Научная статья на тему 'FUZZY-BASED SMART SYSTEM FOR CONTROLLING ROAD LIGHTS'

FUZZY-BASED SMART SYSTEM FOR CONTROLLING ROAD LIGHTS Текст научной статьи по специальности «Компьютерные и информационные науки»

CC BY
129
50
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
FUZZY LOGIC / SMART STREET LIGHTING / ENERGY CONSUMPTION / ROAD LIGHTS

Аннотация научной статьи по компьютерным и информационным наукам, автор научной работы — Satam Ihab Abdulrahman

Introduction: The energy consumed for street lighting is a major expenditure in urban environments. According to the World Bank, it constitutes up to 65% of cities' electricity costs and 10% of their overall budgets. The demand for lighting is growing significantly due to rapid urbanization, thus eating up even more energy and money -unless smarter solutions are deployed to reduce costs. Method: In this paper, a model for street lighting was established, consisting of several lamp posts on both sides of the street. The model was the exact replica of the street lighing system inside the city of Kirkuk, Iraq. The number of objects passing along the street was monitored, both during and out of rush hours.This all was taken into account in the energy consumption calculation. The controller used for this model is Arduino UNO. The Arduino receives signals from 3 IR sensors, processes these signals, and then sends the action to the lamp posts. Fuzzy logic was applied in two cases: the first one is during the daylight, the second one is during the sunrise and the sunset, to control the intensity of the light of the lamp posts. Results: Both cases showed significant results regarding the reliability, efficiency, and countability of the system in decreasing the level of energy consumption. Conclusion: The system can be applicable for smart city projects. It is efficient, cost effective and shows reliable results in saving energy.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «FUZZY-BASED SMART SYSTEM FOR CONTROLLING ROAD LIGHTS»

FUZZY-BASED SMART SYSTEM FOR CONTROLLING ROAD LIGHTS

Ihab Abdulrahman Satam

Northern Technical University, Electronics Techniques Department, Mosul, Nineveh, Republic of Iraq;

Obuda University, School of Safety and Security Sciences,

Budapest, Hungary,

e-mail: [email protected],

ORCID iD: https://orcid.Org/0000-0002-9749-0944

DOI: 10.5937/vojtehg70-36670; https://doi.org/10.5937/vojtehg70-36670

FIELD: Mathematics, Computer science ARTICLE TYPE: Original scientific paper

Abstract:

Introduction: The energy consumed for street lighting is a major expenditure in urban environments. According to the World Bank, it constitutes up to 65% of cities' electricity costs and 10% of their overall budgets. The demand for lighting is growing significantly due to rapid urbanization, thus eating up even more energy and money - unless smarter solutions are deployed to reduce costs.

Method: In this paper, a model for street lighting was established, consisting of several lamp posts on both sides of the street. The model was the exact replica of the street lighing system inside the city of Kirkuk, Iraq. The number of objects passing along the street was monitored, both during and out of rush hours.This all was taken into account in the energy consumption calculation. The controller used for this model is Arduino UNO. The Arduino receives signals from 3 IR sensors, processes these signals, and then sends the action to the lamp posts. Fuzzy logic was applied in two cases: the first one is during the daylight, the second one is during the sunrise and the sunset, to control the intensity of the light of the lamp posts.

Results: Both cases showed significant results regarding the reliability, efficiency, and countability of the system in decreasing the level of energy consumption.

Conclusion: The system can be applicable for smart city projects. It is efficient, cost effective and shows reliable results in saving energy.

Keywords: fuzzy logic, arduino, smart street lighting, energy consumption, road lights.

Introduction

City authorities see street lights as one of the largest portions of energy costs. Overlit streets waste energy and generate a high level of

CM <1>

O

O >

CM

of

UJ

a:

ZD O o

_J

<

o

X

o

LU

I—

>-

a: <

i—

< -j

CD >o

X LU I—

O

o >

0

CO2 emissions and costs. There are some major challenges in street lights that need to be resolved. Sometimes road lamp posts remain ON during the daylight. To manage and reduce that cost, they have to be like hubs of smart technology while helping provide the community with significant energy savings and a safer environment. Some previous studies dealt with smart systems for lights. Several studies regarding smart systems have been implemented. E.M. Diaconu (2021) implemented a basic design for an electronic circuit to a smart system. The system is controlled using an android application and the communication is maintained using the Bluetooth HC-05 module. Kumar et al (2021) came up with an idea to use a PIR sensor to detect motion and an LDR sensor to reduce unnecessary waste of power during the daytime. The idea was good; however, it is only restricted to turning the light ON and OFF. Chenwei et al also designed a system to control lighting using an android application that communicates with the system using the Bluetooth Technique (Feng et al, 1976). The design was easy, efficient and of low cost. Dankan et al used the SLS (Smart Lighting System) based on the IoT technique in order to fully control the system. The main idea of the system is to save more dissipated energy (Gowda et al, 2021). The energy saved reached up to 40 %. A smart system of calibrating energy consumption inside the building was presented by Yerbol et al (Aussat et al, 2022). This system measures illuminance and occupancy from sensors located at each workstation inside the building. The system compares between the illuminance and the dimming level inside the workstation and depending on that the control system will specify the desired illuminance of the bulb. Leo et al used the PIR sensor to detect the occupancy of a room so the system can determine whether the lights are ON or OFF for the purpose of saving energy inside the house or a building (Botler & Sadok, 2016). Arun et al presented a work of full setup for the hardware required for a lighting system inside the room. His idea deals with a system capable of varying light intensities using an Android App which provides better visual comfort for the user (Kumar et al, 2019). Amit et al (Sikder et al, 2018) presented an overview of IoT-based systems for smart lighting for energy-saving enhancement. They review different IoT-enabled communication protocols that can be used in the SLS; the result was the IoT-enabled SLS in both indoor and outdoor settings which can reduce power consumption percent up to 33%. The interesting work of Bozanic et al (2021) in the fuzzy system presents neuro-fuzzy as a method of decision making to support the selection of construction machines. Precup et al (2020) poposed a network control problem solution using fuzzy logic. Some studies regarding the smart lighting system SSL have been established. Francis et al (Montalbo &

Enriquez, 2020) used a PIR sensor and NodeMCU V3 with Wi-Fi to detect the occupancy of a classroom, so that the lights will be turned ON and OFF to save more energy. Nursyazwani and his team (Adnan et al, 2019) used loT technology to control the light in illumination-based human activity. The system measures the intensity of ambient light and controls artificial lights for the comfort of the eye. However, the system controls illumination manually. Another study was conducted by Bevek et al (Subba et al, 2020). The system used Both LDR and PIR sensors to detect the presence of people inside the room and as result, they control the light bulb ON and OFF.

The communication between the sensors and the controllers was achieved using the ZigBee transmitter and the receiver. The system was a traditional one that does not involve fuzzy logic. A description of a smart street lighting system (SSL) as an approach of massive function for smart cities was presented by Vasja Roblek (Subrahmanian & Shastri, 2018). With the use of Temp, Dampness, and Lights of the ambient conditions, K. Pargash et al controlled lamp posts ON and OFF (Poongothai et al, 2018). LoRa (Long Range) Technology can be used in sSl, and that is what Ezgi and his team (Bingol et al, 2019) established in their work (A LoRa-based Smart Streetlighting System for Smart Cities) - the idea is to control and monitor the road remotely so that the ON-OFF function of road lights is executed. Zhang et al (2022) combined the Narrow Band Internet of Things (NB-IoT) with the LoRa communication technology to demonstrate the design of a smart street lighting system. By adopting an optimized street lamp control algorithm, the system can realize the automatic control of street lights according to the real-time traffic flow information.

This paper will focus on enhancing the control of a street light system by applying a fuzzy logic algorithm in order to control the ON-OFF status and the intensity level of the light itself in order to save more energy. The idea of using fuzzy logic is based on its easiness in use, program, and uploading to the system with very good results.

The overall view of the system

The intelligent street lighting system introduced in this paper consists of a model for a street with lamp posts on each side. The control system ensures efficient control of the light and is energy saving. Figure 1 shows the basic overview of the model.

3 13-7 9

CM

p. p

,s

gi

d a

ro g

lo

o c

ro f

m e t

s y

s rt a m s d e s a b

LL

A.,

,m a t a S

Figure 1 -Design of a street lighting system Рис. 1 - Проект уличного освещения Слика 1 - Про^екат система уличног освет^еша

System structure

The system was constructed using several parts shown in Table 1 below.

Table 1 - System components Таблица 1 - Компоненты системы Табела 1 - Компоненте система

Part Description

1 Arduino An open-source controller, easy to install, connect and control

2 IR Sensor An electronic device using Infrared to sense the surrounding

3 LED A semiconductor that produces light when a current flows through it

4 LDR A cell that decreases resistance when receiving light on the component sensitive surface

5 PIR An electronic device that senses the radiation of the ambient environment

6 Extra Parts Wires, Batteries, Breadboard.

Fuzzy logic and its application to the problem of saving electricity

Using fuzzy logic inside the control system enables controling the intensity of road lights with respect to the intensity of daylight in the sunrise and sunset periods of the day. Fuzzy logic is one of the strongest tools in complex problem solving since this approach to computing is based on "Degrees of Truth" rather than on the usual "true or false" Boolean logic on which modern computers are based. Figure 2 shows the basic difference between Boolean and fuzzy logics (Ghosh & Haldar, 2014; Yusuf et al, 2020; Htwe et al, 2020). Power Saving System Using LDR And PIR Sensor.

Boolean logic Fuzzy logic

Is it hot? Yes/1 Very much/0.9 Fairly so/0.75 Is it hot? Moderately/0.5 Somew hat/0.25 Very little/0.1

No/0

Figure 2 - Boolean logic Vs fuzzy logic Рис. 2 - Булева логика против нечеткой логики Слика 2 - Болеанова логика и фази логика

The idea was first introduced by Lotfi Zadeh in 1960 (AL-Forati & Rashid, 2020; Saputra et al, 2020; Hameed et al, 2021; Madrigal et al, 2019). Zadeh was working on the problem of computer understanding of natural language. Natural language -- like most other activities in life and indeed the universe -- is not easily translated into the absolute terms of 0 and 1. Whether everything is ultimately describable in binary terms is a philosophical question worth pursuing, but in practice, much data is required to feed a computer is in some state in between and so, frequently, are the results of computing. It may help to see fuzzy logic as the way reasoning really works and binary, or Boolean, logic is simply a special case of it (Huangwei et al, 2021; AL-Forati & Rashid, 2020; Saputra et al, 2020; Hameed et al, 2021; Madrigal et al, 2019).

The architecture of fuzzy logic is shown in Figure 3 below.

Figure 3 - Fuzzy logic Рис. 3 - Нечеткая логика Слика 3 - Фази логика

From Figure 3, there are four main parts of fuzzy logic which will be explained in this section.

Fuzzification

It is the method of transforming a crisp quantity into a fuzzy quantity. This can be achieved by identifying various known crisp and deterministic quantities as completely nondeterministic and quite uncertain in nature. This uncertainty may have emerged because of vagueness and imprecision which then lead the variables to be represented by a membership function as they can be fuzzy in nature (Sofian & Rambely, 2020; Lah & Arbaiy, 2020; Abdul-Adheem, 2020).

For example, if the temperature to be said is 45° Celsius, the viewer converts the crisp input value into a linguistic variable like favorable temperature for the human body, hot or cold.

Rule base

It contains all the rules and the IF-THEN conditions offered by experts to control the decision-making system. The recent updates in the fuzzy theory provide various methods for the design and tuning of fuzzy controllers. These updates significantly reduce the number of the fuzzy sets of rules.

Inference engine

It helps to determine the degree of match between a fuzzy input and the rules. Based on the % match, it determines which rules need implementing in accordance with the given input field. After this, the applied rules are combined to develop the control actions.

Defuzzification

It is the inversion of fuzzification where mapping is done to convert crisp results into fuzzy results while in defuzzification mapping is done to convert fuzzy results into crisp results.

This process can generate a nonfuzzy control action which illustrates the possibility distribution of an inferred fuzzy control action.

The defuzzification process can also be treated as the rounding off process, where a fuzzy set having a group of membership values on the unit interval is reduced to a single scalar quantity.

Applying fuzzy to the system

The system model shown in Figure 4 is the actual system experimented with within this work. It consists of several lampposts on both sides of the road; IR sensors are mounted between them to detect the motion of objects. Besides, the road lights are switched on and off. In addition, light intensity changes during the sunrise and the sunset. The intensity of daylight changes due to the sun's movement; in these periods, the road light's intensity does not have to be on to the fullest. This is useful for saving energy. In order to achieve that, fuzzy logic is applied since fuzzy logic is based on the "degree of truth" as mentioned before. The sunlight intensity is counted as levels of lighting. These levels are explained in Tables 2 and 3.

CO CO

CT> C\l !±

СЛ T3

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

го о

сл

о

о о

о

ч—

Е ф

-ь-' <Л

-е го Е

тз ф

го

.Q

LL

<

Е~

го ■

го ю

Figure 4 - Smart lighting system Рис. 4 - Умная система освещения Слика 4 - Паметни систем освет^еша

Table 2 represents the inputs (Sun Light SL and Cars or Object C) and the output ( LEDs light) linguistic variables for the system.

Table 2 - Input and output parameters Таблица 2 - Входные и выходные параметры Табела 2 - Улазни и излазни параметри

Parameter Linguistic variable Symbol Fuzzy set

V Low

Low

Sun Light SL Medium

Input High

V High

Car or Object C Pass

Not Pass

High

Output LEDs Light L Medium

Low

The output indicated in the table above as High, Medium, and Low means the percent of light intensity. The Low output value is 25 %, the Medium value is 50% and the High value is a full 100%. Table 3 represents the fuzzy rule base.

Table 3 - Fuzzy rules Таблица 3 - Фаззи правила Табела 3 - Фази правила

No Rule

1 V Low High

2 Low Medium

3 Medium Pass Low

4 High Low

5 IF SL V High AND C THEN L Low

6 V Low Low

7 Low Not Pass Low

8 Medium Low

9 High Low

10 V High Low

The inputs for the system are shown in Figure 5.

Figure 5 - Input variables for the system Рис. 5 - Входные переменные системы Слика 5 - Улазне вари^абле за систем

Research results and discussion

The results of the system are shown in Figures 6, 7 and 8. Figures 6 and 7 show the output of the fuzzy system, while Figure 8 shows the comparison of the energy consumption between the system with and without using fuzzy logic.

Figure 6 - Fuzzy output of smart street lighting Рис. 6 - Нечеткий вывод умного уличного освещения Слика 6 - Фазни излаз паметног уличног освет^еша

Figure 7 - 3D Plot of the fuzzy output of smart street lighting Рис. 7 -3Д-график нечеткого вывода умного уличного освещения Слика 7 - 3Д приказ фазног излаза паметног уличног освет^еша

Figure 8 - Difference of SSL energy consumption with and without applying fuzzy logic Рис. 8 - Разница в энергопотреблении умной системы уличного освещения с применением нечеткой логики и без нее Слика 8 - Разлика у потрошки енергц'е паметног система уличног освет^еша са применом фази логике и без шене примене

As it can be seen in the figure above, the system shows good results in energy consumption since the system takes into account the two important factors, the object (Pass or not Pass) and the intensity level of sunlight. With comparison to the result established by (Gagliardi et al, 2020), the work calculates the daily consumption of energy. The saved energy percent for 10 lamps was about 42 %. The model used in this paper was the exact replica of an actual street with the same number of lamps and the average number of cars that passed in the street during three days of observation. The energy percent saved in this work was 44% for 6 lamps.

Conclusion

The objective of this work has been accomplished. Depending on both types of IR sensors and the application of fuzzy logic which is less used in the research of smart lighting, the problem of energy consumption was solved. The saved energy can be used for lighting other streets or for any other application requiring power supply. From the economic angle, dissipated energy costs a lot - more energy requires more oil for power plants which then leads to more money paid by citizens. The most

CM <u

o

O >

CM

of

UJ

a:

ZD O o

_J

<

o

X

o

LU

I—

>-

a: <

i—

< -j

CD >o

X LU I—

o

o >

0

important advantage of this idea is that lights can be controlled at two levels: level one is the ON-OFF control based on passing objects and level two is the control during the sunrise and sunset hours when there is no need for the full intensity of light bulbs. In third world countries, electric power is consumed randomly due to a lack of understanding of power distribution from the station as well as lack of awareness among people to save energy. That is why a smart system is the most valuable option. In the future, the system can be updated by adding more sensors such as cameras and by using image processing in order to monitor the flow of objects inside the street.

References

Abdul-Adheem, W.R. 2020. Design and simulation of a normalized fuzzy logic controller for the quadruple-tank process. Indonesian Journal of Electrical Engineering and Computer Science, 18(1), pp.227-234, 2019. Available at: https://doi.org/10.11591/ijeecs.v18.i1.pp227-234.

Adnan, N., Kamal N. & Chellappan, K. 2019. An IoT Based Smart Lighting System Based on Human Activity. In: IEEE 14th Malaysia International Conference on Communication (MICC), Selangor, Malaysia, pp.65-68, December 2-4. Available at: https://doi.org/10.1109/MICC48337.2019.9037601.

AL-Forati, I.S.A. & Rashid, A. 2020. Multi-Robot Localization System using an Array of LEDs and LDR Sensors. International Journal of Computer Applications, 176(10), pp.9-12. Available at:

https://doi.org/10.5120/ijca2020920001.

Aussat, Y., Rosmanis, A. & Keshav, S. 2022. A Power-Efficient Self-Calibrating Smart Lighting System. Energy and Buildings, 259(art.ID:111874). Available at: https://doi.org/10.1016/j.enbuild.2022.111874.

Bingol, E., Kuzlu, M. & Pipattanasompom, M. 2019. A LoRa-based Smart Streetlighting System for Smart Cities. In: 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), Istanbul, Turkey, pp.66-70, April 25-26. Available at: https://doi.org/10.1109/SGCF.2019.8782413.

Botler, L.H. & Sadok, D.H. 2016. A presence sensor for smart lighting systems. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, pp.6001-6006, October 23-26. Available at: https://doi.org/10.1109/IEC0N.2016.7793173.

Bozanic, D., Tesic, D., Marinkovic, D. & Milic, A. 2021. Modeling of neuro-fuzzy system as a support in decision-making processes. Reports in Mechanical Engineering, 2(1), pp.222-234. Available at:

https://doi.org/10.31181/rme2001021222b.

Diaconu, E.M. 2021. Smart Lighting System. The Scientific Bulletin of Electrical Engineering Faculty, 21(1), pp.6-9. Available at: https://doi.org/10.2478/sbeef-2021-0002.

Feng, C., Wang, X., Li, Z., Lin, W., Ji, H. & Shen, S. 1976. Smart lighting system based on Bluetooth. Journal of Physics: Conference Series, 1976(art.ID:012028). Available at: https://doi.org/10.1088/1742-6596/1976/1/012028.

Gagliardi, G., Lupia, M., Cario, G., Tedesco, F., Gaccio, F.C., Scudo, F.L. & Casavola, A. 2020. Advanced Adaptive Street Lighting Systems for Smart Cities. Smart Cities, 3(4), pp.1495-1512. Available at: https://doi.org/10.3390/smartcities3040071.

Ghosh, S. & Haldar, N. 2014. Solar tracking system using AT89C51 microcontroller and LDR. International Journal of Emerging Technology and Advanced Engineering, 4(12), pp.403-407.

Gowda, D.V., Annepu, A., Ramesha, M., Kumar, K.P. & Singh, P. 2021. loT Enabled Smart Lighting System for Smart Cities. Journal of Physics: Conference Series, 2089(art.ID:012037). Available at: https://doi.org/10.1088/1742-6596/2089/1/012037.

Hameed, M.S., Mukhtar, S., Khan, H.N., Ali, S., Mateen, M.H. & Gulzar, M. 2021. Pythagorean Fuzzy N -Soft Groups. Indonesian Journal of Electrical Engineering and Computer Science, 21(2), pp.1030-1038. Available at: http://doi.org/10.11591/ijeecs.v21 .i2.pp1030-1038.

Htwe, T.Z., Tun, A.T. & Aung, C.S. 2020. Power Saving System Using LDR And PIR Sensor. Iconic Research and Engineering Journals, 4(2), pp.51-55.

Huangwei, C., Rongjian, T., Fuan, N., Jihua, Z., Bin, S., Zhongyong, L., Can, C. & Liming, C. 2021. A New PCR/LDR-Based Multiplex Functional Molecular Marker for Marker-Assisted Breeding in Rice. Rice Science, 28(1), pp.6-10. Available at: https://doi.org/10.1016Zj.rsci.2020.11.002.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Kumar, A., Shareef, A., Harn, K.T., Kar, P. & Panda, S.K. 2019. A Complete Hardware Setup for Smart Lighting System. In: IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), Bhubaneswar, India, pp.297-301, February 26 - March 1. Available at: https://doi.org/10.1109/ICSETS.2019.8744873.

Kumar, V., Sharma, P. & Kamaldeep, K. 2021. Smart Lighting System Using Arduino. In: IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), Dehradun, India, pp.1-5, November 11-13. Available at:

https://doi.org/10.1109/upcon52273.2021.9667610.

Lah, M.S.C. & Arbaiy, N. 2020. A simulation study of first-order autoregressive to evaluate the performance of measurement error based symmetry triangular fuzzy number. Indonesian Journal of Electrical Engineering and Computer Science, 18(3), pp.1559-1567. Available at: https://doi.org/10.11591/ijeecs.v18.i3.pp1559-1567.

Madrigal, G.A., Cuevas, K.G., Hora, V., Jimenez, K.M., Manato, J.N., Porlaje, M.J. & Fortaleza, B. 2019. Fuzzy logic-based maximum power point tracking solar battery charge controller with backup stand-by AC generator. Indonesian Journal of Electrical Engineering and Computer Science, 16(1), pp.136-146. Available at: https://doi.org/10.11591/ijeecs.v16.i1.pp136-146.

CO CO

CT> CM !±

</>

T3

ro o

o

o o

o

M—

E

<1J tn tn

-e ro E </) T3 <1J </) ro

.Q

LL <

E~ ro ro OT

CM <u

o

O >

CM

of

UJ

a:

ZD O o

_J

<

o

X

o

LU

I—

>-

a: <

i—

< -j

CD >o

X LU I—

O

o >

0

Montalbo, F.J. & Enriquez, E. 2020. An IoT Smart Lighting System for University Classrooms. In: International Symposium on Educational Technology (ISET), Bangkok, Thailand, pp.3-7, August 24-27. Available at: https://doi.org/10.1109/ISET49818.2020.00011.

Poongothai, M., Subramanian, P. M. & Rajeswari, A. 2018. Design and implementation of IoT based smart laboratory. In: 5th International Conference on Industrial Engineering and Applications (ICIEA), Singapore, pp.169-173, April 2628. Available at: https://doi.org/10.1109/IEA.2018.8387090.

Precup, R-E., Preitl , S., Petriu, E., Bojan-Dragos , C-A., Szedlak-Stinean, AI., Roman, R-C. & Hedrea, E-L. 2020. Model-Based Fuzzy Control Results for Networked Control Systems. Reports in Mechanical Engineering, 1(1), pp.10-25. Available at: https://doi.org/10.31181/rme200101010p.

Saputra, M.M., Yudhawati, D. & Aminda, R.S. 2020. Pengaruh loan to deposit ratio (LDR) dan non performing loan (NPL) terhadap return on asset (ROA). Manager: Jurnal Ilmu Manajemen, 3(1), pp.85-93, 2020. Available at: https://doi.org/10.32832/manager.v3i1.3836.

Sikder, A.K., Acar, A., Aksu, H., Uluagac, A.S., Akkaya, K. & Conti, M. 2018. IoT-enabled smart lighting systems for smart cities. In: IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, pp.639-645, February 27. Available at: https://doi.org/10.1109/CCWC.2018.8301744.

Sofian, S.S. & Rambely, A.S. 2020. Measuring perceptions of students toward game and recreational activity using fuzzy conjoint analysis. Indonesian Journal of Electrical Engineering and Computer Science, 20(1), pp.395-404. Available at: https://doi.org/10.11591/ijeecs.v20.i1 .pp395-404.

Subba, B., Wangchuk, C., Ghalley, S., Jigmi, L.J. & Chedup, S. 2020. Design and Simulation of IoT and Zigbee based Smart Lighting System. IARJSET -International Advanced Research Journal in Science, Engineering and Technology, 7(9), pp.31-37. Available at:

https://doi.org/10.17148/iarjset.2020.7908.

Subrahmanian, R.R. & Shastri, A. 2018. Sustainable development of a historic town: preserving the past to sustain the future. In: AMPS Proceedings Series 15.2, Tangible - Intangible Heritage(s), pp.168-179 [online]. Available at: http://architecturemps.com/wp-content/uploads/2021/07/Amps-Proceedings-Series-15.2.pdf [Accessed: 20 February 2022].

Yusuf, S.D., Nmezi, S.N., Loko, A.Z. & Lumbi, W.L. 2020. Design and construction of an automatic streetlight controller using microcontroller and LDR. International Journal of Academic Research and Development, 5(3), pp.50-56 [online]. Available at: https://www.academicjournal.in/archives/2020/vol5/issue3 [Accessed: 20 February 2022].

Zhang, J-j., Zeng, W-h., a, Hou, S-l., Chen, Y-q., Guo, L-y. & Li, Y-x. 2022. A low-power and low cost smart streetlight system based on Internet of Things technology. Telecommunication Systems, 79, pp.83-93, 2022. Available at: https://doi.org/10.1007/s11235-021-00847-1.

УМНАЯ СИСТЕМА УПРАВЛЕНИЯ УЛИЧНЫМ ОСВЕЩЕНИЕМ, ОСНОВАННАЯ НА НЕЧЕТКОЙ ЛОГИКЕ

Ихаб Абдулрахман Сатам

Северный технический университет, кафедра электронной техники, г. Мосул, Ниневия, Республика Ирак;

Обудский университет, факультет машиноведения и безопасности, г. Будапешт, Венгрия

РУБРИКА ГРНТИ: 27.47.00 Математическая кибернетика;

27.47.19 Исследование операций ВИД СТАТЬИ: оригинальная научная статья

Резюме:

Введение/цель: Потребление электроэнергии для уличного освещения является основным расходом в городской среде. По данным Всемирного банка, потребление электроэнергии на уличное освещение составляет 65% от общего потребления электроэнергии в городах и 10% от общего городского бюджета. Потребность в освещении значительно возрастает из-за стремительной урбанизации, которая требует все больше и больше электроэнергии, а соответственно и финансовых средств. В данной связи необходимо разработать разумные решения по сокращению расходов.

Методы: В данной статье представлена разработанная модель уличного освещения, состоящая из нескольких фонарных столбов, размещенных по обе стороны улицы. Модель является точной копией системы уличного освещения в городе Киркук в Ираке. При расчете потребления электроэнергии учитывалось количество объектов, проходящих по улице, как в часы пик, так и в другое время. В качестве контроллера для данной модели использовался Arduino UNO. Arduino получает сигналы от 3 ИК-датчиков, обрабатывает их, а затем отправляет их светильникам уличного освещения. Нечеткая логика применялась в двух случаях: первый - при дневном освещении, второй - во время восхода и заката солнца, с целью управления интенсивностью света уличного освещения. Результаты: Оба случая показали значительные результаты в отношении надежности, эффективности и снижении уровня энергопотребления.

Выводы: Система может быть применима в осуществлении проектов "умные города". Она эффективна, надежна и выгодна, а также способствует электросбережению.

Ключевые слова: нечеткая логика, arduino, умное уличное освещение, энергопотребление, освещения автомобильных дорог.

со со

СТ> С\1 !±

СЛ

тз го о

сл

о

о о

о

ч—

Е ф

-ь-' <Л

-е го Е

тз ф

го

.Q

LL <

Е"

го '

го ю

ПАМЕТНИ СИСТЕМ ЗА УПРАВ^А^Е УЛИЧНИМ ОСВЕТЪЕ^ЕМ ЗАСНОВАН НА ФАЗИ ЛОГИЦИ

Ихаб Абдулрахман Сатам

Северни технички универзитет, Одсек за електронске технике, Мосул, Нинива, Република Ирак; Универзитет Обуда, Факултет безбедносних студи]а, Будимпешта, Ма^арска

ОБЛАСТ: математика, рачунарске науке ВРСТА ЧЛАНКА: оригинални научни рад

Сажетак

Увод/циш: Потрошша електричне енерги]е за осветшаваше улица представка знатан трошак у урбаним срединама. Према Светскоj банци, та потрошша чини 65% свеукупне потрошше електричне енерги]е у градовима и 10% шиховог укупног букета. Потреба за осветшавашем у знатном jе порасту услед брзе урбанизаци}е, што изиску]е све више енерги]е и финанси]ских средстава - осим ако се не примене паметна решеша за смашиваше трошкова. Методе: Представшен jе модел уличног осветшеша ко\и се састо}и од неколико уличних лампи поставшених с обе стране улице. Модел представка верну реплику система уличног осветшеша у граду Киркуку у Ираку. При израчунавашу потрошше електричне енерги]е узет }е у обзир и броj об}еката ко]и су пролазили улицом у шпицу и ван шега. Контролер за оваj модел jе Arduino UNO ко}и прима сигнале из три ИЦ сензора, процесира их и шаше до уличних светишки. Фази логика jе примешена у два случа]а: у време дневног светла и током изласка и заласка сунца како би се контролисала ]ачина светлости уличних светишки.

Резултати: Оба случа]а су показала знача]не резултате када jе реч о поузданости, ефикасности и сигурности система да смаши ниво потрошше електричне енерги]е.

Закшучак: Систем може бити примешен у про]ектима паметних градова. Ефикасан}е, исплатив и сигурно штеди енерги]у.

Кшучне речи: фази логика, Arduino, паметно улично осветшеше, потрошша енерги]е, путна светла.

Paper received on / Дата получения работы / Датум приема чланка: 26.02.2022. Manuscript corrections submitted on / Дата получения исправленной версии работы / Датум достав^а^а исправки рукописа: 18.03.2022.

Paper accepted for publishing on / Дата окончательного согласования работы / Датум коначног прихвата^а чланка за об]ав^ива^е: 20.03.2022.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

© 2022 The Author. Published by Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.Org/licenses/by/3.0/rs/).

© 2022 Автор. Опубликовано в «Военно-технический вестник / Vojnotehnicki glasnik / Military Technical Courier» (www.vtg.mod.gov.rs, втг.мо.упр.срб). Данная статья в открытом доступе и распространяется в соответствии с лицензией «Creative Commons» (http://creativecommons.org/licenses/by/3.0/rs/).

© 2022 Аутор. Об]авио Воjнотехнички гласник / Vojnotehnicki glasnik / Military Technical Courier (www.vtg.mod.gov.rs, втг.мо.упр.срб). Ово ]е чланак отвореног приступа и дистрибуира се у складу са Creative Commons лиценцом (http://creativecommons.org/licenses/by/3.0/rs/).

ст> сч !±

тз го о

о о

Е

<u

-е го Е

тз ф

го

.Q

N N

Е

го ■

го ю

i Надоели баннеры? Вы всегда можете отключить рекламу.