Научная статья на тему 'Формирование пространственных представлений учащихся 5–6-х классов в пропедевтическом курсе геометрии'

Формирование пространственных представлений учащихся 5–6-х классов в пропедевтическом курсе геометрии Текст научной статьи по специальности «Науки об образовании»

CC BY
935
131
i Надоели баннеры? Вы всегда можете отключить рекламу.
Журнал
Концепт
ВАК
Область наук
Ключевые слова
МАТЕМАТИЧЕСКОЕ РАЗВИТИЕ ЛИЧНОСТИ / НАБЛЮДЕНИЕ / ОРИЕНТАЦИЯ В ПРОСТРАНСТВЕ / «ГЕОМЕТРИЧЕСКАЯ ЗОРКОСТЬ» / "GEOMETRIC VIGILANCE" / MATHEMATICAL DEVELOPMENT OF THE PERSONALITY / OBSERVATION / ORIENTATION OF THE SPACE

Аннотация научной статьи по наукам об образовании, автор научной работы — Зеленина Наталья Алексеевна, Смирнова Марина Валерьевна

В этой статье авторы делают попытку систематизировать виды геометрических упражнений, предназначенных для формирования пространственных представлений учащихся, изучающих пропедевтический курс геометрии.

i Надоели баннеры? Вы всегда можете отключить рекламу.

Похожие темы научных работ по наукам об образовании , автор научной работы — Зеленина Наталья Алексеевна, Смирнова Марина Валерьевна

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.
i Надоели баннеры? Вы всегда можете отключить рекламу.

Formation of spatial representations of students 5-6-grade introductory course in geometry

In this paper, the authors make an attempt to systematize the kind of geometric exercises, intended to form spatial representations learners introductory course geometry.

Текст научной работы на тему «Формирование пространственных представлений учащихся 5–6-х классов в пропедевтическом курсе геометрии»

КОНЦЕПТ

Зеленина Н. А., Смирнова М. В. Формирование пространственных представлений учащихся 5-6-х классов в пропедевтическом курсе геометрии // Концепт: научно-методический электронный журнал официального сайта эвристических олимпиад «Совёнок» и «Про-

наично-методический электронный журнал Р“в»;.- 1 кваР™ 2°П' AR^ “ Киров' 2011 “и^

v http://www.covenok.ru/koncept/2011/11103.htm. - Гос. per. Эл № ФС

ART 11-1-03 УДК 372.8:5 14 77-46214. - issn 2225-1618.

Зеленина Наталья Алексеевна,

кандидат педагогических наук, доцент кафедры математического анализа и методики обучения математики ФГБОУ ВПО «Вятский государственный гуманитарный университет», г. Киров [email protected]

Смирнова Марина Валерьевна,

выпускница факультета информатики, математики и физики ФГБОУ ВПО «Вятский государственный гуманитарный университет», г. Киров

Формирование пространственных представлений учащихся 5-6-х классов в пропедевтическом курсе геометрии

Аннотация. В этой статье авторы делают попытку систематизировать виды геометрических упражнений, предназначенных для формирования пространственных представлений учащихся, изучающих пропедевтический курс геометрии. Ключевые слова: математическое развитие личности, наблюдение, ориентация в пространстве, «геометрическая зоркость».

В настоящее время в качестве одного из главных критериев математического развития личности многие психологи рассматривают уровень развития пространственного мышления, который характеризуется умением оперировать пространственными образами.

Психологические исследования показывают, что представления о геометрических фигурах находятся в стадии прогрессивного развития до 15 лет. Сензитивным периодом для развития образных компонентов мышления является школьный возраст до 1213 лет. Именно поэтому по окончании начальной школы у учащихся более развиты объёмные представления, чем плоскостные. У учеников 9-11-х классов, по мнению психологов (К. Д. Мдивани, Б. Ф. Ломов), преобладают планиметрические представления. Всё это говорит о том, что пространственное мышление как разновидность образного мышления целесообразно активно развивать уже в 5-6-х классах школы.

Особенности восприятия объектов, усвоения учебного материала требуют при изучении геометрии опоры на жизненный опыт ученика, его практическую деятельность, обязательно включающую осязание. В связи с этим следует начинать изучение геометрического материала с объёмных фигур - с их моделями ребёнок постоянно имеет дело в повседневной жизни. Далее следует рассматривать объёмные и плоские фигуры совместно, так как в детском возрасте наблюдается более тесная взаимосвязь развития плоскостных и объёмных представлений [1].

Важную роль при разработке содержания, ориентированного на формирование и развитие пространственных представлений при обучении математике, играет система специальных упражнений. Основу такой системы должны составить упражнения, которые требуют оперирования ранее созданными пространственными представлениями, в которых происходит включение пространственных представлений в новые связи, помещение их в новые условия, определяемые задачей.

Проведённое нами исследование показало, что для формирования пространственных представлений учащихся 5-6-х классов целесообразно использовать упражнения на наблюдение и упражнения на ориентацию в пространстве.

Остановимся подробно на упражнениях первого вида.

Наблюдение предметов окружающей действительности, моделей простейших фигур, выполнение под руководством учителя анализа увиденного позволяет уча-

пи ■Л пи

КОНЦЕПТ

Зеленина Н. А., Смирнова М. В. Формирование пространственных представлений учащихся 5-6-х классов в пропедевтическом курсе геометрии // Концепт: научно-методический электронный журнал официального сайта эвристических олимпиад «Совёнок» и «Про-

наично-методический электронный журнал Р“в»;.- 1 кваР™ 2°П' AR^ “ Киров' 2011 “и^

v http://www.covenok.ru/koncept/2011/11103.htm. - Гос. per. Эл № ФС

ART 11-1-03 УДК 372.8:5 14 77-46214. - issn 2225-1618.

щимся 5-6-х классов накапливать геометрические факты, переработка которых в их сознании приводит к формированию и развитию пространственных представлений.

Можно выделить три вида упражнений на наблюдение: на распознавание моделей, на рассмотрение чертежей и на одновременную работу с моделью, чертежом и рисунком.

I. Распознавание моделей.

1. Учащимся демонстрируется набор моделей (рис. 1) и предлагается найти среди них пирамиду (конус).

2. Учащимся предъявляются пары моделей: параллелепипед и призма, конус и пирамида, цилиндр и параллелепипед, пирамида и треугольник (рис. 2, а-г). Предлагается сравнить модели каждой пары, выявив их сходство и различие.

3. Среди моделей на рис. 3 указать те, которые имеют центр (ось) симметрии.

4. На подставку, края которой окрашены в разные цвета, например в красный и зеленый, помещаются несколько различных моделей (рис. 4). Требуется указать, какая из моделей, конус или цилиндр, находится ближе к красному (зеленому) краю стола. Описать, используя слова «справа», «слева», «перед», «сзади», местоположение шара (призмы) относительно цилиндра (конуса или пирамиды).

а) 6) Л} г)

Рис. 2 Рис. 4

Дадим характеристику этим заданиям.

Задание 1 «на распознавание» учит школьников мысленно представлять виденную уже однажды фигуру, выделять те ее свойства, которые позволяют отыскать ее среди множества других фигур. Весьма полезно включать в наборы моделей как пространственные, так и плоские фигуры. Пространственные модели нужно располагать в различных положениях. Например, на рис. 1 мы видим как стоящий конус (6), так и «лежащий» (15). Там же мы встречаем две пирамиды: одна стоит на основании (13), другая - на боковой грани (17) и т. д.

«VI О IX»

КОНЦЕПТ

Зеленина Н. А., Смирнова М. В. Формирование пространственных представлений учащихся 5-6-х классов в пропедевтическом курсе геометрии // Концепт: научно-методический электронный журнал официального сайта эвристических олимпиад «Совёнок» и «Про-

наично-методический электронный журнал Р“в»;.- 1 кваР™ 2°П' AR^ “ Киров' 2011 “и^

v http://www.covenok.ru/koncept/2011/11103.htm. - Гос. per. Эл № ФС

ART 11-1-03 УДК 372.8:5 14 77-46214. - issn 2225-1618.

Такие задания позволяют уточнить уже имеющиеся у учеников первоначальные представления о пространственных фигурах. Учащиеся уже не просто выбирают модель, а вспоминают прежде всего, характерные свойства требуемой фигуры, соотнося их с признаками данных моделей.

При выполнении задания 2 важно, чтобы учащиеся не просто указывали «это цилиндр, а это пирамида», а путем рассуждений выявляли сходные или различные свойства этих фигур. Так, при сравнении призмы с параллелепипедом они должны рассуждать следующим образом: «обе эти фигуры являются пространственными, но они имеют неодинаковое количество граней, ребер, вершин, так как у одной фигуры в основании лежит треугольник, а у другой - прямоугольник. Боковые грани обеих фигур есть прямоугольники». В 6-м классе учащиеся могут проверить с помощью угольника перпендикулярность ребер основаниям. Сравнивая круглые тела и многогранники, учащиеся всегда сами убеждаются, что у известных им круглых тел (конус, цилиндр, шар) или вообще нет вершин (цилиндр, шар) или одна вершина (конус). Они часто замечают, что круглые тела можно катить, а многогранники катить невозможно.

Что касается задания 4, то такого рода упражнения помогают учащимся лучше ориентироваться в пространстве, определяя местоположение окружающих их объектов и выявляя при этом пространственные отношения как между объектами, так и между их элементами.

II. Рассмотрение чертежей.

1. Подсчитайте число лучей на рис. 5 а.

2. Что общего и что различного в расположении отрезков на рис. 5 а и 5 б?

Рис. 5

3. Сколько углов вы видите на рис. 6 а; на рис. 6 б?

4. Сколько треугольников на рис. 7 а; на рис. 7 б?

Рис. 6 Рис. 7

5. Укажите, в каких случаях фигуры на рис. 8 симметричны относительно оси. Проверьте свои ответы измерениями.

5. На рис. 9 угол AOB развернутый, лучи OD, ОМ и ON - биссектрисы углов АОВ, DOA, DOB соответственно. Найдите, не пользуясь измерениями, прямые углы на этом рисунке.

6. Какие из фигур на рис. 10 симметричны относительно а) оси Ох, б) оси Oy?

(V Q ли

КОНЦЕПТ

научно-методический электронный журнал. ART 11-1-03 УДК 372.8:514

Зеленина Н. А., Смирнова М. В. Формирование пространственных представлений учащихся 5-6-х классов в пропедевтическом курсе геометрии // Концепт: научно-методический электронный журнал официального сайта эвристических олимпиад «Совёнок» и «Прорыв». - 1 квартал 2011, ART 11-1-03. - Киров, 2011 г. - URL: http://www.covenok.ru/koncept/2011/11103.htm. - Гос. рег. Эл № ФС 77-46214. - ISSN 2225-1618.

Рис. 8

Рис. 9

Рис. 10

Рис. 11

7. На рис. 11 изображен параллелепипед. Укажите, какие из его вершин можно соединить отрезками такой же длины, что и отрезок: а) АВ, б) АС, в) Бй. Проверьте свои ответы измерениями по каркасной модели.

Упражнения 1-8 развивают «геометрическую зоркость» учащихся. Выполняя их, учащиеся должны прежде всего уяснить себе, о какой фигуре идет речь. Для этого необходимо вспомнить характеристические признаки фигуры, представить себе эту фигуру и выделить ее на чертеже. Эти упражнения нацелены на тренировку учащихся в умении ориентироваться в сложных конфигурациях, вычленяя из них более простые элементы, не теряя в то же время из виду всю конфигурацию в целом.

В 5-6-х классах учащихся следует готовить к доказательству геометрических положений, многие из которых первоначально кажутся им очевидными. В силу этого особое значение приобретает иллюстрация зрительных иллюзий, убеждающая детей в том, что мы не можем безраздельно доверять нашим органам чувств. Задания, указанные ниже, помогают учащимся уяснить, что выводы, получаемые с помощью наблюдений, необходимо проверять измерениями и путем логических умозаключений.

8. Определите на глаз значения углов на рис. 12. Проверьте свои результаты транспортиром.

9. Какие из квадратов на рис. 13 больше? Светлые или темные?

/Ч/^ХЧ

Рис. 12

Рис. 13

Рис. 14

гм yj nj

Рис. 15

КОНЦЕПТ

Зеленина Н. А., Смирнова М. В. Формирование пространственных представлений учащихся 5-6-х классов в пропедевтическом курсе геометрии // Концепт: научно-методический электронный журнал официального сайта эвристических олимпиад «Совёнок» и «Про-

научно-методический электронный журнал Р“в»: " 1 кваРтал 2011' АКТ 11-1'03- “ КиР°в' 2011 г- “ ик1:

ДОТ 11-1-03

http://www.covenok.ru/koncept/2011/11103.htm. УДК 372.8:514 77-46214. - ІББМ 2225-1618.

Гос. рег. Эл № ФС

10. Одинаковы ли круги на рис. 14 а и на рис. 14 б?

11. Являются ли параллельными линии с и б на рис. 15 а, б?

12. Какой из отрезков на рис. 16 а-в длиннее: с или б?

13. Могут ли существовать тела, изображенные на рис. 17?

Необходимо сообщить учащимся причины возникновения зрительных иллюзий. Например, глаз переоценивает величину острого и недооценивает величину тупого угла - с этим фактом учащиеся столкнутся в упражнении 9. Погрешности в ответах к заданию 10 связаны с тем, что темная фигура на светлом фоне кажется больше, чем равная ей фигура, расположенная на темном фоне. В заданиях 11-13 использован тот факт, что наш глаз делает ошибку в определении размеров фигур в «заполненном» и «пустом» пространстве, искаженно воспринимает направления, расстояния и формы фигур под влиянием других близко размещенных предметов и фигур. Несколько особняком стоит задание 14. Оно иллюстрирует следующую мысль: нарисовать можно любую фигуру, даже ту, которой нет в действительности. Поэтому надо осторожно относиться к рисункам, проверяя их правильность на моделях или путем рассуждений [2].

III. Одновременное рассмотрение модели, чертежа и рисунка.

1. Рассмотреть модель куба и найти его развертку среди конфигураций на рис. 18.

2. На рис. 19 а, б даны развертки прямоугольных параллелепипедов и на них отмечены кружок и крестик. Перенести их на имеющиеся модели этих фигур.

щж 1МШ 0 ШЩ тт %

Рис. 19

(V Г (V

КОНТ тнпт

научно-методический электронный журнал ART 11-1-03 УДК 372.8:514

3. На модели прямоугольного параллелепипеда (рис. 20 а) отмечены кружок и крестик. Перенести их на развертку этой же модели (рис. 20 б).

Зеленина Н. А., Смирнова М. В. Формирование пространственных представлений учащихся 5-6-х классов в пропедевтическом курсе геометрии // Концепт: научно-методический электронный журнал официального сайта эвристических олимпиад «Совёнок» и «Прорыв». - 1 квартал 2011, ART 11-1-03. - Киров, 2011 г. - URL: http://www.covenok.ru/koncept/2011/11103.htm. - Гос. рег. Эл № ФС 77-46214. - ISSN 2225-1618.

¿Я

о

*/

а)

Рис. 20

6)

6) в) г)

iНе можете найти то, что вам нужно? Попробуйте сервис подбора литературы.

Рис. 21

4. Расположить модель куба так, чтобы наблюдатель видел ее сначала в положении а) на рис. 21, потом в положении б) на том же рисунке. Аналогичное задание выполнить для конуса (рис. 21 в, г).

5. Дана модель цилиндра (пирамиды). Нарисовать ее в различных положениях к наблюдателю.

6. Модель правильной четырехугольной пирамиды окрашена так, что ее основание красного цвета, а боковые грани поочередно зеленые или желтые. Раскрасить развертку пирамиды в соответствующие цвета.

7. На рис. 4 несколько моделей. Такие же модели раздаются учащимся. Требуется расположить их так, как указано на рисунке [3].

При выполнении работ по наблюдению наиболее трудным является переход к обобщению наблюдаемых фактов, доведение частных случаев до общего положения, обучение учащихся использованию установленных ранее фактов для обоснования новых фактов и для решения конкретных задач. Задачи на наблюдение подводят учащихся к необходимости доказательств, чем обеспечивается база для предстоящего изучения систематического курса геометрии.

Однако выполнение таких заданий учителю нужно строго контролировать. Следует требовать, чтобы учащиеся не только указывали тот или иной объект, но и давали хотя бы простейшие пояснения, уточняли, почему выбрано то или иное решение. Когда учащиеся рассуждают вслух, у них отрабатывается четкость математической речи, и этим подготавливается почва для овладения умением строить дедуктивные выводы.

Планомерная и систематическая реализация предлагаемой системы упражнений помогает подвести учащихся к необходимому уровню развития пространственных представлений и подготовить их к изучению систематического курса геометрии.

Ссылки на источники

1. Якиманская И. С. Развитие пространственного мышления школьников: учеб. пособие для студ. пед. вузов. - М.: Просвещение, 1980. - 239 с.

2. Верченко В. Б. Задания на наблюдения для развития пространственных представлений у учащихся 5-6 классов // Математика в школе. - 1982. - № 3. - С. 34-39.

3. Подходова Н. С. Развитие пространственного мышления учащихся 5-6 классов // Математика в школе. - 1997. - № 2. - С. 29-34.

Zelenina Natalia,

Ph.D., assistant professor of mathematical analysis and methyl procedure was teaching mathematics of Vyatka State University humanities, Kirov [email protected] Smirnova Marina,

graduate of the Faculty of Informatics, Mathematics and Physics FGBOU VPO "Vyatka State University of Humanities", Kirov

Formation of spatial representations of students 5-6-grade introductory course in geometry Abstract. In this paper, the authors make an attempt to systematize the kind of geometric exercises, intended to form spatial representations learners introductory course geometry.

Keywords: mathematical development of the personality, observation, orientation of the space, "geometric vigilance".

i Надоели баннеры? Вы всегда можете отключить рекламу.