Научная статья на тему 'Furye qatori. Funksiyalarni Furye qatoriga yoyish'

Furye qatori. Funksiyalarni Furye qatoriga yoyish Текст научной статьи по специальности «Естественные и точные науки»

CC BY
7351
606
i Надоели баннеры? Вы всегда можете отключить рекламу.
Ключевые слова
Furye qatori / Furye koeffitsiyentlari. Funksiyalarni Furye qatoriga yoyish

Аннотация научной статьи по естественным и точным наукам, автор научной работы — Maxsud Tulqin O’g’li Usmonov

Ushbu maqolada matematikaning eng muhim mavzularidan biri bo’lgan Furye qatori. Funksiyani Furye qatoriga yoyish tog’risida malumot keltirildi va mavjud muanmolar xal etildi. Agar f (x) funksiya [a;b] kesmada monoton bo‘lsa yoki [a;b] kesmani chekli sondagi qismiy kesmalarga bo‘lish mumkin bo‘lsa va bu kesmalarning har birida f (x) funksiya monoton (faqat o‘ssa yoki faqat kamaysa) yoki o‘zgarmas bo‘lsa, f (x) funksiyaga [a;b] kesmada bo‘laklimonoton funksiya deyiladi. Agar f (x) funksiya [a;b] kesmada chekli sondagi birinchi tur uzilish nuqtalariga ega bo‘lsa, f (x) funksiyaga [a;b] kesmada bo‘lakli-uzluksiz funksiya deyiladi. Agar f (x) funksiya [a;b] kesmada uzluksiz yoki bo‘lakli-uzluksiz bo‘lib, bo‘lakli-monoton bo‘lsa f (x) funksiya [a;b] kesmada Dirixle shartlarini qanoatlantiradi deyiladi. Bu hоllаrdа qo’yilgаn mаsаlаlаrni yеchishdа quyidа biz o’rgаnаdigаn qаtоrlаr nаzаriyasi kаttа аhаmiyatgа egа.

i Надоели баннеры? Вы всегда можете отключить рекламу.
iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Текст научной работы на тему «Furye qatori. Funksiyalarni Furye qatoriga yoyish»

Furye qatori. Funksiyalarni Furye qatoriga yoyish

Maxsud Tulqin o'g'li Usmonov [email protected] Mirzo Ulug'bek nomidagi O'zbekiston Milliy universiteti

Annotatsiya: Ushbu maqolada matematikaning eng muhim mavzularidan biri bo'lgan Furye qatori. Funksiyani Furye qatoriga yoyish tog'risida malumot keltirildi va mavjud muanmolar xal etildi. Agar f (x) funksiya [a;b] kesmada monoton bo'lsa yoki [a;b] kesmani chekli sondagi qismiy kesmalarga bo'lish mumkin bo'lsa va bu kesmalarning har birida f (x) funksiya monoton (faqat o'ssa yoki faqat kamaysa) yoki o'zgarmas bo'lsa, f (x) funksiyaga [a;b] kesmada bo'laklimonoton funksiya deyiladi. Agar f (x) funksiya [a;b] kesmada chekli sondagi birinchi tur uzilish nuqtalariga ega bo'lsa, f (x) funksiyaga [a;b] kesmada bo'lakli-uzluksiz funksiya deyiladi. Agar f (x) funksiya [a;b] kesmada uzluksiz yoki bo'lakli-uzluksiz bo'lib, bo'lakli-monoton bo'lsa f (x) funksiya [a;b] kesmada Dirixle shartlarini qanoatlantiradi deyiladi. Bu hollarda qo'yilgan masalalarni yechishda quyida biz o'rganadigan qatorlar nazariyasi katta ahamiyatga ega.

Kalit so'zlar: Furye qatori, Furye koeffitsiyentlari. Funksiyalarni Furye qatoriga yoyish.

Fourier series. Fourier series expansion of functions

Maxsud Tulqin oglu Usmonov [email protected] National University of Uzbekistan named after Mirzo Ulugbek

Abstract: In this article, the Fourier series is one of the most important topics in mathematics. Information on the expansion of the function into the Fourier series was given and the existing problems were solved. If the function f (x) is monotone in the section [a;b] or if the section [a;b] can be divided into a finite number of partial sections, and in each of these sections the function f (x) is monotone (only if or only decreases) or is constant, the function f (x) is called a piecewise monotone function on the cross section [a;b]. If the function f (x) has a finite number of discontinuities of the first type on the section [a;b], then the function f (x) is called a piecewise-continuous function on the section [a;b]. If the function f (x) is continuous or piecewise-continuous in the cross section [a;b], and is piecewise monotone, then the function f (x) is said to satisfy the Dirichlet conditions in the cross section [a;b]. The

WWW.0PENSCIENCE.UZ / ISSN 2181-0842 77

theory of series, which we will study below, is of great importance in solving the problems posed in these cases.

Keywords: Fourier series, Fourier coefficients. Fourier series expansion of functions.

1. Furye qatori.

Faraz qilaylik, f (x) funksiya R-( ^, + da berilgan bo'lsin. Ma'lumki,

shunday T G R ^ ^ son topilsaki, v x e R da

f (x+T)-f (x)

tenglik bajarilsa, f (x) davriy funksiya, T * 0 son esa uning davri deyiladi.

Agar T * 0 son f (x) funksiyaning davri bo'lsa, u holda

kT (k = ±l+2,...) sonlar ham shu funksiyaning davri bo'ladi.

Agar f (x) va g (x) davriy funksiyalar bo'lib, T * 0 ularning davri bo'lsa,

f ( x )± g ( x), f ( x )• g (x), fM (g ( X )* 0)

funksiyalar ham davriy bo'lib, ularning davri T ga teng bo'ladi.

y — sin x, y — cos x funksiyalar T - davrli funksiya bo'lgan holda ushbu

(p(x)-acosax + bsinax saba- <■ rv^ttw

^ ' (ab,a o zgarmas, a*0)

T = 2n

funksiya ham davriy funksiya bo'lib, uning davri a bo'ladi. Haqiqatan

ham,

f 2n

p\ x +--

V a ,

— a cos (ax + + b sin (ax + 2n) — a cos ax + b sin ax — p (x)

bo'ladi.

t-, p(x~) — acosax + bsinax ,, , r , • , , ,

Bu ' sodda davriy funksiya bo lib, u garmonika deb

ataladi.

Aytaylik, f (x) funksiya ^ da uzluksiz bo'lsin. Unda

/(.x)cosra", f(x)smnx (n = 1,2,3,...)

funksiyalar ham i da uzluksiz bo'lib, ular i da integrallanuvchi

bo'ladi. Bu integrallarni quyidagicha belgilaymiz:

" ( 2jc\ + b sin " ( 2xX

a cos a x +-- a x +--

_ I a ) _ _ I a ) _

a0 =~ K

1 n

1 j f ( x ) ^

^ -K

1 71

— f f(x)cosnxdx, (« = 1,2,...)

-K

1 71

bn = — |/(x)sin«xt/x. (« = 1,2,...)

an =-

K

(1)

Bu sonlardan foydalanib, ushbu

a.

— + cosnx + b sinnx)

2 n ' 2 n=1 (2)

qatorni ( uni trigonometrik qator deyiladi) hosil qilamiz.

(2) qator funksional qator bo'lib, uning har bir hadi garmonikadan iborat.

Ta'rif. (2) funksional qator f(x) funksiyaning Furye qatori deyiladi. (1) munosabatlar bilan aniqlangan

0 > 1' 1' 2 7 2 7 7 n 7 n 7

sonlar Furye koeffitsiyentlari deyiladi. 7.2. Funksiyalarni Furye qatoriga yoyish.

Demak, berilgan f (x) funksiyaning Furye koeffitsiyentlari shu funksiyaga

bog'liq bo'lib, (2) formulalar yordamida aniqlanadi, qator esa quyidagicha:

a œ

f ( x ) —0 + ^(a„ cos nx + bn sin nx )

2 n=1 .

belgilanadi.

1-misol. Ushbu f (x) = e ( K~ x ~K ,a* 0) funksiyaning Furye qatori topilsin. (1) formulalardan foydalanib, berilgan funksiyaning Furye koeffitsiyentlarini hisoblaymiz:

1 K 1 1

a0 = - j eaxdx = — (eaK - e-aK ) = — shan, k J„ anx ' an

aK

1 K

an = — I eax cos nxdx = n J

1 acos nx + n sin nx

K

2 . 2 a + n

= (-1 yL^—shax („ = 1,2,...), n a'+rr

1 K 1j

1T •>

bn = — | ea sin nxdx =

K

1 asin nx - n cos nx

K

2 . 2 a + n

= (-1 y-'L-^L-shan („ = 1,2,...).

7t er +tr

Demak,

funksiyaning Furye qatori

f ( x ) = ea

K

K

K

K

K

f (x) — eax ~ — + ^ (a cos nx + bn sin nx) —

2 n—1

2 shan

n

1 v (-1)\ • ^

+ —^-(acos nx - n sin nx )

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

bo'ladi.

Aytaylik, U holda

2a n—1 a2 + n2

f (x) funksiya [ n,n] da berilgan juft funksiya bo'lsin: f ( x) — f (x)

f (x>cosnxjuft, f (x>sinn toq (n —1,2,3,.. ) funksiya bo'ladi.

(1) formulalardan foydalanib, topamiz:

f (x) funksiyaning Furye koeffitsiyentlarini

Y n 1 0 n

an — — | f (x) cos nxdx — — j f (x) cos nxdx + j f (x) cos nxdx

n

2 } n

| f (x) cos nxdx + | f (x) cos nxdx

0 0

— [ /(x) cos nxdx (n = 0,1,2,...). ^ o

Y n 1 0 n

bn — — | f ( x) sin nxdx — — | f ( x) sin nxdx + j f ( x) sin nxdx

- j f ( x) sin nxdx + j f ( x) sin nxdx

= 0 («=1,2,...).

f ( x )

Demak, juft J ( ) funksiyaning Furye koeffitsiyentlari

an —

2

— ^ f i^x) cos nxdx (« = 0,1,2,...)

bn= 0 (« = 1,2,...)

bo'lib, Furye qatori

f (x) ~ 00+Z

a cosnx

bo'ladi.

f ( x )

Aytaylik, j ( ) funksiya

[-n,n]

da berilgan toq funksiya bo'lsin:

f (- x ) — --f ( x )

. U holda

f (x )• cos nx f (x )• sin nx ^^ (n —1,2,3,...)

juft

funksiya bo'ladi.

(1) formulalardan foydalanib, topamiz:

f ( x )

funksiyaning Furye koeffitsiyentlarini

to

to

n—1

^ 7 1 0 n

an = — I f (x) cos nxdx = — I f (x) cos nxdx + I f (x) cos nxdx

— 7 _— 7 0 _

1 "

= —[- f {x} cos nxdx + f {x} cos nxdx \ = 0 (« = 0,1,2,...) ^ o

Y 7 10 7

bn = — | f (x) sin nxdx = — | f (x) sin nxdx +1 f (x) sin nxdx

| f (x) sin nxdx

(/7=1,2,...).

Demak, toq f (x) funksiyaning Furye koeffitsiyentlari

a„= 0, (« = 0,1,2,...),

2 *

bn=—\f (x) sin/mix, (ri = 1,2, ...)

n I

bo'lib, Furye qatori

f (x) ~ Z bn si

sin nx

n=1

bo'ladi.

2-misol. Ushbu

f (x) = x2 (—7 < x <7)

' juft funksiyaning Furye qatori topilsin. Avvalo berilgan funksiyaning Furye koeffitsiyentlarini topamiz:

2_ 7'

a0 =-

7

| x2 dx

'2—2 = —7

3

a = — f x2 cos nxdx = —x

7Z{ 7

2 9 sin nx

_4_ 7n

x cos nx

n

7n

7 1 7 \

7 4 7

n7

| x sin nxdx

— fcosnxdx = (-1)" • . (n = 1,2, ...) n{ tr

Demak,

f ( x ) = x

2

funksiyaning Furye qatori

Л\ ? 7 cos nx

x)=x ~ 7"+4Z(—ST

bo'ladi.

3-misol. Ushbu f (x) = x ( 77 < x < 7 toq funksiyaning Furye qatori topilsin. Berilgan funksiyaning Furye koeffitsiyentlarini hisoblaymiz:

bn = — I x sin nxdx -

7

x cos nx

1 K

— I cos nxdx

V) J

_ 2 (—l)n

Demak,

bo'ladi.

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

f (x ) = x

funksiyaning Furye qatori

f (x) ~ Z(——)n—1_sin nx

>i=i n

Faraz qilaylik, f (x) funksiya [ p,p] (p > 0) segmentda uzluksiz bo'lsin. Ma'lumki, ushbu

n

t ——x p

almashtirish [ p,p] oraliqni [ n,n] ga o'tkazadi, ya'ni x o'zgaruvchi [ p,p] da o'zgarganda t o'zgaruvchi [ n,n] da o'zgaradi. Endi

f ( x ) — f | pt ] — p(t).

deymiz. Unda p(t) funksiya [ n,n] oraliqda berilgan uzluksiz funksiya bo'ladi. Bu funksiyaning Furye koeffitsiyentlari

an — -

n

1

- j p(t) cos ntdt, (« = 0,1,2,...)

^ -n

1 71

bn = — | p(t^smntdt (« = 1,2,...)

ni topib, Furye qatorini yozamiz:

p (t) ~ + 2 (a cos nt + bn sin nt)

n—1

Modomiki,

ekan, unda

n

t ——x p

P

fn ^ — x

V p J

bo'lib, uning koeffitsiyentlari

a0 ! 2 „-1

nn a cos n — x + b sin n — x

p p J

1 r 1 j

p n ^

an I PI -x

^ J

TT

cosn — xdx, (« = 0,1,2...) P

bn=—^p\—x sinn — xdx. (« = 1,2...)

.p J

bo'ladi. Natijada [ p,p] da berilgan f (x) funksiyaning Furye qatorini quyidagicha

f (x) ~ + 2

nnx 7 . nnx an cos--+ bn sin-

p P J

bo'lishini topamiz, bunda

-n

TO

n—1

a„ = —

1 if (x)

nnx 1 , „ , „ \ cos-ax yn = 0,1,2...)

1 P T17T

bn = — |/(x)sin— xdx (« = 1,2...)

4-misol. Ushbu

f (x ) = ex (-1 < x < 1)

funksiyaning Furye qatori topilsin.

Yuqoridagi formulalardan foydalanib, f (x ) =e funksiyaning Furye koeffitsiyentilarini topamiz:

1 1 nn sin nnx - cos nnx

\exdx = e - e 1, a = \ ex cos nnxdx = „ „

J j 1 + n n

H-i)ni 1

1 + n n

^ (ecosnx-e 1 cosw;r) = (-1)" ——(n = l,2,...)

1

bn = J ex cos nnxdx

-1

= 1 + n2n2 (

sin nnx - nn cos nnx

1 + «v

nn(-1)n

= 1 + n 2n2

enn cos nn + nne cos nn\ =

(e-'-e) = (-lfl-^-J („ = 1,2,...) v 7 1 + n TT

Demak,

f (x) = ex (-1 < x < 1)

funksiyaning Furye qatori

e - e

TO

- + (e - e-1)!

(- 1)n (- 1)n+1 ——-—-cos nn + ——-—- nnsin nnx

1 + n n

1 + n n

bo'ladi.

Aytaylik, f (x)funksiya ^a'b da berilgan bo'lsin. ia'b segment a nuqtalar yordamida bo'laklarga ajratilgan. (a° = a a = .

Agar har bir (c'k (£-0,1,2,...,« l) /(x) fLinksiya differensial 1 anuvchi

bo'lib, x = ak nuqtalarda chekli o'ng

f'(ak+ 0) (k = 0,1,2,...,« —l) ^

va chap

f'(ak-0) (k = 0,1,2,...,«)

hosilalarga ega bo'lsa, f (x) funksiya b da bo'lakli-differensiallanuvchi deyiladi.

Endi Furye qatorining yaqinlashuvchi bo'lishi haqidagi teoremani isbotsiz keltiramiz.

a0 =

e

-1

e ~

2

n=1

Teorema. 2n davrli f (x) funksiya [ n,n] oraliqda bo'lakli-differensiallanuvchi bo'lsa, u holda bu funksiyaning Furye qatori

f (x) ~ — + 2 (a cos kx + b sin kx )

k—1

[ n,n] da yaqinlashuvchi bo'lib, uning yig'indisi

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

f ( x + 0) + f ( x-0) 2

ga teng bo'ladi.

• 7 tt uu J(x) — cosax (-n<x <n , a *n e Z) r , • • ^ . •

5-misol. Ushbu J v ' v ' funksiyaning Furye qatori

topilsin va u yaqinlashishga tekshirilsin.

Bu funksiyaning Furye koeffitsiyentlarini topamiz. Qaralayotgan funksiya juft

bo'lgani uchun

bn= 0 (n = 1,2,3,...)

bo'lib,

n \ sin an,

a — — j cos ax cos nxdx — j[cos (a - n ) x + cos (a + n ) x] dx -;(-1)n

1 1

-+-

a + n a - n

bo'ladi. Demak,

f (x)

sin an

n

1+K-1)"

1 1

a + n a - n

cos nx

Agar f (x) cosax funksiya teoremaning shartlarini bajarishini e'tiborga olsak,

unda

cos ax — -

sin an

n

1+j2(-1)"\—+— a n—1 V a + n a - n

cos nx

bo'lishini topamiz.

TO

Foydalanilgan adabiyotlar

1. Usmonov, M. T. o'g'li. (2021). Matritsa rangi. Matritsa rangini tuzatish usullari. Fan va ta'lim, 2(8), 280-291. http://openscience.uz/index.php/sciedu/article/view/1758 dan olindi.

2. Usmonov, M. T. o'g'li. (2021). Matritsalar va ular ustida amallar. Fan va ta'lim, 2(8), 226-238. http://openscience.uz/index.php/sciedu/article/view/1752 dan olindi.

3. Usmonov, M. T. o'g'li. (2021). Vektorlar. Fan va ta'lim, 2(8), 173-182. https://openscience.uz/index.php/sciedu/article/view/1747 dan olindi.

4. Usmonov, M. T. o'g'li. (2021). Chiziqli algebraik tenglamalar tizimini echishning matritsa, Gauss va Gauss-Jordan usullari. Fan va ta'lim, 2(8), 312-322. http://openscience.uz/index.php/sciedu/article/view/1761 dan olindi.

5. Usmonov, M. T. o'g'li. (2021). Chiziqli operatorlar va komissiya xossalari. Fan va ta'lim, 2(8), 133-145. http://openscience.uz/index.php/sciedu/article/view/1744 dan olindi.

6. Usmonov, M. T. o'g'li. (2021). Chiziqli operatorlar va komissiya xossalari. Fan va ta'lim, 2(8), 146-152. http://openscience.uz/index.php/sciedu/article/view/1744 dan olindi.

7. Usmonov, M. T. o'g'li. (2021). Kvadratik forma va uni kanonik korinishga keltirish. Fan va ta'lim, 2(8), 153-172. https://www.openscience.uz/index.php/sciedu/article/view/1746 dan olindi.

8. Usmonov, M. T. o'g'li. (2021). Arifmetik vektor fazo va unga misollar. Fan va ta'lim, 2(8), 109-120. https://www.openscience.uz/index.php/sciedu/article/view/1742 dan olindi.

9. Usmonov, M. T. o'g'li. (2021). Vektorlarning skalyar ko'paytmasi. Fan va ta'lim, 2(8), 183-191. https://www.openscience.uz/index.php/sciedu/article/view/1748 dan olindi.

10. Usmonov, M. T. o'g'li. (2021). Vektorlarning vektor va aralash ko'paytmalari. Fan va ta'lim, 2(8), 271-279. http://openscience.uz/index.php/sciedu/article/view/1757 dan olindi.

11. Usmonov, M.T. & Shokirov.,Sh.H, (2022). Teylor formulasini matematik masalalarni echishdagi ahamiyati. "«Science and Education» Scientific Journal" Scientific Journal, Tom-3, 19-23.

12. Usmonov, M.T. & Shokirov.,Sh.H, (2022). Darajali qatorlarning taqribiy hisoblashlarga tatbiqi. «Science and Education» Scientific Journal, Tom-3, 29-32.

13. Usmonov, M.T. & Shokirov.,Sh.H, (2022). Ishoralari almashinib keluvchi qatorlar. Leybnits alomati. «Science and Education» Scientific Journal, Tom-3, 2428.

14. Usmonov, M.T. & Shokirov.,Sh.H, (2022). Teylor qatori va uning tadbiqlari. «Science and Education» Scientific Journal, Tom-3, 33-38.

15. Усмонов, М.Т. (2021). Вычисление ^rnpa тяжести плоской огрaниченной фигуры с помощью двойного интегрaлa. «Science and Education» Scientific Journal, Tom-2, 64-71.

16. Усмонов, М.Т. (2021). Биномиaльное рaспределение вероятностей. «Science and Education» Scientific Journal, Tom-2, 81-85.

17. Усмонов,МТ. (2021). Поток векторного поля. Поток через зaмкнутую поверхность. «Science and Education» Scientific Journal, Tom-2, 52-63.

18. Усмонов,М.T. (2021). Вычисление определенного интегрaлa по формуле трaпеций и методом Симпсонa. «Science and Education» Scientific Journal, Tom-2, 213-225.

19. Усмонов,МТ. (2021). Метод кaсaтельных. «Science and Education» Scientific Journal, Tom-2, 25-34.

20. Усмонов,МТ. (2021). Вычисление пределa функции с помощью рядa. «Science and Education» Scientific Journal, Tom-2, 92-96.

21. Усмонов,МТ. (2021). Примеры решений произвольных тройных интегрaлов. Физические приложения тройного интегрaлa. «Science and Education» Scientific Journal, Tom-2, 39-51.

22. Усмонов,МТ. (2021). Вычисление двойного интегрaлa в полярной системе координaт. «Science and Education» Scientific Journal, Tom-2, 97-108.

23. Усмонов,МТ. (2021). Криволинейный интегрaл по зaмкнутому контуру. Формулa Гриш. Рaботa векторного поля. «Science and Education» Scientific Journal, Tom-2, 72-80.

24. Усмонов,МТ. (2021). Прaвило Крaмерa. Метод обрaтной мaтрицы. «Science and Education» Scientific Journal, Tom-2, 249-255.

25. Усмонов,МТ. (2021). Теоремы сложения и умножения вероятностей. Зaвисимые и незaвисимые события. «Science and Education» Scientific Journal, Tom-2, 202-212.

26. Усмонов,МТ. (2021). Рaспределение и формулa Пуaссонa. «Science and Education» Scientific Journal, Tom-2, 86-91.

27. Усмонов,МТ. (2021). Геометрическое рaспределение вероятностей. «Science and Education» Scientific Journal, Tom-2, 18-24.

28. Усмонов,МТ. (2021). Вычисление плошдди поверхности врaщения. «Science and Education» Scientific Journal, Tom-2, 97-104.

29. Усмонов,МТ. (2021). Нхождение обрaтной мaтрицы. «Science and Education» Scientific Journal, Tom-2, 123-130.

30. Усмонов,МТ. (2021). Вычисление двойного интегрaлa. Примеры решений. «Science and Education» Scientific Journal, Tom-2, 192-201.

31. Усмонов,МТ. (2021). Метод прямоугольников. «Science and Education» Scientific Journal, Tom-2, 105-112.

32. Усмонов,МТ. (2021). Кгк вычислить длину дуги кривой?. «Science and Education» Scientific Journal, Tom-2, 86-96.

33. Усмонов,МТ. (2021). Вычисление плошдди фигуры в полярных координaтaх с помощью интегрaлa. «Science and Education» Scientific Journal, Tom-2, 77-85.

34. Усмонов,МТ. (2021). Повторные пределы. «Science and Education» Scientific Journal, Tom-2, 35-43.

WWW.0PENSCIENCE.UZ / ISSN 2181-0842 86

35. Усмонов,М.Т. (2021). Дифференциальные уравнения второго порядка и высших порядков. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами. «Science and Education» Scientific Journal, Tom-2, 113-122.

36. Усмонов,М.Т. (2021). Пределы функций. Примеры решений. «Science and Education» Scientific Journal, Tom-2, 139-150.

37. Усмонов,М.Т. (2021). Метод наименьших квадратов. «Science and Education» Scientific Journal, Tom-2, 54-65.

38. Усмонов,М.Т. (2021). Непрерывность функции двух переменных. «Science and Education» Scientific Journal, Tom-2, 44-53.

39. Усмонов,МТ. (2021). Интегрирование корней (иррациональных функций). Примеры решений. «Science and Education» Scientific Journal, Tom-2, 239-248.

40. Усмонов,М.Т. (2021). Криволинейные интегралы. Понятие и примеры решений. «Science and Education» Scientific Journal, Tom-2, 26-38.

41. Усмонов,МТ. (2021). Гипергеометрическое распределение вероятностей. «Science and Education» Scientific Journal, Tom-2, 19-25.

42. Усмонов,МТ. (2021). Абсолютная и условная сходимость несобственного интеграла. Признак Дирихле. Признак Абеля. «Science and Education» Scientific Journal, Tom-2, 66-76.

43. Усмонов,МТ. (2021). Решение систем линейных уравнений. «Science and Education» Scientific Journal, Tom-2, 131-138.

44. Usmonov, M.T. (2021). Matritsalar va ular ustida amallar. «Science and Education» Scientific Journal, Tom-2, 226-238.

45. Usmonov, M.T. (2021). Teskari matritsa. Teskari matritsani hisoblash usullari. «Science and Education» Scientific Journal, Tom-2, 292-302.

46. Usmonov, M.T. (2021). Bir jinsli chiziqli algebraik tenglamalar sistemasi. «Science and Education» Scientific Journal, Tom-2, 323-331.

47. Usmonov, M.T. (2021). Chiziqli fazo. Yevklid fazosi. «Science and Education» Scientific Journal, Tom-2, 121-132.

48. Usmonov, M.T. (2021). Vektorlarning skalyar ko 'paytmasi. «Science and Education» Scientific Journal, Tom-2, 183-191.

49. Usmonov, M.T. (2021). Xos vektorlari bazis tashkil qiluvchi chiziqli operatorlar. «Science and Education» Scientific Journal, Tom-2, 146-152.

50. Usmonov, M.T. (2021). Chiziqli algebraik tenglamalar sistemasi va ularni еchish usullari. «Science and Education» Scientific Journal, Tom-2, 303-311.

51. Usmonov, M.T. (2021). Vektorlar. «Science and Education» Scientific Journal, Tom-2, 173-182.

52. Usmonov, M.T. (2021). Kvadratik forma va uni kanonik korinishga keltirish. «Science and Education» Scientific Journal, Tom-2, 153-172.

53. Usmonov, M.T. (2021). Arifmetik vektor fazo va unga misollar. «Science and Education» Scientific Journal, Tom-2, 109-120.

54. Usmonov, M.T. (2021). Chiziqli operatorlar va ularning xossalari. «Science and Education» Scientific Journal, Tom-2, 133-145.

55. Usmonov, M.T. (2021). Determinantlar nazariyasi. «Science and Education» Scientific Journal, Tom-2, 256-270.

56. Usmonov, M.T. (2021). Matritsa rangi. Matritsa rangini hisoblash usullari. «Science and Education» Scientific Journal, Tom-2, 280-291.

57. Usmonov, M.T. (2021). Autentification, authorization and administration. «Science and Education» Scientific Journal, Tom-2, 233-242.

58. Usmonov, M.T. (2021). Vektorlar nazariyasi elementlari. «Science and Education» Scientific Journal, Tom-2, 332-339.

59. Usmonov, M.T. (2021). EHTIMOLLAR NAZARIYASI. «Science and Education» Scientific Journal, Tom-1, 10-15.

60. Usmonov, M.T. (2021). Chiziqli algebraik tenglamalar sistemasi va ularni еchish usullari. «Science and Education» Scientific Journal, Tom-2, 333-311.

61. Usmonov, M.T. (2021). Bir jinsli chiziqli algebraik tenglamalar sistemasi. «Science and Education» Scientific Journal, Tom-21, 323-331.

62. Usmonov, M.T. (2021). Vektorlar nazariyasi elementlari. «Science and Education» Scientific Journal, Tom-2, 332-339.

63. Usmonov, M.T. (2021). Chiziqli fazo. Yevklid fazosi. «Science and Education» Scientific Journal, Tom-2, 121-132.

64. Usmonov M. T. & Qodirov F. E, BIR JINSLI VA BIR JINSLIGA OLIB KELINADIGAN DIFFERENSIAL TENGLAMALAR. AMALIY MASALALARGA TADBIQI (KO'ZGU MASALASI) , BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY JURNALI: Vol. 2 No. 1 (2022): БАРКДРОРЛИК ВА ЕТАКЧИ ТАД^ЩОТЛАР ОНЛАЙН ИЛМИЙ ЖУРНАЛИ

65. Usmonov Maxsud Tulqin o'g'li, Sayifov Botirali Zokir o'g'li, Negmatova Nilufar Ergash qizi, Qodirov Farrux Ergash o'g'li, BIRINCHI VA IKKINCHI TARTIBLI HUSUSIY HOSILALAR. TO'LA DIFFERENSIAL. TAQRIBIY HISOBLASH , BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN ILMIY JURNALI: 2022: SPECIAL ISSUE: ZAMONAVIY UZLUKSIZ TA'LIM SIFATINI OSHIRISH ISTIQBOLLARI

66. Usmonov Maxsud Tulqin o'g'li, Sayifov Botirali Zokir o'g'li, Negmatova Nilufar Ergash qizi, Qodirov Farrux Ergash o'g'li, IKKI ARGUMENTLI FUNKSIYANING ANIQLANISH SOHASI, GRAFIGI, LIMITI VA UZLUKSIZLIGI , BARQARORLIK VA YETAKCHI TADQIQOTLAR ONLAYN

WWW.OPENSCIENCE.UZ / ISSN 2181-0842 88

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

ILMIY JURNALI: 2022: SPECIAL ISSUE: ZAMONAVIY UZLUKSIZ TA'LIM SIFATINI OSHIRISH ISTIQBOLLARI

67. Usmonov Maxsud Tulqin o'g'li. (2022). FURYE QATORI. FUNKSIYALARNI FURYE QATORIGA YOYISH. https://doi.org/10.5281/zenodo.6055125

68. Usmonov. M. T. ., & Qodirov. F. E. . (2022). DARAJALI QATORLAR. DARAJALI QATORLARNING YAQINLASHISH RADIUSI VA SOHASI. TEYLOR FORMULASI VA QATORI. IJTIMOIY FANLARDA INNOVASIYA ONLAYN ILMIY JURNALI, 8-20. Retrieved from http://www.sciencebox.uz/index.php/jis/article/view/1151

69. Usmonov. M. T. ., & Qodirov. F. E.. (2022). FURE QATORI VA UNING TADBIQLARI. IJTIMOIY FANLARDA INNOVASIYA ONLAYN ILMIY JURNALI, 21-33. Retrieved from http://www.sciencebox.uz/index.php/jis/article/view/1152

70. M.T Usmonov, M.A Turdiyeva, Y.Q Shoniyozova, (2021). SAMPLE POWER. SELECTION METHODS (SAMPLE ORGANIZATION METHODS). ООО НАУЧНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА , 59-60.

71. Усмонов,МТ, М.А.Турдиева (2021). ГЛАВА 9. МЕТОДЫ И СРЕДСТВА СОВРЕМЕННОЙ ЗАЩИТЫ КОМПЬЮТЕРНЫХ СЕТЕЙ. РИСКИ И ПРИНЦИПЫ ЗАЩИТЫ ИНФОРМАЦИИ В ЭЛЕКТРОННОЙ ПОЧТЕ. ББК 60 С69, Ст-99.

72. Усмонов,М.Т, J.M.Saipnazarov, K.B. Ablaqulov (2021 SOLUTION OF MATHEMATICAL PROBLEMS IN LOWER CLASSES. Книга: АКТУАЛЬНЫЕ ВОПРОСЫ СОВРЕМЕННОЙ НАУКИ И ОБРАЗОВАНИЯ, 167-177.

73. Усмонов М.Т. (2022). E-LEARNING И ЕГО РОЛЬ В СОВРЕМЕННОЙ СИСТЕМЕ ОБРАЗОВАНИЯ. : Special Issue_Ta'limni modernizatsiyalash jarayonlari muammolar va еchimlar». 168-171.

74. Usmonov. M. T. ., & Qodirov. F. E.. (2022). STOKS FORMULASI. SIRT INTEGRALLARI TADBIQLARI. IJTIMOIY FANLARDA INNOVASIYA ONLAYN ILMIY JURNALI, 34-45. Retrieved from https://sciencebox.uz/index.php/jis/article/view/1153

75. Usmonov M. T. The Concept of Compatibility, Actions on Compatibility. International Journal of Academic Multidisciplinary Research (IJAMR), Vol. 5 Issue 1, January - 2021, Pages: 10-13.

76. Usmonov M. T. The Concept of Number. The Establishment of the Concept of Natural Number and Zero. International Journal of Academic Information Systems Research (IJAISR), Vol. 4 Issue 12, December - 2020, Pages: 7-9.

77. Usmonov M. T. The Concept of Compatibility, Actions on Compatibility. International Journal of Engineering and Information Systems (IJEAIS), Vol. 4 Issue 12, December - 2020, Pages: 66-68.

78. Usmonov M. T. General Concept of Mathematics and Its History. International Journal of Academic Multidisciplinary Research (IJAMR). Vol. 4 Issue 12, December - 2020, Pages: 38-42

79. Usmonov M. T. Asymmetric Cryptosystems. International Journal of Academic Engineering Research (IJAER) ISSN: 2643-9085 Vol. 5 Issue 1, January -2021, Pages: 6-9.

80. Usmonov M. T. Basic Concepts of Information Security. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January - 2021, Pages: 5-8.

81. Usmonov M. T. Communication Control Systems, Methodology. International Journal of Academic Engineering Research (IJAER) ISSN: 2643-9085 Vol. 5 Issue 1, January - 2021, Pages: 47-50.

82. Usmonov M. T. Compatibility between the Two Package Elements. Binar Relations and Their Properties. International Journal of Academic Multidisciplinary Research (IJAMR) ISSN: 2643-9670 Vol. 5 Issue 1, January - 2021, Pages: 52-54.

83. Usmonov M. T. Cryptographic Protection of Information. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January - 2021, Pages: 24-26.

84. Usmonov M. T. Electronic Digital Signature. International Journal of Academic Pedagogical Research (IJAPR) ISSN: 2643-9123 Vol. 5 Issue 1, January -2021, Pages: 30-34.

85. Usmonov M. T. "Equal" And "Small" Relations. Add. Laws Of Addition. International Journal of Academic Information Systems Research (IJAISR) ISSN: 2643-9026 Vol. 5 Issue 1, January - 2021, Pages: 27-29.

86. Usmonov M. T. Establish Network Protection. International Journal of Academic Engineering Research (IJAER) ISSN: 2643-9085 Vol. 5 Issue 1, January -2021, Pages: 14-21.

87. Usmonov M. T. Fundamentals of Symmetric Cryptosystem. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January - 2021, Pages: 36-40.

88. Usmonov M. T. General Concepts of Mathematics. International Journal of Academic Information Systems Research (IJAISR) ISSN: 2643-9026 Vol. 5 Issue 1, January - 2021, Pages: 14-16.

89. Usmonov M. T. Identification and Authentication. International Journal of Academic Pedagogical Research (IJAPR) ISSN: 2643-9123 Vol. 5 Issue 1, January -2021, Pages: 39-47.

WWW.0PENSCIENCE.UZ / ISSN 2181-0842 90

90. Usmonov M. T. Information Protection and Its Types. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January - 2021, Pages: 1-4.

91. Usmonov M. T. Information Protection in Wireless Communication Systems. International Journal of Academic Pedagogical Research (IJAPR) ISSN: 2643-9123 Vol. 5 Issue 1, January - 2021, Pages: 61-64.

92. Usmonov M. T. Information protection supply. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January -2021, Pages: 12-15.

93. Usmonov M. T. Information Security Policy. International Journal of Academic Pedagogical Research (IJAPR) ISSN: 2643-9123 Vol. 5 Issue 1, January -2021, Pages: 70-73.

94. Usmonov M. T. Information War. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January - 2021, Pages: 79-82.

95. Usmonov M. T. International and National Legal Base in the Field Of Information Security. International Journal of Academic Pedagogical Research (IJAPR) ISSN: 2643-9123 Vol. 5 Issue 1, January - 2021, Pages: 7-14.

96. Usmonov M. T. Legal Legislative Basis for Detection of Information Crime. International Journal of Academic Engineering Research (IJAER) ISSN: 2643-9085 Vol. 5 Issue 1, January - 2021, Pages: 80-87.

97. Usmonov M. T. Mathematical Proofs. Incomplete Induction, Deduction, Analogy. The Concept Of Algorithm And Its Properties. International Journal of Academic Multidisciplinary Research (IJAMR) ISSN: 2643-9670 Vol. 5 Issue 1, January - 2021, Pages: 26-29.

98. Usmonov M. T. Means of Information Protection. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January -2021, Pages: 27-30.

99. Usmonov M. T. Organization of E-Mail Protection. International Journal of Academic Engineering Research (IJAER) ISSN: 2643-9085 Vol. 5 Issue 1, January -2021, Pages: 36-40.

100. Usmonov M. T. Organizing Internet Protection. International Journal of Academic Engineering Research (IJAER) ISSN: 2643-9085 Vol. 5 Issue 1, January -2021, Pages: 24-28.

101. Usmonov M. T. Origin and Equal Strength Relationships between Sentences. Necessary and Sufficient Conditions. Structure of Theorem and Their Types. International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 5 Issue 1, January - 2021, Pages: 45-47.

102. Usmonov M. T. PhysicalSecurity. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January - 2021, Pages: 58-61.

103. Usmonov M. T. Practical Security Management. International Journal of Academic Engineering Research (IJAER) ISSN: 2643-9085 Vol. 5 Issue 1, January -2021, Pages: 71-74.

104. Usmonov M. T. Problem Solving In Primary Schools. International Journal of Academic Information Systems Research (IJAISR) ISSN: 2643-9026 Vol. 5 Issue 1, January - 2021, Pages: 72-83.

105. Usmonov M. T. Reproduction. The Laws of Reproduction. International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 5 Issue 1, January - 2021, Pages: 36-40.

106. Usmonov M. T. Security Models. International Journal of Academic Pedagogical Research (IJAPR) ISSN: 2643-9123 Vol. 5 Issue 1, January - 2021, Pages: 18-23.

107. Usmonov M. T. Solving Problems In Arithmetic Methods. International Journal of Academic Information Systems Research (IJAISR) ISSN: 2643-9026 Vol. 5 Issue 1, January - 2021, Pages: 58-61.

108. Usmonov M. T. Stenographic Protection of Information. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January - 2021, Pages: 31-35.

109. Usmonov M. T. Telecommunications and Network Security. International Journal of Academic Engineering Research (IJAER) ISSN: 2643-9085 Vol. 5 Issue 1, January - 2021, Pages: 57-61.

110. Usmonov M. T. The Concept of Compatibility, Actions on Compatibility. International Journal of Academic Multidisciplinary Research (IJAMR) ISSN: 26439670 Vol. 5 Issue 1, January - 2021, Pages: 10-13.

111. Usmonov M. T. The Concept Of National Security. International Journal of Academic and Applied Research (IJAAR) ISSN: 2643-9603 Vol. 5 Issue 1, January -2021, Pages: 73-75.

112. Usmonov M. T. The Concept of Number. The Establishment of the Concept of Natural Number and Zero. International Journal of Academic Multidisciplinary Research (IJAMR) ISSN: 2643-9670 Vol. 5 Issue 1, January -2021, Pages: 18-21.

113. Usmonov M. T. The Concept of Relationship. Characteristics of Relationships. International Journal of Academic Multidisciplinary Research (IJAMR) ISSN: 2643-9670 Vol. 5 Issue 1, January - 2021, Pages: 38-40.

114. Usmonov M. T. The Concept of Size and Measurement. International Journal of Academic Information Systems Research (IJAISR) ISSN: 2643-9026 Vol. 5 Issue 1, January - 2021, Pages: 36-40.

115. Usmonov M. T. The Emergence and Development of Methods of Writing All Negative Numbers. International Journal of Academic Information Systems Research (IJAISR) ISSN: 2643-9026 Vol. 5 Issue 1, January - 2021, Pages: 48-50.

116. Usmonov M. T. The Purpose, Function and History Of The Development Of Mathematical Science. International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 5 Issue 1, January - 2021, Pages: 8-17.

117. Usmonov M. T. True and False Thoughts, Quantities. International Journal of Academic Information Systems Research (IJAISR) ISSN: 2643-9026 Vol. 5 Issue 1, January - 2021, Pages: 1-5.

118. Usmonov M. T. Virtual Protected Networks. International Journal of Academic Pedagogical Research (IJAPR) ISSN: 2643-9123 Vol. 5 Issue 1, January -2021, Pages: 55-57.

119. Usmonov M. T. What Is Solving The Problem? Methods of Solving Text Problems. International Journal of Engineering and Information Systems (IJEAIS) ISSN: 2643-640X Vol. 5 Issue 1, January - 2021, Pages: 56-58.

i Надоели баннеры? Вы всегда можете отключить рекламу.