G — Gibbs free chemical energy for water, J/g.
To calculate the work generated by the wind power plant (WPP) in J/year, the following formula, transformed by the authors, was used [14—17]:
EWPP = pWPP x T x K (3)
where: Pwpp — installed capacity WPP, W; T — 8760 hours — the number of hours in a year; K —
conversion factor from watts per year to joules per year.
Results. Moldova is located in the Dniester River basin. The river is the main waterway and source of natural life in the region. Historically, the civilization of arid Moldavia was built around the river. In the 20th century, the first sources of renewable energy were built on the Dniester and Prut Rivers. And at present, 80 % of the hydropower of the Dniester is used for the internal needs of Moldova. Currently, due to the changes in hydrological regimes, the capacity of hydroelectric power plants is falling. The power of solar radiation and its distribution in the altitude-latitudinal intervals of the territory of Moldova were calculated according to the method of L. Sh. Akhmedova [14—16]. Calculating the geo-energy potential of the river basin, the Dniester obtained the results summarized in Table 1.
The predominant natural energy in the Dniester basin is the energy of the sun, with up to 10 % more intensive production of solar energy, as well as wind energy in the south of the Dniester basin (Fig. 1). This is due to the changes in the landscape from the forest-steppe to the steppe, the climate to a more arid one and increased wind in the Black Sea area.
Assessing the geo-energy potential of the Dniester River basin, the authors carried out a geo-energy assessment of the potential of Moldova, the calculations took into account the types of energy promising for the use in the renewable energy system.
The average wind speed in Moldova is 3—4 m/s, which is enough to generate energy with the help of wind-electric installations. According to the data of the Main Directorate of Energy Security of Moldova, the technical potential of the republic's wind energy is 11.0 TW per year, or according to the authors' calculations, 39.6 x 1015 J per year [17].
The energy potential of the hydropower industry of Moldova on the Dniester and Prut Rivers is 391.0 x 109 W per year, 14.0 x 1014 J per year, respectively, however, frequent droughts in the republic led to the fact that the hydroelectric power plant on the Prut River in 2015 was completely stopped. The energy of water resources for increasing the geo-en-ergy potential of forest geosystems is of particular importance in Moldova.
Arid climate and scarcity of water resources are limiting factors in forest development. The degrading, but still preserved remains of former forests in the territory of Moldova need optimal restoration [18—20] (Fig. 2). Forests, especially floodplain forests, can influence the change in the hydrological situation in the region. The use of water resources to generate energy in it is not promising and, if used intensively, will lead to a large-scale geo-ecological catastrophe.
Average annual sum of GHI, period 1994—2016
800 1000 1200 1400 1600 1800 2000 kWh/m2
Fig. 1. Intensity of solar radiation per year in the Dniester basin from the site solargis.com
Fig. 2. Location of large forest tracts of Moldova (electronic maps of Moldova)
The author's geo-energy assessment of the resource potential of Moldova in the context of renewable energy is presented in Table 2.
The most superior and environmentally friendly energy potential in Moldova belongs to solar and wind energy, followed by hydropower. A significant shortage of water resources will not allow increasing the potential of the hydropower used in the renewable energy system.
In the study of a test site — the Kalagur oak forests of the Rybnitsa Region of Moldova, the following indicators of natural energy per 1 ha were obtained (Table 3), which make up the geo-energy assessment of the local forest geosystem of the region.
Table 2
Geoenergy assessment of the resource potential of Moldova
Solar energy Wind energy Hydropower Total: 152 3000,0 x 1014 J/year 396,0 x 1014 J/year 14,0 x 1014 J/year 1,52 x 1020 J/year
Table 3 Geo-energy capacity of 1 hectare forest geosystem tracts in Kalagur
Solar energy Rainfall potential Ecosystem energy potential (biomass of woody vegetation) Total: 45 x 1012 J/year 2,47 x 107 J/year 14,5 x 1010 J 45,14 x 1012 J/year
Most of the geo-energy energy is solar radiation. It can be seen from the calculations that most of the renewable energy potential of the region is made up of geo-energy capacities of local geosystems.
It is possible to locate capacities for the generation of solar and wind energy in Moldova on buildings, slopes on the south side and on rough ground. The impending large-scale energy crisis justifies many costs, since without clean and affordable energy with a modern arid climate, the republic will very quickly turn into a desert. Solar and wind energy is an environmentally and economically viable resource for Moldova's renewable energy system.
References
Conclusions
Using the authors' methodology of the geo-ener-getic approach, taking into account geo-ecological parameters, a geo-energetic assessment of the local forest geosystem was carried out. 1 hectare of the Ka-lagur oak forest has a natural and productive potential equal to 45.14 x 1012 J/year, most of which is solar energy. In the context of the urgent problem of the development and implementation of alternative energy systems on the scale of the geo-energy and physical-geographical space of Moldova, a geo-energy assessment of the entire region has been implemented. The current renewable energy potential of Moldova is 1.52 x 1020 J/year. About 99.0 % of the green energy potential of the republic is solar energy, wind energy is much inferior to it. The geo-energy assessments carried out on the scale of the republic and the Dniester River basin showed the predominance of solar energy, as well as in the context of the local geosystem.
Modern climate change trends in Moldova towards hyper aridity, as well as geo-energy assessments of changes in the flow of the Dniester River in the light of the design of new hydroelectric power plants, allow us to conclude that the use of the energy potential of water resources in the framework of renewable energy is not promising. Taking into account the shortage of fresh water as the main limiting factor in the development of forests in Moldova, where the geo-ecological problem of the disappearance of oak forests is very acute, it proves that the increase in hydropower capacities will greatly accelerate the onset of a large-scale geo-ecological catastrophe in the country.
1. Khalova G. O., Nguen H. F. Obzor razvitiya vozobnovlyaemyh istochnikov energii v stranah-liderah mirovoj ekonomiki [Overview of the development of renewable energy sources in the leading countries of the world economy]. Innovacii i investid 2022. No. 11. P. 83—85 [in Russian].
2. Romanov R. V. Vozobnovlyaemye istochniki energii v Rossii: razvitie i perspektivy [Renewable energy sources in Russia: development and prospects]. Nauchnye zapiski molodyh issledovatelej. 2022. No. 3. P. 5—11 [in Russian].
3. Kochurov B. I. Belgorodskaya oblast' stala liderom ispol'zovaniya al'ternativnyh istochnikov energii. Vzglyad geografa [The Belgorod Region has become a leader in the use of alternative energy sources]. [Elektronnyj resurs]. 2021. Rezhim dostupa: http://www.igras.ru/news/2954 (data obrashcheniya 22.07.23) [in Russian].
4. Ivanova M. M. Ekologo-energeticheskij analiz processov vosstanovleniya lesov Tomskoj oblasti (na primere sosny obykno-vennoj) [Ecological and energy analysis of forest restoration processes in the Tomsk Region: a case study of Scots pine)]. Vest-nik Tomskogo gosudarstvennogo universiteta. Tomsk, 2010. P. 187—191 [in Russian].
5. Pozdnyakov A. V., Shurkina K. A. Novyj metodologicheskij podhod k analizu funkcionirovaniya agroekosistem [A new methodological approach to the analysis of the functioning of agroecosystems]. Vestnik Tomskogo gosudarstvennogo universiteta. 2008. No. 316. P. 206—212 [in Russian].
6. Pozdnyakov A. V. Sinergetika — sovremennaya nauchnaya paradigma i metodologiya issledovaniya slozhnyh samoorganizuy-ushchihsya struktur [Synergetics is a modern scientific paradigm and methodology for the study of complex self—organizing structures]. [Elektronnyj resurs]. 2012. Rezhim dostupa: — http: // pozdnyakov.tut.su/Public/st0205.htm (data obrashcheniya 14.07.23) [in Russian].
7. Pozdnyakov A. V. Konceptual'nye osnovy resheniya problemy ustojchivogo razvitiya [Conceptual foundations for solving the problem of sustainable development]. T., Spektr. 1995. 150 p. [in Russian].
8. Vernadskiy V. I. Biogeohimicheskie ocherki [Biogeochemical essays]. Moscow—Leningrad, Izdatelstvo AN SSSR, 1940.
250 p. [in Russian].
9. Kochurov B. I., Marunich N. A. Ocenka emerdzhentnyh svojstv landshaftov Pridnestrov'ya metodami geoenergeticheskogo podhoda [Assessment of emergent properties of Pridnestrovian landscapes by methods of geoenergetic approach]. Ekolog-icheskie sistemy ipribory. 2020. No. 5. P. 35—41 [in Russian].
10. Khoroshev A. V. 2017. Emerdzhentnye effekty prostranstvennoj struktury landshaftta. [Emergent effects of the spatial structure of the landscape]. In: Landshaftovedenie: teoriya, metody, landshaftno-ekologicheskoe obespechenieprirodopol'zovaniya i ustoj-chivogo razvitiya. Materialy XII Mezhdunarodnoj landshaftnoj konferencii, 22—25 avgusta 2017. Tyumen'—Tobol'sk, Tyumen-skij gosudarstvennyj universitet. P. 154—158 [in Russian].
11. Kravchuk Yu. P. Problemy lesov Pridnestrov'ya [Issues of Pridnestrovian forests]. Ohrana prirody Moldavii. 1968. No. 6. P. 59—75 [in Russian].
12. Kuza P. A. Osobennosti rosta generativnogo potomstva duba chereshchatogo v Moldove [Features of the growth of generative offspring of the pedunculate oak in Moldova]. Lesovedenie. 2010. No. 1. P. 37—43 [in Russian].
13. Mayackiy I. N. Tekhnologiya vosstanovleniya nasazhdenij s preobladaniem duba [Technology of restoration of oak-dominated plantations]. Ekologicheskieproblemy Pridnestrov'ya. Bendery, 2010. P. 79—94 [in Russian].
14. Kochurov B. I., Marunich N. A. Geoenergeticheskaya ocenka poter' stoka Dnestra v svyazi s zaregulirovaniem reki [Geoenergetic assessment of Dniester runoff losses due to river overregulation]. Ekologiya rechnyh bassejnov. Trudy IX Mezhdunarodnoj nauchno-prakticheskoj konferencii. Suzdal'. 2018. P. 52—57 [in Russian].
15. Kochurov B. I., Marunich N. A., Lobkovskiy V. A., Khaziahmetova Yu. A., Fomina N. V. Geoenergeticheskaya ocenka les-nyh ekosistem Pridnestrov'ya [Geoenergetic assessment of forest ecosystems of Transnistria]. Problemy nepreryvnogo ge-ograficheskogo obrazovaniya i kartografii. 2018. No. 28. P. 54—60 [in Russian].
16. Yavorskiy B. M., Detlaf A. A. Spravochnik po fizike [Handbook of Physics]. Moscow, Nauka. 1981. 99 p. [in Russian].
17. Akhmedova L. III., Gasanov III. SH. Informacionno-statisticheskij metod operativnoj ocenki pokazatelej solnechnoj radiacii na territorii Dagestana [Information and statistical method of operational assessment of solar radiation indicators in Dagestan]. Trudy geograf, ob-va Dagestana. Issues 31—32. — Mahachkala, 2004. P. 106—109 [in Russian].
18. Belozerskiy G. N., Dmitriev V. V. Stanovlenie geoekologii kak vazhnyj etap v razvitii geografii XX stoletiya [The formation of geoecology as an important stage in the development of geography of the 20th century]. Izvestiya RAN. Seriya ge-ograficheskaya. 2007. No. 2. P. 19—28 [in Russian].
19. Mingaleeva R. D., Zaitsev V. S., Bessel' V. V. Ocenka tekhnicheskogo potenciala vetrovoj i solnechnoj energetiki Rossii [Assessment of the technical potential of wind and solar energy in Russia]. Territoriya neftegaz. 2014. No. 3. P. 82—91 [in Russian].
20. Cheban V. Razvitie vozobnovlyaemyh istochnikov energii i potencial Respubliki Moldova [Development of renewable energy sources and the potential of the Republic of Moldova]. Dokladministerstva ekonomiki i torgovli Moldovy. Kishinev, 2010. 14 p. [in Russian].
21. Kulakov K. F. Dubravy SSSR i zadachi po povysheniyu ih ustojchivosti i produktivnosti [The oak forests of the USSR and the tasks of increasing their sustainability and productivity]. Tezisy doklada na Vsesoyuznom nauchno-tekhnicheskom sovesh-chanii. 1978. P. 3—10 [in Russian].
22. Kulakov K. F. Sostoyanie dubrav SSSR i zadachi po povysheniyu ih ustojchivosti i produktivnosti [The oak forests of the USSR and the tasks of increasing their sustainability and productivity] Dubravy i povyshenie ih produktivnosti. 1981. P. 5—13 [in Russian].
23. Sotnikov V. V. Sovremennoe sostoyanie lesnogo fonda, problemy lesnoj otrasli Pridnestrov'ya [The current state of the forest fund, problems of the forest industry of Pridnestrovie]. Ekologicheskie problemy Pridnestrov'ya. 2010. Bendery, P. 48—56 [in Russian].
ГЕОЭНЕРГЕТИЧЕСКАЯ ОЦЕНКА ЛОКАЛЬНОЙ ГЕОСИСТЕМЫ В КОНТЕКСТЕ ИСПОЛЬЗОВАНИЯ ВОЗОБНОВЛЯЕМОЙ ЭНЕРГИИ В МОЛДАВИИ
Б. И. Кочуров, доктор географических наук, профессор, Институт географии РАН, camertonmagazin@mail.ru, г. Москва, Россия,
Н. А. Марунич, кандидат географических наук, доцент, Бендерский политехнический филиал Приднестровский государственный университет им. Т. Г. Шевченко, maruni484@mail.ru, г. Бендеры, Республика Молдова,
Х. Ш. Забураева, доктор географических наук, профессор, Комплексный научно-исследовательский институт имени Х. И. Ибрагимова РАН, eveggne@mail.ru, г. Грозный, Россия,
А. А. Щанкин, доктор биологических наук, Российский технологический университет МИРЭА, aachankin@yandex.ru, г. Москва, Россия
Библиографический список
1. Халова Г. О., Нгуйен Х. Ф. Обзор развития возобновляемых источников энергии в странах-лидерах мировой экономики // Инновации и инвестиции. — 2022. — № 11. — С. 83—85.
2. Романов Р. В. Возобновляемые источники энергии в России: развитие и перспективы // Научные записки молодых исследователей. — 2022. — № 3. — С. 5—11.
3. Кочуров Б. И. Белгородская область стала лидером использования альтернативных источников энергии. Взгляд географа/ [Электронный ресурс]. 2021. Режим доступа: — http://www.igras.ru/news/2954 (дата обращения 22.07.23).
4. Иванова М. М. Эколого-энергетический анализ процессов восстановления лесов Томской области (на примере сосны обыкновенной) // Вестник Томского государственного университета. — Томск, 2010. — С. 187—191.
5. Поздняков А. В., Шуркина К. А. Новый методологический подход к анализу функционирования агроэкосистем // Вестник Томского государственного университета. — 2008. — № 316. — С. 206—212.
6. Поздняков А. В. Синергетика — современная научная парадигма и методология исследования сложных самоорганизующихся структур / [Электронный ресурс]. 2012. Режим доступа: — http: // pozdnyakov.tut.su/Public/st0205.htm (дата обращения 14.08.22).
7. Поздняков А. В. Концептуальные основы решения проблемы устойчивого развития / А. В. Поздняков. — Томск: Спектр, 1995. — 150 с.
8. Вернадский В. И. Биогеохимические очерки / В. И. Вернадский. — М.; Л.: Изд-во: АН СССР, 1940. — 250 с.
9. Кочуров Б. И., Марунич Н. А. Оценка эмерджентных свойств ландшафтов Приднестровья методами геоэнергетического подхода // Экологические системы и приборы. — 2020. — № 5. — С. 35—41.
10. Хорошев А. В. 2017. Эмерджентные эффекты пространственной структуры ландшафта / В кн.: Ландшафтоведение: теория, методы, ландшафтно-экологическое обеспечение природопользования и устойчивого развития. Материалы XII Международной ландшафтной конференции, 22—25 августа 2017, Тюмень—Тобольск. — Тюмень: Тюменский государственный университет, 2017. — С. 154—158.
11. Кравчук Ю. П. Проблемы лесов Приднестровья // Охрана природы Молдавии. — 1968. — № 6. — С. 59—75.
12. Куза П. А. Особенности роста генеративного потомства дуба черешчатого в Молдове / П. А. Куза // Лесоведение. — 2010. — № 1. — С. 37—43.
13. Маяцкий И. Н. Технология восстановления насаждений с преобладанием дуба // Экологические проблемы Приднестровья. — Бендеры, 2010. — С. 79—94.
14. Кочуров Б. И., Марунич Н. А. Геоэнергетическая оценка потерь стока Днестра в связи с зарегулированием реки // Экология речных бассейнов / Труды IX Международной научно-практической конференции. Суздаль, 2018. — С. 52—57.
15. Кочуров Б. И., Марунич Н. А., Лобковский В. А., Хазиахметова Ю. А., Фомина Н. В. Геоэнергетическая оценка лесных экосистем Приднестровья // Проблемы непрерывного географического образования и картографии. — 2018. — Вып. 28. — С. 54—60.
16. Яворский Б. М., Детлаф А. А. Справочник по физике. — М.: Наука, 1981. — 99 с.
17. Ахмедова Л. Ш., Гасанов Ш. Ш. Информационно-статистический метод оперативной оценки показателей солнечной радиации на территории Дагестана / Труды географ. об-ва Дагестана. Вып. 31—32. — Махачкала, 2004. — С. 106—109.
18. Белозерский Г. Н., Дмитриев В. В. Становление геоэкологии как важный этап в развитии географии XX столетия / Г. Н. Белозерский, В. В. Дмитриев // Известия РАН. Серия географическая. — 2007. — № 2. — С. 19—28.
19. Мингалеева Р. Д., Зайцев В. С., Бессель В. В. Оценка технического потенциала ветровой и солнечной энергетики России // Территория нефтегаз. — 2014. — № 3. — С. 82—91.
20. Чебан В. Развитие возобновляемых источников энергии и потенциал Республики Молдова / Доклад министерства экономики и торговли Молдовы. — Кишинев, 2010. — 14 с.
21. Кулаков К. Ф. Дубравы СССР и задачи по повышению их устойчивости и продуктивности / К. Ф. Кулаков; Тезисы доклада на Всесоюзном научно-техническом совещании. — М.: 1978. — С. 3—10.
22. Кулаков К. Ф. Состояние дубрав СССР и задачи по повышению их устойчивости и продуктивности / К. Ф. Кулаков // Дубравы и повышение их продуктивности. — 1981. — С. 5—13.
23. Сотников В. В. 2010. Современное состояние лесного фонда, проблемы лесной отрасли Приднестровья // Экологические проблемы Приднестровья. — Бендеры. — С. 48—56.