Теорія і практика радіовимірювань
УДК 621.37
FREQUENCY COMPONENTS WITH NEGATIVE RESISTANCE FOR EMBEDDED MEASUREMENT SYSTEMS1
Roman V. Krynochkin, Ph.D., Associated professor
Dept. of Radio-engineering, Vinnytsia National Technical University, Vinnytsia,
Ukraine, r@politex.org.ua
ЧАСТОТНІ КОМПОНЕНТИ З ВІД’ЄМНИМ ОПРОМ ДЛЯ ВБУДОВАНИХ
ВИМРІЮВАЛЬНИХ СИСТЕМ
Криночкін Роман Володимирович,
ВНТУ, Вінниця, Україна
Introduction
The research of various technical devices and systems, related to generation and processing of oscillations at high frequencies based on the devices with negative resistance, has undergone serious development. Every year new negative-resistance based projects are demonstrated to the scientific community, outlined in dozens of articles, reports, patents, and at least in one or two theses.
However, above mentioned process cannot be regarded as an independent. Synthesis of achievements in different electronic branches (including, for example, manufacturing technologies allows a more effective element base (e.g. increasing frequency, reducing parasitic capacity) and more advanced signal processing (microcontroller, DSP, FPGA). This means increasing the degree of integration (which increases noise immunity) and enhancing metrological characteristics (e.g. linearity) of the negatronic systems, which allows its simple inclusion in various information systems. Here is just one example: adding microcontroller processing (measurement and correction) to the frequency signal allowed to avoid a significant nonlinearity error compensation problem, as it opened the way to calculate the conversion and correction function digitally directly by the microcontroller.
This nowadays surge of attention to the invented and studied in 1922 phenomenon, can be explained by “transition from quantity to quality”. This gives new extension of the “quantity”, and the transition to a new stage of the development. Scientific schools have accumulated a sufficient experience of the negative-resistance based effects and that has caused the invention of interesting fundamental structures, which are used as a base for new projects.
So, it's necessary to have a summary work with the classification of previously studied and promising areas of development of the devices with the
1 http://radap.kpi.ua/radiotechnique/article/view/1161
100
Вісник Національного технічного університету України «КПІ» Серія — Радіотехніка. Радіоапаратобудування. — 2015. — №63
Теорія і практика радіовимірювань
negative resistance. This paper is the first part of this work and is focused only on the “frequency components” - separate sub-group of the negative-resistance based devices. The main purpose of this paper is to assess the state of development of frequency components in different scientific schools and identify possible prospects for future researches.
Defining unsolved aspects of the problem
Is further progress in this area an actual task today? Radio engineering and computer industries give an answer to this question, because they require further improvement of metrological characteristics, as well as reducing the size and price of components. Solving of these key issues will determine the direction of further development of new electronic components. And these are the benefits of using frequency components with negative resistance. They combine:
• high sensitivity and stability of parameters;
• simplicity (i.e.low size and high reliability);
• low cost.
Currently, there are no modern integrating papers, which would describe success in the frequency component development, and simultaneously offer new and original perspective directions of research.
Review of the current state of the frequency components with negative resistance
Currently a large number of frequency components were developed by scientific schools for use in various industries. They can be applied in the following main engineering areas:
I. Measurement of environmental parameters
a. Pressure [1, 2]
b. Humidity [3, 4]
c. Temperature [5]
d. Magnetic field strength [6, 7]
e. Illumination [8, 9]
A lot of articles, several monographs and dissertations, including the most recent ones ([4, 5, 8]), are devoted to measuring basic parameters of the environment. Magnetic field sensors are being developed for the needs of specific industries (e.g. aerospace), particularly in Rostov-na-Donu scientific school [6, 7].
II. Measurement of materials, substances and processes parameters
The largest group of parameters, measurement of which usually occurs in various technical processes.
a. Gas concentration and flow [10]
b. Temperature of the materials (contact/non-contact) [5,11]
c. Humidity of gases and liquids [12]
d. Intensity of radiation [13]
Вісник Національного технічного університету України «КПІ»
Серія — Радіотехніка. Радіоапаратобудування. — 2015. — №63 101
Теорія і практика радіовимірювань
e. Etching time [14]
f. Physical dimensions [15]
g. Weight [16]
h. Value of stress tensor
i. Composition of gases and liquids
In most cases, the structure of frequency components in this group has two options: as a combination of a primary sensor with a separate generator based on the negative resistance (negatron), or as a negatron, the properties of which are directly affected by the measured value. Enlisted parameters are not exhaustive, since the first of these structure options gives a possibility to create a frequency component from practically any conventional sensor.
III. Measuring of the electric circuit parameters
a. Voltage
b. Capacity [15]
c. Inductance
e. Resistance
d. Microwave (SHF) parameters
Since the outgoing frequency of the frequency component depends on the supply voltage and the parameters of the constituent elements, there is a possibility to create high-precision electric parameter measurers.
IV. Creating elements of the electronic circuits
a. RF Filters
b. Generators [17]
c. Phase shifters
d. Resistance converters (impedance and immittance)
e. Modulators
f. Protective elements [18]
g. Active antennas
h. Multipliers [19]
i. Transformers [19]
Frequency components typically have the ability to change impedance under the influence of the control signal (voltage, current), this allows to build effective frequency filters, modulators, converters of resistance etc. on their basis.
V. Development of advanced components
Items a) and d) from the next list are original components, and nowadays we have only their concepts, but not complete engineering designs. Other elements were proposed by different authors previously, but need to have the further developed to become to the “ready-to use” state.
a. Frequency-oriented amplifiers (with internal conversion to the frequency)
b. Energy sources with improved performance (to compensate an internal resistance of the source)
c. Frequency digital logic [20]
102
Вісник Національного технічного університету України «КПІ» Серія — Радіотехніка. Радіоапаратобудування. — 2015. — №63
Теорія і практика радіовимірювань
d. Elements of the memory (based on on frequency logic)
e. Frequency Synthesizers
The most promising areas for further researches
Key areas for further development include theoretical and practical study on improving existing frequency components and building fundamentally new ones. In particular, the following points are interesting in theoretical direction:
• increase of the adequacy of modelling, by creating new models of the frequency components (probably based on the classical modelling principles), which include, for example, accounting of external factors, dynamic model calculations, spectra measurement and generation modes;
• development of new methods of theoretical calculation of the information parameters (transformation functions, frequency response, phase response, spectral characteristics), as far as calculations made by classical methods (mesh current method, nodal analysis, and so on) do not always give acceptable results, because they focus on the overall calculation of voltages/currents, but not on determining the frequency information parameters;
• automation of the circuit design of the negatron analogues (used in the fr e-quency components), in order to optimize building processes and parameters of their structure for given criteria [20, 21];
• development of a fundamentally new direction using the negative resistance effect in optics, acoustics, etc.;
• new methods of practical definition of input, output and internal parameters of the frequency components (such as new methods for measuring the frequency or phase change).
In practical direction the prospects for development include:
• development of new materials and compounds that provide a negative resistance effect based on their physical properties ("physical negatrons");
• expanding the scope of use of the frequency components in the measurement of physical parameters and processes and improving their metrology quality (e.g. improving performance, conducting the contactless metering);
• development of new circuit components (frequency-oriented amplifiers, frequency synthesizers, sequential logic, noise immunity logic);
• creation of elements for efficient conversion of information parameters (frequency-to-code, frequency-to-analog, frequency-to-optical converters), which will combine the frequency components with the existing circuits [22, 23].
Conclusion
This paper analyzes the main trends of modern development of frequency components with negative resistance (negatrons) that are conducted in various scientific schools. Once again, the main advantages of frequency components, that combine high metrological parameters, simplicity and low price, need to be
Вісник Національного технічного університету України «КПІ»
Серія — Радіотехніка. Радіоапаратобудування. — 2015. — №63 103
Теорія і практика радіовимірювань
noted.
Obviously, the further development of the frequency components (including negatronic) in general, has broad prospects. In theoretical terms, they relate mainly to the construction of new effective methods of modelling, designing and developing natural negatrons (especially in non-electrical domain - acoustics, optics, etc.). In practical direction - both expanding the scope of use of existing frequency components and the creation of innovative ones, which will significantly raise the quality characteristics of electronic equipment, is totally inevitable.
References
1. Belokon N. L. (2004) Chastotni peretvoriuvachi tysku na osnovi tranzystornykh struktur z vid’yemnym oporom. Dys. kand. tekhn. nauk. [Frequency transducers of pressure on the basis of transistors structures with negative resistance. PhD thesis.]. Vinnytsia, Ukraine, 154 p.
2. Mutamba K., Flath M., Sigurdardottir A., Vogt A. and Hartnagel H.L. (1999) A GaAs pressure sensor with frequency output based on resonant tunneling diodes. IEEE Transactions on Instrumentation and Measurement, Vol. 48 No. 6, pp. 1333-1337.
3. Osadchuk V. S., Osadchuk A. V. and Krylyk L. V. (2003) Sensory volohosti [Humidity sensors]. Vinnitsa, Ukraine, Universum-Vinnytsia, 208 p.
4. Sawyckiy A. Y. (2011) Radiovymiriuvalnyi peretvoriuvach volohosti na osnovi volohochutlyvoho MDN-tranzystora [Humidity transducers based on humidity sensitive MOS-transistor]. Visnyk VPI, no. 5, pp. 167-171.
5. Baraban S. V. (2009) Temperature converter based on IGBT-BJT structure with negative resistance. Naukovi praci VNTU, no. 2, pp. 1-8.
6. Negodenko O. N. and Mardamshina Y. P. (2000) Microelectronic sensors with frequency output. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, no. 5-6, pp. 1113.
7. Negodenko O. N., Rumyantsev K. E., Tatarintsev S. A. and Koshelev S. G. (2000) Small-size sensors of electromagnetic fields. Datchiki i sistemy, no. 10, p. 53.
8. Ilchenko O. N. (2009) Peretvoriuvachi optychnoi potuzhnosti na osnovi polovykh fototranzystoriv z dvostoronnim osvitlenniam kanal [Transducers of optical power on the basis of field-effect phototransistors with bilateral illumination of channel]. Naukovi praci VNTU, no.3, pp. 1-7.
9. Osadchuk V. S., Osadchuk A. V. and Verbytskiy, V. G. (2001) Temperaturni ta optychni mikroelektronni chastotni peretvoriuvachi [Microelectronic frequency converters of temperature and optic radiation]. Vinnitsa, Universum-Vinnytsia, 195 p.
10. Gamage S. K., Okulan N. and Henderson H. T. (2000) Behavior of bulk micromachined silicon flow sensor in the negative differential resistance regime. Journal of Micromechanics and Microengineering, Vol. 10, No. 3, pp. 421-429.
11. Lai Zongsheng, Sen Bin and Robison A.M. (1995) Negative-resistance characteristics of the micromachined thermistor sensor in CMOS-VLSI technology. 1995 IEEE TENCON. IEEE Region 10 International Conference on Microelectronics and VLSI. “Asia-Pacific Microelectronics 2000”. Proceedings, pp. 375-378.
12. Zviagin A. S. (2011) Mikroelektronnyi chastotnyi peretvoriuvach volohosti [Microelectronic frequency converter of humidity]. Naukovi praci VNTU, no. 2, pp. 1-8.
13. Danilenko O. O. (2007) Matematychna model emisiino-spektralnoho chastotnoho peretvoriuvacha [Mathematical model of the emission-spectral frequency converter]. Naukovi
104
Вісник Національного технічного університету України «КПІ» Серія — Радіотехніка. Радіоапаратобудування. — 2015. — №63
Теорія і практика радіовимірювань
praci VNTU, no. 1, pp. 1-8.
14.Seletska O. O. (2010) Radiovymiriuvalni optychni peretvoriuvachi dlia vyznachennia chasu plazmokhimichnoho travlennia. Dys. kand. tekhn. nauk. [Radio-optical converters to determine the time of plasma chemical etching. PhD thesis.]. Vinnytsia, Ukraine, 205 p.
15. Krynochkin R. V. and Osadchuk A. V. (2009) Problemy vymiriuvannia tovshchyny nanesenoho pokryttia ta metody pidvyshchennia ioho tochnosti [The problems of measuring the thickness of the coating and methods of improving its accuracy]. Novi tekhnolohii, no.1, pp. 102-105.
16. Novikov A. O. and Krynochkin R. V. (2007) Prohramno-aparatnyi kompleks keruvannia protsesom termichnoho vyparovuvannia [Integrated hardware-software system to control thermal evaporation process], Novi tekhnolohii, no.1-2 pp. 49-51.
17. Koval K. O. (2011) Bahatochastotnyi henerator na osnovi iemnisnoho efektu polovoi tranzystornoi struktury z vid’iemnym oporom [Multifrequency generator, based on the capacitance effect of FET-structure with negative resistance]. Naukovi praci VNTU, no.2, pp. 1-8.
18. Negodenko O. N., Lukyanenko E. B. and Zaruba D. (2004) Analogi negatronov dlya zashchity moshchnoi tsepi ot peregruzki [Using negatron analogs to protect powerful circuits from overload]. Tekhnologiya i Konstruirovanie v Elektronnoi Apparature, no. 5, pp. 11-13.
19.Semenov A. O. (2011) Funktsionalni vuzly radiovymiriuvalnykh pryladiv na osnovi reaktyvnykh vlastyvostei tranzystornykh struktur z vid’iemnym oporom [Functional components of radio devices based on reactive properties of transistor structures with negative resistance], Vinnitsa, Universum-Vinnytsia, 336 p.
20. Filynyuk, M. A. (1998) Analiz i syntez informatsiinykh prystroiv na bazi potentsiino-nestiikykh uzahalnenykh peretvoriuvachiv imitansa [Analysis and synthesis of information devices based on potentially unstable immitance converters], Vinnitsa, Universum-Vinnytsia, 85 p.
21. Kasimov F. D. (1999) Fiziko-tekhnicheskie i skhemotekhnicheskie osobennosti proektirovaniya kremneevykh mikroelektronnykh preobrazovatelei na osnove negatronov [Physical and technical characteristics and circuit design of silicon microelectronic converters based on negatrons], Baku, ELM, 234 p.
22. Yurish Sergey Y., Kirianaki Nikolay V. and Pallas-Areny R. (2005) Universal frequency-to-digital converter for quasi-digital and smart sensors: specifications and applications, Sensor Review, Vol. 25 Iss: 2, pp. 92 - 99.
23. Mantyniemi A., Rahkonen T. and Kostamovaara J. (1999) 'A high resolution digital CMOS time-to-digital converter based on nested delay locked loops. ISCAS’99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349), Vol. 2, pp. II-537 - II-540.
Криночкін Р. В. Частотні компоненти з від’ємним опром для вбудованих вимріювальних систем. Метою роботи є критичний аналіз сучасного стану і перспектив подальшого розвитку частотних компонентів з від’ємним опором. Вказані основні можливі і найбільш перспективні напрямки розробки нових та вдосконалення існуючих частотних компонентів у різноманітних технічних галузях: вимірювання неелектричних та електричних параметрів, створення компонентів комп’ютерних систем та радіотехнічних кіл. В окрему групу винесено найбільш перспективні, с точки зору автора, компоненти, розробка яких може являти суттєвий інтерес для подальшого покращення технічних і економічних параметрів інженерних пристроїв.
Ключові слова: частотні компоненти, генератори, від ’ємний опірб перспективні комп’ютерні компоненти
Вісник Національного технічного університету України «КПІ»
Серія — Радіотехніка. Радіоапаратобудування. — 2015. — №63 105
Теорія і практика радіовимірювань
Криночкин Р. В. Частотные компоненты с отрицательным сопротивлением для встраиваемых измерительных систем. Целью работы является критический анализ современного состояния, перспектив и направления дальнейшего развития частотных компонентов с отрицательным сопротивлением. Указаны основные возможности и наиболее перспективные направления разработки новых и усовершенствования существующих частотных компонентов в разнообразных технических отраслях: измерение неэлектрических и электрических параметров, создание компонентов компьютерных систем и радиотехнических цепей. В отдельную группу вынесено наиболее перспективные, с точки зрения автора, компоненты, разработка которых может представлять существенный интерес для дальнейшего улучшения технических и экономических параметров инженерных устройств.
Ключевые слова: частотные компоненты, генераторы, отрицательное сопротивление, перспективные компьютерные компоненты
Krynochkin R. V. Frequency components with negative resistance for embedded measurement systems. The aim of the given paper is a critical analysis of the prospects of further development of the frequency components with negative resistance. The possible and most promising areas of the development of new and improvement of existing frequency components in various technical fields, such as measurement of non-electrical and electrical parameters, creation of computer systems and components of radio circuits, are shown.The most promising components, the development of which probably has a substantial interest for further improvement of technical and economic parameters of the engineering equipment, is given in a separate group.
Keywords: Negatronics, Negative Resistance, Generators, Prospective Computer Elements.
106
Вісник Національного технічного університету України «КПІ» Серія — Радіотехніка. Радіоапаратобудування. — 2015. — №63