Original article UDK 664:593.75
https://doi.org/10.24143/2073-5529-2022-3-82-91 EDN CCJFBE
Functional and technological properties and nutritional value of jellyfish
Rhizostoma pulmo (Macri, 1778)
Olga E. BityutskayaIrina A. Belyakova2, Nataliya F. Mazalova3, Lyubov M. Esina4, Lyubov I. Bulli5
''3'5Kerch State Maritime Technological University, Kerch, Russia, [email protected]
2'4 Azov-Black Sea Branch of Russian Research Institute ofFishery and Oceanography,
Rostov-on-Don, Russia
Abstract. Representatives of jelly plankton (in particular, scyphoid) are the underutilized resources in the Azov-Black Sea Basin. The wave nature of their reproduction has a powerful impact on the ecosystems of the two seas. Seasonal outbreaks of abundance cause an increasing pressure on the food supply of commercial aquatic organisms, a change in the structure and quality of fish catches, and a deterioration in recreational conditions in the resort areas of the Azov-Black Sea Basin. The importance of the search for a rational solution to the problem of processing Rhizostoma pulmo jellyfish can be explained by the specific features of their biochemical composition, presence of biologically active substances in the tissues of aquatic organisms, their low liquidity as raw stuff and seasonal resource availability. There are presented the data on the size-weight composition of Rh. pulmo caught in the Sea of Azov, the influence of various types of heat treatment (freezing, boiling, microwave treatment, enzymatic hydrolysis) on the change in the chemical composition and functional and technological properties of jellyfish is considered. The biological and energy value of raw and boiled jellyfish is calculated. Taking into account the active syneresis of jellyfish tissues (up to 60% of water is released during the first 3 hours) and the inexpediency of transporting fresh jellyfish, the preliminary heat treatment is recommended, followed by the use of the object of study in culinary products and semi-finished products, as well as enrichment as a prerequisite for obtaining original products both from the point of view of organoleptics and enhancing the nutritional value of food products. Studies with the use of freeze drying, as well as with the use of minced jellyfish to obtain a wide range of combined products are particularly noteworthy.
Keywords: scyphozoan jellyfish, Rhizostoma pulmo, syneresis, heat treatment, hydrolysis, yield point, nutritional value
For citation: Bityutskaya О. E., Belyakova I. A., Mazalova N. F., Esina L. M., Bulli L. I. Functional and technological properties and nutritional value of jellyfish Rhizostoma pulmo (Macri, 1778). Vestnik of Astrakhan State Technical University. Series: Fishing Industry. 2022; 3:82-91. (In Russ.). https://doi.org/10.24143/2073-5529-2022-3-82-91. EDN CCJFBE.
Научная статья
Функционально-технологические свойства и пищевая ценность медузы Rhizostoma pulmo (Macri, 1778)
О. Е. Битютская , И. А. Белякова , Н. Ф. Мазалова , Л. М. Ecu на4, Л. И. Булл и
''3'5Керченский государственный морской технологический университет, Керчь, Россия, [email protected]
2' 4Азово-Черноморский филиал Всероссийского научно-исследовательского института рыбного хозяйства и океанографии, Ростов-на-Дону, Россия
Аннотация. Представители желетелого планктона (в частности, сцифоидные) относятся к недоиспользуемым ресурсам Азово-Черноморского бассейна, волновой характер их размножения оказывает мощное воздействие на экосистемы двух морей. Сезонные вспышки численности ведут к увеличению пресса на кормовую базу промысловых гидробионтов, изменению структуры и качества рыбных уловов, ухудшению рекреационных условий курортных зон Азово-Черноморского бассейна. Актуальность поиска рационального решения
© Bityutskaya О. Е., Belyakova I. A., Mazalova N. F., Esina L. M., Bulli L. I., 2022
проблемы переработки медуз Rhizostoma pulmo обусловлена особенностями их биохимического состава, присутствием в тканях гидробионтов биологически активных веществ, их низкой ликвидностью как сырья и сезонной ресурсной доступностью. Приводятся данные по размерно-массовому составу Rh. pulmo, выловленной в Азовском море, рассмотрено влияние различных видов термообработки (замораживания, варки, СВЧ-обработки, ферментативного гидролиза) на изменение химического состава и функционально-технологических свойств медуз, рассчитаны биологическая и энергетическая ценность сырца и вареной медузы. Принимая во внимание активный синерезис тканей медузы (первые 3 ч выделяется до 60 % воды) и нецелесообразность транспортировки свежей медузы, рекомендуется предварительная термическая обработка с последующим использованием объекта исследований для приготовления кулинарных изделий и полуфабрикатов, а также обогащение - обязательное условие для получения оригинальных продуктов как с точки зрения органолептики, так и в целях усиления пищевой ценности пищевых продуктов. Особого внимания заслуживают работы с применением сублимционной сушки, а также с использованием фарша из медуз с получением широкого ассортимента комбинированных продуктов.
Ключевые слова: сцифомедузы, Rhizostoma pulmo, синерезис, термообработка, гидролиз, предельное напряжение сдвига, пищевая ценность
Для цитирования: Битютская О. Е., Белякова И. А., Мазалова Н. Ф., Есина Л. М., Буши Л. И. Функционально-технологические свойства и пищевая ценность медузы Rhizostoma pulmo (Macri, 1778) // Вестник Астраханского государственного технического университета. Серия: Рыбное хозяйство. 2022. № 3. С. 82—91. https://doi.org/10.24143/2073-5529-2022-3-82-91. EDN CCJFBE.
Introduction
Rhizostoma pulmo (Macri, 1778) belongs to the class of scyphoid or scyphozoa (Scyphozoa), marine organisms from the type of cnidaria (Cnidaria). A distinctive feature of the type is the presence of stinging cells (nematocysts), which serve to attack and protect the coelenterates. The upper part of the jellyfish is called "exumbrella", and the lower one is called "subumbrella". In the middle of the inner concave part of the pileus is a mouth, the corners of which pass into the oral lobes (necessary for capturing food). In root-mouthed jellyfish (order Rhizostomeae), they grow together and form a filtering apparatus for absorbing small plankton particles. At the edges of the pileus there are clusters of nerve cells, there are also sensory organs nearby that perceive light stimuli and help maintain balance. Scyphoids are endowed with a stomach with 4 pocket-like protrusions, and a system of radial tubules, with the help of which nutrients from the intestinal cavity are distributed throughout the
ю
Ï «3
es О И И
CD
R-§
body. Undigested food particles are sent back to the stomach and excreted through the mouth.
The body of jellyfish consists of two layers of epithelial cells: ectoderm and endoderm, between them lies mesoglea, i. e. a jelly-like tissue. The body of jellyfish is transparent and gelatinous, consisting of 98% water. Jellyfish, first of all, are a valuable source of protein, contain collagen, elastin, macro- and microelements, biologically active substances of various nature, i. e. hyaluronic acid, chondroitin sulfates, etc. [1,2].
In Japan, China, Korea, Thailand, Indonesia, Malaysia and the Philippines, jellyfish have been eaten for a very long time, being called "crystal meat". Jellyfish dishes are quite exquisite dishes and delicacies. Figure 1 presents the official FAO data (2020) on the global catch of jellyfish for the period 2000-2019, however, there is an opinion that the average annual actual catch of jellyfish is underestimated and reached 900 thousand tons already in 2016 [3,4].
55
M
И
5"
es
Г f
а с
tt
0 в Ь
1
о!
5" «В.
■о
I
I
о.
о
В
Year
-V V <£> <V Ф <F <f> V <Г V V <9 V V
И)
I
S о
"8
з.
Fig. 1. World annual catch of jellyfish in 2000-2019, in tons
Representatives of the genus Rhopilema are of the greatest commercial importance; jellyfish gg. Aurelia, Dactylometra, Lobonema, Stomolophus, Rhizostoma, etc. Cornerotes (Rhizostomeae), Rhopilema esculentum
(Vanhoffen, 1888) are considered the most popular in China, Japan and Korea, Aurelia aurita (Linnaeus, 1758) are in demand, Lobonema smithii (Mayer, 1910), Lobonemoides gracilis (Light, 1914), Dacty-
(Kishinouye, 1891) and Rhopilema hispidum lometra quinquecirrha var. pacifica (Goette, 1886),
Nemopilema nomurai (Kishinouye, 1922), etc. Jellyfish are used pickled, salted, dried, dried and canned; the cooking process includes the removal of oral lobes, digestive and genital organs, and mucus. Sushi, noodles, ice cream are prepared from jellyfish, they are included in salads, soups and confectionery.
In the Azov-Black Sea basin there are 2 species of jellyfish, except for Rh. pulmo, A. aurita - "moon jellyfish" or "Black Sea eared jellyfish". The annual recommended volume of production (catch) of jellyfish in the Sea of Azov is 966.2 tons, in the Black Sea -987.8 tons [5]. However, at present, jellyfish are not included into the commercial yield. It should be noted that the population of jellyfish has increased significantly only in recent years; this is associated with a decrease in severe food competition on the part of ctenophore Mnemiopsis leidyi (A. Agassiz, 1865) [6].
Rh. pulmo is a large and heavy jellyfish with purple edges and developed oral lobes. The contact with scy-phomedusa can cause erythematous and ulcerative
lesions. Rare cases of dermatitis are described as mild erythema spontaneously disappearing after a few hours, although burning of the skin and especially of the lips, sneezing, rhinorrhea, urticaria and systemic symptoms have been reported [7]. From nematocysts Rh. pulmo, a very large hemolytic protein (cytolysin), called rhizolysin, with a molecular weight of about 260 kDa was isolated [8]. It was found that the tissues of Rh. pulmo taken from the oral cavity and devoid of nematocysts have a strong cytotoxic activity against cultured cells and show IC5o values in the range from 16.9 to 49.9 |xg protein/ml depending on the origin of the tissue (from the outer to the inner part of the oral lobe, respectively) [9,10].
Scientists of the Russian Research Institution of Fisheries and Oceanography "VNIRO" (Kerch branch "AzNIRKh") [11-13] found that the content of toxic elements in raw jellyfish did not exceed the permissible limits (Table 1).
Table 1
Content of toxic elements in Rhizostoma pulmo*
Toxic elements Contents, mg/kg of raw weight Permissible limit, mg/kg, no more
Lead <0.05 10.0
Cadmium 0.032 ±0.010 2.0
Mercury < 0.005 0.2
Arsenic <0.50 5.0
*See data [11].
© There was evaluated the preliminary shelf life of jets' lyfish chilled at a temperature of (4 ± 2)°C for 4 days, ^ and jelly frozen at a temperature of (-18 ± 2)°C for g 5 months. Moreover, samples of salt-dried semi-w finished product were taken.
S While cooking, "crystal meat" easily takes on the
^ smells of the products with which it is cooked. Since
| jellyfish meat does not have its own pronounced smell,
w it goes well with various hot seasonings and spices:
© black and red peppers, soy sauce, nutmeg, etc.
® The problem of finding an effective integrated
g technology for processing jellyfish in the Azov-Black
| Sea basin lies in the high water content of the tissue
S and, accordingly, the low content of solids and the
< yield of finished products. The use of potassium alum
S when salting jellyfish reduces the quality of dried
g products, alum gives a strongly pronounced astringent
g taste, after additional cooking and soaking, the con-
w sistency of the exumbrella of Azov jellyfish deterio-
w rates, and the crunchy sound of the tissue is lost.
° The purpose of the study is to use raw materials
g (Rhizostoma pulmo) rationally, purposefully regulate
2 the quality characteristics of the semi-finished product and finished products, taking into account the functional and technological properties and nutritional value of jellyfish.
Materials and methods
The object of research was the Azov jellyfish Rh. pulmo caught in July-September 2020-2021 (45° 34' 98. 94" N, 36° 47' 52.53" E, 45° 17' 43.6" N, 36° 25' 56.5" E). Samples were taken according to standard methods.
A Ulab 3-31M penetrometer was used to determine the limiting shear stress. The principle of operation of the penetrometer is based on measuring the depth of immersion of a cone into a sample of the tested product at a certain test temperature and load for a certain time. The measured value is expressed in penetration units corresponding to tenths of a millimeter (0.1 mm).
The ultimate shear stress (0) was calculated using the formula by P. A. Rebinder:
0 = km/h2,
where 0 is ultimate shear stress (USS), Pa; k is constant, which for a cone with an angle at the apex 2 a = 60° equals 2.1 N/kg; m is weight of the cone with rod and additional weight; h is immersion depth of the cone during 5 s, m.
Studies of the chemical composition were carried out using standard methods adopted in a comprehensive chemical analysis, namely: a total content of nitrogenous substances - according to the Kjeldahl method using a FOSS auto-nitrogen analyzer; mineral substances - gravimetrically, after burning at a tem-
perature of 600-700 °C, the composition of macro-and microelements - by capillary electrophoresis.
The protein-water coefficient of jellyfish (%) was calculated as the quantitative ratio of protein to water. Lipid-protein ratio (%) was assessed as the ratio of lipid to protein in the muscle tissue. The coefficient is an indicator of the tenderness of the consistency of meat of aquatic organisms. The food saturation coefficient was determined by the ratio of the sum of proteins, fats and carbohydrates to the mass fraction of water in raw materials [14].
Jellyfish nutritional value was assessed in accordance with the requirements of the technical regulation of the Customs Union TR CU 022/2011 [15].
Assessment of the biological value of jellyfish proteins was carried out according to the method of H. H. Mitchell & R. J. Block [16], in accordance with which the index of amino acid scores is calculated.
Results and discussion
The size-weight composition was determined on 121 specimens of freshly caught jellyfish (Table 2).
cd
Ï <3
es P
W «
CD "Ü"
Pr §
Table 2
Weight composition of Rhizostoma pulmo
Month of catch Number of samples, it Weight of the whole jellyfish, g Umbrella Oral lobes
Weight, g % weight of the whole jellyfish % weight of the whole jellyfish
2020
July 24 2 496.0 ± 172.2 1225.1 ±87.1 49.1 ±0.68 50.9 ±0.80
August 20 4 534.3 ±191.6 2 052.1 ± 78.2 45.4 ± 0.65 54.6 ± 0.65
September 32 2 555.4 ±164.8 1 350.6 ±81.3 52.5 ± 0.67 47.5 ± 0.72
2021
August 25 3 845.2 ± 120.0 2 345.5 ± 65.2 61.0 ±0.45 39.0 ±0.50
September 20 2 430.5 ±115.0 1 414.6 ±70.8 58.2 ±0.58 41.8 ±0.64
55
M
oa
5"
es
f f
cd c
tt
0 s
e.
1
o! <B.
T3
I
I
I
w.
o
B
31
The size of the pileus varied from 16 to 40 cm, averaging (32.6 ± 1.6) cm. The thickness of the pileus in the center was (4.0 ± 1.0) cm, and 1-2 cm along the edges. As noted earlier [12], the largest size of jellyfish was recorded in August.
Jellyfish is a living jelly, which, when frozen, followed by defrosting or drying, is destroyed as an irreversible colloidal system. The water in the tissues
v= 11.S761H(T:)-^45.478
of the jellyfish is not firmly bound, therefore, after the catch; a spontaneous separation of the liquid occurs (the phenomenon of syneresis). The jellyfish flows continuously, but most of the liquid phase is released during the first 3 hours (up to 60%), while the integrity of the umbrella does not matter. The research results are presented in the histogram (Fig. 2).
60 min
120 min
6 h
Syneresis time
1,15
S. 1,1
« 1.05
I
y = 0.009SX5 - 0.G9ÉCC2— 0.2697-t— 0.927Ë i if' • <
ni
Syneresis time
Fig. 2. Syneresis of a freshly caught jellyfish: a - weight of released liquid (4 samples); b - dry matter in the released liquid
I
ci S o
"8
3.
A high content of mineral substances (up to 80.0% released liquid, chlorides account for at least 95%, a.d.w.) was determined in the composition of the protein substances (No. 6.25) make up 5.5-5.6% a.d.v.
Taking into account the active syneresis of jellyfish tissues, as well as the appearance of a sharp unpleasant odor during 10-12 hours of storage at ambient temperature, which in the summer season reaches 30 °C and above, the duration of storage/transportation of freshly caught jellyfish should not exceed 3-4 h. For the purpose of dehydration, jellyfish are subjected to heat treatment or salting, the oral lobes, gastrovascular system are previously removed, washed and, taking into account the duration of transportation, are exposed
for natural removal of water. Salting to a salinity of the product from 4.0 to 7.0% is carried out in a complex fixing medium (dry salting: table salt and alum in a ratio of 10 : 3) in two stages with a change in the resulting brine (1-2 days, II -1 month), which ensures long-term storage of food jellyfish. The appearance is unattractive for the consumer - a thin translucent film (thickness 1-2 mm) with a salt content of up to 20% (Table 3).
Chemical composition of Rhizostoma pulmo
Table 3
Object of research Weight fraction, % a.d.v.
Protein (No. 6.25) Fat Ash Carbohydrates
Fresh jellyfish 28.4 0.6 60.6 10.4
Salted jellyfish 20.5 1.1 68.9 9.5
The yield makes 1.5%. It is also not possible to use salted jellyfish as a semi-finished product: when soaked, the tissues do not swell, and there is no airiness or a crispy texture.
When boiled without water, the tissues of the jellyfish acquire a grayish tint and thicken; foam flakes (extractive substances) appear, and the specific smell disappears. When cooked for 20 minutes, the yield was 7.6-7.8%, the longer the cooking time, the lower the yield of boiled jellyfish. The mass fraction of proteins was 16.3%, fat - 1.8%, ash - 4.07% (water 74.0%). When cooking fresh pilei of jellyfish in water
(GM 1 : 2-1: 4, 20-25 min), the yield of chilled boiled semi-finished jellyfish is 15.0-17.0% of the mass of raw materials, when cooking frozen pilei - 0.7% of the mass of raw materials.
After defrosting and removing water, the jellyfish pileus was subjected to microwave treatment, which made it possible to heat the tissue throughout the entire volume at once, the average heating rate being 0.3-0.5°C per second. The ultimate shear stress (N/m2) in the jellyfish tissue after defrosting and its change after 1, 2, and 3 min of treatment were assessed (Fig. 3).
80
я ГЦ
® 70
У
% 60
£_i
Я У
•S 50
и
I 40 30
< > » <
.......... 1
..." « 1* t * 1 1_ i t
> v = 0.293 3x3 - 4.9543+26.89*-11.863 F=1
After defrosting
1 min 2 min
USF treatment
3 min
Fig. 3. Variation of the ultimate sheer stress in the jellyfish tissue
Active separation of tissue fluid (100-150 ml) occurs in the first two minutes of microwave treatment (from smaller pilei for the 1 st minute, large ones - for the 2nd), the weight of the pileus decreases by 4 times, respectively, the removal of the liquid affects the change in rheological parameters (tissue turgor), as
a result of 2 minutes of processing, the value of the limiting shear stress increases by 10 Pa.
The appearance became more attractive than that of a boiled jellyfish; the transparency of the tissues was preserved only after 1 minute of treatment; turgor and a subtle marine smell disappeared after 2 minutes
of treatment. Processing of 3 minutes is impractical, because moisture separation does not occur; the
appearance has not changed (Fig. 4).
V-*
10 mm
a
e
o w
a
CD
"Si" R-
2 M
oa
5"
as
f f
a c
tt o a B.
o" <B.
T3
I
Fig. 4. Appearance of samples before and after microwave treatment of jellyfish tissues: a - after defrosting; b - microwave treatment for 1 min; c - 2 min; d- 3 min
Q.
I tt O
The water content in the samples is 73.7-74.4%, the yield is 18.8-19.0% of the original sample (after defrosting), 1.5-2.3% raw jellyfish.
Minced jellyfish were treated with alcohol (96°) at a ratio of 1 : 1.5; as a result of extraction, the minced meat acquired a milky hue, fibrous-cotton consistency, the smell of the sea is more pronounced than that of boiled and microwave-treated jellyfish; moisture content - (86.9 ± 0.8)%, yield - 9.1%. The sediment was dried (yield 1.5%), alcohol (55°) was sent for regeneration.
Minced meat was also subject to hydrolysis with a proteolytic enzyme (Novozymes Alcalase 2.5L) for 15 min, hydromodulus 1:1. The hydrolyzate is a jellylike liquid with an even grayish color, did not separate during storage, and upon concentration (vacuum evaporation) acquired a pinkish-cream shade by a factor of 20. Probably, the structural proteins of the jellyfish form complexes with glycosaminoglycans. Hydrolysis
was also carried out with another proteolytic enzyme, pepsin, which has collagenase activity. Hydrolyzed collagen is a highly demanded product in cosmetology and pharmacology. It is known that jellyfish collagen had a suppressive effect on antigen-induced arthritis in experimental animals [17].
Using freeze-drying of tissues of the Far Eastern jellyfish Rhopilema asamushi (up to 8-10% dry matter) showed an increase in the content of the mineral component in comparison with raw material by 2.1 times, carbohydrates by 3 times, a decrease in the weight fraction of proteins by 2.3 times (0.21 mg/g - raw protein, 0.09 mg/g - in freeze-dried) [18]. The content of collagen in freeze-dried jellyfish was found to be 78.7 mg/g [18], jellyfish collagen is poorly soluble and contains one protein fraction of220 kDa [19].
The results of the analysis of the amino acid composition of the protein of raw jellyfish and boiled Rh. pulmo are presented in Table. 4.
31
s
3
0 "8
3.
Table 4
Indicators of the biological value of protein of Rhizostoma pulmo
Name of the indispensable amino acid Content, g/100 g of product Content, g/100 g of protein Content, g/100 g of the ideal protein (by FAO/WHO) Amino acid score, %
Raw jellyfish (protein - 0.34%, 28.57% absolute dry matter)
Valine 1.25 4.36 5.00 87.2
Isoleucine 1.21 4.21 4.00 105.3
Leucine 1.71 5.93 7.00 84.7
Lysine 2.90 10.07 5.50 183.1
Methionine 0.09 0.66 3.50 18.9
Threonine 1.62 5.63 4.00 140.8
Tryptophane 0.28 0.97 1.00 97.0
Phenylalanine + Tyrosine 0.71 + 0.59 2.48 + 2.06 6.00 75.7
Boiled jellyfish (protein - 1.67%, 62.55% absolute dry matter
Valine 3.03 4.93 5.00 98.6
Isoleucine 3.04 4.85 4.00 121.3
Leucine 4.67 7.46 7.00 106.6
Lysine 7.97 12.71 5.50 231.1
Methionine 0.76 1.21 3.50 34.6
Threonine 3.98 6.34 4.00 158.5
Tryptophane 0.82 1.32 1.00 132.0
Phenylalanine + Tyrosine 1.99 + 1.83 3.17 + 9.71 6.00 214.7
Raw jellyfish Boiled jellyfish
Amino acid score dissimilarity coefficient, % 71.2 86.9
Biological value, % 28.8 13.1
Amino acid composition utility factor, U, U—>I 0.19 0.14
As it can be seen from the data below, all essential amino acids are present in the protein of the jellyfish, however, the limiting amino acids in raw are methionine, leucine, valine, phenylalanine (biological value (BC) - 28.8%), in boiled jellyfish - methionine (BC -13%), and a high content of lysine, threonine reduces the protein balance coefficient (0.19 and 0.14, respectively). Cysteine, which is a precursor of methionine, was not found in the experiment. The protein also con-
Mineral composition of raw ji
tains conditionally essential amino acids - arginine (raw 7.03% protein, boiled jellyfish - 7.70%) and histidine (1.57 and 2.29%, respectively). A high content of nonessential amino acids was noted: glycine (12.78 % in raw, 3.84% in boiled jellyfish), aspartic (9.09 and 10.07%), glutamic (16.20 and 15.78%) acids [20].
Table 5 shows the diverse composition of microelements in Rh. pulmo, their content is significantly lower than the daily physiological requirement of an adult.
Table 5
fish tissues Rhiz/ostoma pulmo
Element Content, % total mineral content Element Content, % total mineral content
Copper, Cu 0.0004-0.0006 Vanadium, V < 0.001
Manganese, Mn < 0.001 Titanium, Ti 0.0011-0.0012
Iron, Fe 0.01-0.015 Nickel, Ni -
Aluminium, Al 0.015 Barium, Ba 0.001
Zinc, Zn <0.1 Strontium, Sr 0.0372-0.0447
Energy value of 100 g of raw jellyfish is 13.3 kJ, boiled - 398.8 kJ, salted - 172.9 kJ, in any case, jellyfish belongs to low-calorie foods and can be proposed for the diets of overweight people.
Conclusion
When solving the problem of rational use of the Rhizostoma pulmo jellyfish caught in the Sea of Azov, the following factors were studied, namely: the size and weight composition of raw jellyfish, their availability,
changes in the chemical composition and functional and technological properties under various processing conditions, the possibility of complex processing, enrichment and storage. The synergy of well-known developments in the sphare of research and modern methods of processing raw jellyfish with maximum preservation of inherent properties allow to infer that preliminary heat treatment is required, followed by conservation of the research object for the preparation of culinary products and semi-finished products, the
prospects for enzymatic hydrolysis in the case of further obtaining a fraction of structural proteins, as well as enrichment as a prerequisite for obtaining original products, both in terms of organoleptics and enhancing
the nutritional value of food products. In our opinion, treatment with freeze drying and the use of minced jellyfish with a wide range of combined products with high added value deserves particular attention.
References
1. Vorob'ev V. V., Iuferova A. A., Bazilevich V. I. Meduzy - tsennyi istochnik pitaniia i biologicheski ak-tivnykh veshchestv [Jellyfish as valuable source of nutrition and biologically active substances], Pishchevaia i morskaia bio-tekhnologiia: problemy i perspektivy: materialy nauchno-prakticheskoi konferentsii (Kaliningrad, 3—4 iiulia 2006 g.). Moscow, MAKS Press, 2006. Pp. 30-31.
2. Iuferova A. A., Vorob'ev V. V., Bazilevich V. I. Tekhnologiia funktsional'noi pishchevoi produktsii iz stsifoidnykh meduz [Technology of functional food products from scyphoid jellyfish], Rybnoe khoziaistvo, 2007, no. 4, pp. 113-115.
3. Brotz L., Pauly D. Studying Jellyfish Fisheries: Towards accurate national catch reports and appropriate methods for stock assessments. Jellyfish: Ecology, Distribution Patterns and Human Interactions. New York, Nova Publishers Hauppauge, 2017. Vol. 15. Pp. 313-329.
4. Edelist D., Angel D. L., Canning-Clode J., Gueroun S. K. M., Aberie N., Javidpour J., Andrade C. Jellyfishing in Europe: Current Status, Knowledge Gaps, and Future Directions towards a Sustainable Practice. Sustainability, 2021, no. 13 (22), p. 12445. Available at: https://doi.org/10.3390/sul322 12445 (accessed: 25.05.2022).
5. Rekomendovarmye ob"emy dobychi (vylova) vodnykh biologicheskikh resursov, obshchii dopustimyi ulov kotorykh ne ustanavlivaetsia v Azovskom i Chernom moriakh na 2022 god [Recommended volumes of production (catch) of aquatic biological resources, the total allowable catch of which is not established in the Azov and Black Seas for 2022]. Available at: http://www.rostov-fishcom.ru/news/14423/ (accessed: 25.05.2022).
6. Mirzoian Z. A., Martyniuk M. L., Khrenkin D. V., Afanas'ev D. F. Razvitie populiatsii stsifoidnykh meduz Rhizostoma pulmo i Aurelia aurita v Azovskom more [Development of populations of scyphoid jellyfish Rhizostoma pulmo and Aurelia aurita in Azov Sea], Vodnye bioresursy i sreda obitaniia, 2019, vol. 2 (2), pp. 27-35.
7. Kokelj F., Plozzer C. Irritant contact dermatitis from the jellyfish Rhizostoma pulmo. Contact Dermatitis, 2002, vol. 46, pp. 179-180. Available at: https://doi.org/10.1034/jM600-0536.2002.460313.x (accessed: 25.05.2022).
8. Cariello L., Romano G., Spagnuolo A., Zanetti L. Isolation and partial characterization of Rhizolysin, a high molecular weight protein with hemolytic activity, from the jellyfish Rhizostoma pulmo. Toxicon, 1988, vol. 26, pp. 1057-1065.
9. Allavena A. In vitro cytotoxic activity of the tissular toxin of Rhizostoma pulmo Agassiz (Cnidaria: Scyphozoa). Ann Rew Pharmacology & toxicology, 1995. 31 p.
10. Allavena A., Mariottini G. L., Carli A. M., Content S., Martelli A. In vitro evaluation of the cytotoxic, hemolytic and clastogenic activities of Rhizostoma pulmo toxin(s). Toxicon, 1998, vol. 36, pp. 933-936. Available at: https://d0i.0rg/l 0.1016/s0041-0101(97)00171-2 (accessed: 20.05.2022).
11. Kozlova S. L., Bogomolova V. V., Esina L. M., Gorobets L. M. Izuchenie vozmozhnosti ispol'zovaniia cher-
nomorskikh meduz v tekhnologii pishchevoi produktsii [Studying possibility of using Black Sea jellyfish in food production technology], Trudy lugNIRO, 2015, vol. 53, pp. 198-202.
12. Cherniavskaia S. L., Beliakova I. A, Esina L. M. Okhlazhdenie i zamorazhivanie kak sposoby pervichnoi ob-rabotki meduz [Cooling and freezing as methods of primary processing of jellyfish], Pishchevye tekhnologii: issledovaniia, irmovatsii, marketing: sbornik trudov po materialam I Mezhdu-narodnoi nauchno-prakticheskoi konferentsii (Kerch', 23-25 sentiabria 2021 g.). Kerch', Izd-vo KGMTU, 2021. Pp. 166-172. Available at: http://www.kgmtu.ru/documents/ nauka/Fish_Technolog_2021.pdf (accessed: 20.05.2022).
13. Cherniavskaia S. L., Beliakova I. A., Esina L. M., Korablina I. V., Kistina S. N. Bezopasnost' meduz kor-nerot Rhizostoma pulmo kak ob"ekta pererabotki [Safety of Rhizostoma pulmo jellyfish as object of processing], Trudy Az-NIIRKh, 2021, pp. 103-108.
14. Levanidov I. P. Interrelation of the main components and chemical composition of meat of aquatic organisms. Fisheries, 1980, no. 8, pp. 62-64.
15. Technical regulation of the Customs Union TR CU 022/2011 "Food products in terms of their labelling", approved by the decision of the Commission of the Customs Union of December 9, 2011. No. 881. Available at: http://docs.cntd.ru/document/902320347 (accessed: 20.05.2022).
16. Mitchell H. H., Block R. J. Some relationships between the amino acid contents of proteins and their nutritive values for the rat. J. Biol. Chem., 1946, no. 163, pp. 599-620. Available at: https://pubmed.ncbi.nlm.nih.gov/20985631/ (accessed: 18.05.2022).
17. Hsieh Y-H. P., Leong F.-M., Rudloe J. Jellyfish as food. Hydrobiology, 2001, vol. 451, pp. 11-17. DOI: 10.1023/A:1011875720415.
18. Kovalev A. N. Tekhnokhimicheskaia kharakteristika tkanei meduzy Rhopilema asamushi razlichnykh sposobov obrabotki [Technochemical characteristics of tissues of jellyfish Rhopilema asamushi of various processing methods], Kompleksnye issledovaniia v rybokhoziaistvennoi otrasli: materialy IV Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii studentov, aspirantov i molodykh uchenykh (Vladivostok, 30 noiabria 2018 g.). Vladivostok, Dal'rybvtuz, 2018. Pp. 50-53.
19. Pivnenko T. N., Pozdniakova Iu. M., Kovalev A. N. Issledovanie sposobov polucheniia nizkomolekuliar-nogo kollagena iz meduzy ropilemy Rhopilema asamushi [Studying methods of obtaining low molecular weight collagen from jellyfish Rhopilema asamushi], Nauch. tr. Dal'rybvtu-za, 2017, vol. 43, no. 4, pp. 74-85.
20. Razrabotka rekomendatsii po pererabotke azovskikh meduz na pishchevye, kormovye i tekhnicheskie tseli: otchet o NIR (promezhutochnyi) [Development of recommendations for processing of Azov jellyfish for food, feed and technical purposes: report on research (interim)]. Ot-vetstvennyi ispolnitel' V. I. Koval'skaia, K. I. Babushkina. No. gosregistr. 78031653. Odessa, Izd-vo AzCherNIRO, 1978. 36 p.
ra
B
O
w «
n
Pr
55
M
CO
5"
r f
a c
tt o a
e.
o <B.
T3
I
Q.
I
tt O
31
I
cf S
Q "8
3.
Список источников
•с
«X
я S.
s ч
s в
а
M i
M
4
к
1. Воробьев В. В., Юферова А. А., Базилевич В. И. Медузы — ценный источник питания и биологически активных веществ // Пищевая и морская биотехнология: проблемы и перспективы: материалы науч.-практ. конф. (Калининград, 3-4 июля 2006 г.). М.: МАКС Пресс, 2006. С. 30-31.
2. Юферова А. А., Воробьев В. В., Базилевич В. И. Технология функциональной пищевой продукции из сцифоидных медуз // Рыб. хоз-во. 2007. № 4. С. 113-115.
3. Brotz L., Pauly D. Studying Jellyfish Fisheries: Towards accurate national catch reports and appropriate methods for stock assessments // Jellyfish: Ecology, Distribution Patterns and Human Interactions. N. Y.: Nova Publishers Hauppauge, 2017. V. 15. P. 313-329.
4. EddistD., Angel D. L., Carming-Clode J., Gueroun S. К. M, Aberie N., Javidpour J., Andrade C. Jellyfishing in Europe: Current Status, Knowledge Gaps, and Future Directions towards a Sustainable Practice // Sustainability. 2021. N. 13 (22). P. 12445. URL: https://doi.org/10.3390/sul32212445 (дата обращения: 25.05.2022).
5. Рекомендованные объемы добычи (вылова) водных биологических ресурсов, общий допустимый улов которых не устанавливается в Азовском и Черном морях на 2022 год. URL: http://www.rostov-fishcom.ru/news/14423/ (дата обращения: 25.05.2022).
6. Мирзоян 3. А., Мартынюк М. Л., Хренкин Д. В., Афанасьев Д. Ф. Развитие популяций сцифоидных медуз Rhizostoma pulmo и Aurelia aurita в Азовском море // Водные биоресурсы и среда обитания. 2019. Т. 2 (2). С. 27-35.
7. Kokelj F., Plozzer С. Irritant contact dermatitis from the jellyfish Rhizostoma pulmo // Contact Dermatitis. 2002. V. 46. P. 179-180. URL: https://doi.org/10.1034/j,1600-0536.2002.460313.x (дата обращения: 25.05.2022).
8. Cariello L., Romano G., Spagnuolo A., Zanetti L. Isolation and partial characterization of Rhizolysin, a high molecular weight protein with hemolytic activity, from the jellyfish Rhizostoma pulmo // Toxicon. 1988. V. 26. P. 1057-1065.
9. Allavena A. In vitro cytotoxic activity of the tissular toxin of Rhizostoma pulmo Agassiz (Cnidaria: Scyphozoa) // Ann Rew Pharmacology & toxicology, 1995. 31 p.
10. Allavena A., Mariottini G. L., Carli A. M., Content S., Martelli A. In vitro evaluation of the cytotoxic, hemolytic and clastogenic activities of Rhizostoma pulmo toxin(s) // Toxicon. 1998. V. 36. P. 933-936. URL: https://doi.org/10. 1016/s0041-0101(97)00171-2 (дата обращения: 20.05.2022).
11. Козлова С. JI., Богомолова В. В., Есина Л. М., Горобец Л. М. Изучение возможности использования черноморских медуз в технологии пищевой продукции // Тр. ЮгНИРО. 2015. Т. 53. С. 198-202.
12. Чернявская С. Л., Белякова И. А., Есина Л. М. Охлаждение и замораживание как способы первичной обработки медуз // Пищевые технологии: исследования, инновации, маркетинг: сб. тр. по материалам I Междунар. науч.-практ. конф. (Керчь, 23-25 сентября 2021 г.) / под общ. ред. Е. П. Масюткина; науч. ред. О. Е. Битютская. Керчь: Изд-во КГМТУ, 2021. С. 166-172. URL: http://www.kgmtu.ru/documents/nauka/Fish_Technolog_2021. pdf (дата обращения: 20.05.2022).
13. Чернявская С. Л., Белякова И. А., Есина Л. М., Кораблина И. В., Кистина С. Н. Безопасность медуз корнерот Rhizostoma pulmo как объекта переработки // Тр. АзНИИРХ. 2021. С. 103-108.
14. Levanidov I. P. Interrelation of the main components and chemical composition of meat of aquatic organisms // Fisheries. 1980. N. 8. P. 62-64.
15. Technical regulation of the Customs Union TR CU 022/2011 "Food products in terms of their labelling", approved by the decision of the Commission of the Customs Union of December 9, 2011. N. 881. URL: http://docs.cntd.ru/document/902320347 (дата обращения: 20.05.2022).
16. Mitchell H. H., Block R. J. Some relationships between the amino acid contents of proteins and their nutritive values for the rat // J. Biol. Chem. 1946. N. 163. P. 599-620. URL: https://pubmed.ncbi.nlm.nih.gov/20985631/ (дата обращения: 18.05.2022).
17. Hsieh Y-H. P., Leong F.-M., Rudloe J. Jellyfish as food // Hydrobiology. 2001. V. 451. Pp. 11-17. DOI: 10.1023/A: 1011875720415.
18. Ковалев A. H. Технохимическая характеристика тканей медузы Rhopilema asamushi различных способов обработки // Комплексные исследования в рыбохозяй-ственной отрасли: материалы IV Междунар. науч.-техн. конф. студентов, аспирантов и молодых ученых (Владивосток, 30 ноября 2018 г.). Владивосток: Дальрыбвтуз, 2018. С. 50-53.
19. Пивненко Т. И., Позднякова Ю. М., Ковалев А. Н. Исследование способов получения низкомолекулярного коллагена из медузы ропилемы Rhopilema asamushi // Науч. тр. Дальрыбвтуза. 2017. Т. 43. № 4. С. 74-85.
20. Разработка рекомендаций по переработке азовских медуз на пищевые, кормовые и технические цели: отчет о НИР (промежуточный) / отв. исп. В. И. Ковальская, К. И. Бабушкина. № госрегистр. 78031653. Одесса: Изд-во АзЧерНИРО, 1978.36 с.
S
се
n §
The article is submitted 16.06.2022; approved after reviewing 26.08.2022; accepted for publication 16.09.2022 Статья поступила в редакцию 16.06.2022; одобрена после рецензирования 26.08.2022; принята к публикации 16.09.2022
M О
Information about the authors / Информация об авторах
si
M
Olga E. Bityutskaya - Candidate of Technical Sciences, Assistant Professor; Head of the Department of Food Technology; Kerch State Maritime Technological University; [email protected]
Ольга Евгеньевна Битютская - кандидат технических наук, доцент; заведующий кафедрой технологий продуктов питания; Керченский государственный морской технологический университет; [email protected]
Irina A. Belyakova — Chief Specialist of the Department of Processing Technology for Aquatic Bioresources; Azov-Black Sea Branch of Russian Research Institute of Fishery and Oceanography; [email protected]
Nataliya F. Mazalova - Candidate of Public Administration Sciences; Assistant Professor of the Department of Food Technology; Kerch State Maritime Technological University; mazalovanf@gmail. com
Ирина Андреевна Белякова - специалист сектора технологий переработки водных биоресурсов; Азово-Чер-номорский филиал Всероссийского научно-исследовательского института рыбного хозяйства и океанографии; [email protected]
Наталья Федоровна Мазалова — кандидат наук государственного управления; доцент кафедры технологий продуктов питания; Керченский государственный морской технологический университет;
ю
в к*
о и и
CD
R-
Lyubov M. Esina - Head of the Division of Processing Technology for Aquatic Living Resources; Azov-Black Sea Branch of Russian Research Institute of Fishery and Oceanography; [email protected]
Lyubov I. Buffi - Candidate of Biology, Assistant Professor; Assistant Professor of the Department of Food Technology; Kerch State Maritime Technological University; [email protected]
Любовь Михайловна Есина - заведующий сектором технологии переработки водных биоресурсов; Азово-Черно-морский филиал Всероссийского научно-исследовательского института рыбного хозяйства и океанографии; [email protected]
Любовь Ивановна Булли - кандидат биологических наук, доцент; доцент кафедры технологий продуктов питания; Керченский государственный морской технологический университет; [email protected]
55
ч
M
И
5"
es
Г f
а с
Я-. о в Ь
о"
«В.
■о
а.
I
О. о
И)
I
ci
s
о "8
з.