https://doi.org/10.21122/2227-1031-2024-23-3-192-203 UDC 621.9.048: 621.373.8: 621.38: 546
Data Sets Formation on the Physical Properties of Oxide Scale Components for Theoretical Assessment of Efficiency Parameters of Laser Cleaning of Carbon Steels and Related Processes
O. G. Devoino1), A. V. Gorbunov2), A. S. Lapkovsky1), N. I. Lutsko1), D. A. Shpackevitch1), V. A. Gorbunova1), V. A. Koval1)
1)Belarusian National Technical University (Minsk, Republic of Belarus),
2)Aeronautics Institute of Technology (Sao Jose dos Campos, Brazil)
© Белорусский национальный технический университет, 2024 Belarusian National Technical University, 2024
Abstract. There is a need in machine-building industries nowadays to automate technologies, in particular, laser ones, to remove surface oxide layers - mill scale, rust - from steel products/pieces in order to improve the energy effectiveness of processing. Herewith, a theoretical assessment method for the intensity of heating of the oxide layer and the phase transition in it can be used to optimize laser cleaning (LC) of the steel surface. To realize this, it is possible to use some calculation and modeling procedures that require, as a first step, the data collection and verification on the temperature-dependent properties of iron-containing condensed phases, as possible components contained, in particular, in scale, which is typically widespread into various metal products. In this regard, the formation of database for characteristics of oxide scale components by the way of selection of information on thermophysical (including optical) properties of the components mentioned and of steel base, which are required for a reliable calculation of the thermal efficiency parameters of the technology for laser cleaning of carbon steels, as well as such actively developed related technologies as laser cutting, drilling, coating remelting, etc., was chosen as the task of our research. An analytical overview of published experimental data made it possible to systematize information on a number of transport and other physical properties of iron-containing components at ambient pressure, including thermal conductivity (к) and diffusivity (a), density p, irradiation absorptance and integral emissivity in the temperature range from T = 298 K to the melting temperatures of oxide and metal phases and above them. At the same time, a preliminary thermochemical estimation shows (on the calculated data) the existence of such thermodynamically stable forms of the condensed phase in the heating spot of scale layers during its LC at the melting point and above it, as Fe3O4, FeO, and Fe, which is consistent with known experimental data. Comparison of the values of a calculated by us (using the published values of к, p and molar heat capacity and using extrapolation in the high-temperature region) for the types of scale components under consideration with a set of experimental values of this parameter in current literature revealed the presence of differences for both oxide and metal phases. These new values make it possible to fill in a gap in the temperature range T = 1600-1800 K that existed in the data on the thermal diffusivity. The value of a = (0.83-0.92) 10-6 m2/s was also calculated for liquid iron oxide for the T ~ 1800 K, which was not measured experimentally, that, obviously, prevented modeling of not only laser surface processing, melting and cleaning of steels, but also calculations in the field of metallurgical and other technologies, which are characterized by the presence of iron oxide melts during heating.
Keywords: laser processing, removal of surface oxide layers, mill scale, steel, iron(II) and iron(III) oxides, melting, evaporation, theoretical estimation, efficiency parameters, physical properties, thermal conductivity and diffusivity, absorptance, values comparison.
For citation: Devoino O. G., Gorbunov A. V., Lapkovsky A. S., Lutsko N. I., Shpakevitch D. A., Gorbunova V. A., Koval V. A. (2024) Data Sets Formation on the Physical Properties of Oxide Scale Components for Theoretical Assessment of Efficiency Parameters of Laser Cleaning of Carbon Steels and Related Processes. Science and Technique. 23 (3), 192-203. https://doi.org/10.21122/2227-1031-2024-23-3-192-203
Адрес для переписки
Горбунова Вера Алексеевна
Белорусский национальный технический
просп. Независимости, 67,
220013, г. Минск, Республика Беларусь
Тел.: +375 17 293-92-71
Address for correspondence
Gorbunova Vera A.
Belarusian National Technical University 67, Nezavisimosty Ave., 220013, Minsk, Republic of Belarus Tel.: +375 17 293-92-71 [email protected]
Наука
итехника. Т. 23, № 3 (2024)
Формирование базы данных по физическим свойствам компонентов оксидной окалины для теоретической оценки эффективности лазерной очистки углеродистых сталей и родственных технологий
Докт. техн. наук, проф. О. Г. Девойно1), канд. техн. наук А. В. Горбунов2),
А. С. Лапковский1), Н. И. Луцко1), Д. А. Шпакевич1), канд. хим. наук, доц. В. А. Горбунова1),
канд. техн. наук, доц. В. А. Коваль1)
^Белорусский национальный технический университет (Минск, Республика Беларусь), 2)Технологический институт аэронавтики (Сан-Жозе-дус-Кампус, Бразилия)
Реферат. В настоящее время в машиностроительных производствах имеется потребность в автоматизации технологий, в частности лазерных, для удаления оксидных слоев - окалины, ржавчины - со стальных изделий с целью улучшения энергоэффективности обработки. При этом можно использовать теоретическую оценку интенсивности нагрева оксидного слоя и фазового перехода в нем для оптимизации лазерной очистки (ЛО) поверхности стали. Для нее требуются специальный сбор и верификация данных по зависящим от температуры свойствам железосодержащих конденсированных фаз как возможных компонентов, содержащихся, в частности, в окалине, распространенной в металлоизделиях. В связи с этим в качестве задачи данной работы было принято формирование базы данных по характеристикам компонентов оксидной окалины путем подбора сведений по физическим свойствам ее компонентов и стальной основы, требующихся для надежного оценивания теплотехнических параметров эффективности технологии лазерной очистки углеродистых сталей, а также активно внедряемых родственных технологий - лазерной резки, сверления, оплавления покрытий и др. Аналитический обзор опубликованных экспериментальных данных позволил систематизировать сведения по ряду переносных и других свойств железосодержащих компонентов при атмосферном давлении в области от 298 К до температур плавления металлических и оксидных фаз и выше них. При этом предварительная расчетная термохимическая оценка показала существование таких термодинамически стабильных конденсированных фаз в пятне нагрева окалины при ее ЛО в точке плавления и выше, как Ее304, ЕеО и Ее, что согласуется и с известными опытными данными. Сравнение определенных нами (по опубликованным значениям к, р и теплоемкости и с применением экстраполяции в высокотемпературной области) значений а для рассматриваемых видов компонентов окалины с набором имеющихся в современной литературе опытных велечин этого параметра выявило наличие отличий как для оксидных, так и металлических фаз. Новые значения заполняют пробел в области температур 1600-1800 К, имевшийся к данному моменту по температуропроводности. Также нами получено значение а = (0,83-0,92) • 10-6 м2/с для расплава оксида двухвалентного железа при температуре Т ~ 1800 К, не определявшееся ранее экспериментально, что мешало проведению корректного численного моделирования как лазерных процессов поверхностной термообработки, плавления и очистки сталей, так и расчетам в области металлургических и иных технологий, для которых характерно наличие зон с железооксидными расплавами в ходе нагрева.
Ключевые слова: лазерная обработка, удаление оксидных слоев, окалина, сталь, оксиды железа, плавление, испарение, теоретическая оценка, физические свойства, коэффициенты теплопроводности и температуропроводности, коэффициент поглощения излучения
Для цитирования: Формирование базы данных по физическим свойствам компонентов оксидной окалины для теоретической оценки эффективности лазерной очистки углеродистых сталей и родственных технологий / О. Г. Девой-но [и др.] // Наука и техника. 2024. Т. 23, № 3. С. 192-203. https://doi.org/10.21122/2227-1031-2024-23-3-192-203
Introduction and research objective
Laser removal of surface layers of rust and scale (i. e. descaling), as a potentially highly effective and environmentally friendly method to clean corroded metal surfaces, has been actively studied in the last decade and is gradually being commercialized in machinery industry, shipbuilding, mining and other industrial sectors [1-6]. It begins to compete with mechanical methods traditional
for metalworking for removing surface rust and scale from metal, primarily steel, billets and parts/products, including obtained by hot rolling, forging, etc. However, so far the effectiveness of a group of laser cleaning (LC) technologies is considered as dependent on the empirical skills of laser equipment operators in recognizing changes in the conditions for removing oxide contaminants associated with unstable cleaning modes and thermal defects of surfaces [1]. At the same time,
H Наука
итехника. Т. 23, № 3 (2024)
factors influencing the mechanism of removal of oxide layers and the quality of removal complicate the monitoring and control of the process in real time during LC operations, especially when they use modern pulsed lasers with a high pulse frequency and improved power [2]. In this regard, experts note that there is currently a noticeable need for automation of technologies for the treatment of billets and products made of steels, in particular carbon ones, from contaminating layers -scale and rust (which are oxide inhomogeneous structures with significant porosity) - to prevent excessive cleaning time, which can give the undesirable effect of partial melting of the steel surface substrate which was already cleaned of oxidic substance and, as a result, negatively affect the energy consumption of the metalworking technological process as a whole [1, 6].
To implement this, it is advisable to use preliminary theoretical assessment (including calculation and modeling) of the intensity of melting and ablation of the oxide layers during heating to find optimal LC regimes of inhomogeneous crystalline structures on surface of structural carbon steels (SCSs). In this case, it is necessary to preliminary form and verify databases/datasets on the properties of Fe-containing condensed phases, as possible components contained, in particular, in mill scale and other scales that are widespread in industrial metal products and parts. A feature of these properties is their variability with changes in temperature, pressure, wavelength of laser irradiation (LI) and some other parameters [1-6, 15-16, 22]. Taking into account the aforementioned, as objective for our study the formation of data sets on the characteristics of the components of oxide scale was chosen, with selecting and comparing available information on thermophysi-cal properties, including transport and optical ones, for its components and steel substrate (at atmospheric pressure, as typical for modern laser processing technologies), required for theoretical assessment and calculation of thermal parameters of laser processes for carbon steels cleaning, as well as for calculations of such commercialized group of related technologies as laser cutting and drilling of steels, remelting of sprayed iron-containing coatings, etc. [1-6, 15-16].
Brief characteristics of the analyzed cleaning process for scale layers and some thermochemical properties of thermostable phases in the conditions of typical oxidic scale
When analyzing and modeling processes for removing (laser or other) layers of mill scale and other scales from steel surface, it is advisable to take into account the features of the layer microstructure. It is known that typical processing scale that occurs on carbon steels (for example, during industrial hot rolling of billets in contact with air) contains up to three oxide sublayers with a composition depending on the conditions of scale formation, i. e. temperature conditions during rolling, etc. [5, 7], and often oxide phases, as a result of thermal diffusion, penetrate each other with the formation of heterogeneous layers of complex composition. In a simplified manner, it is generally accepted that in the scale of a number of steels (including carbon steels with a total iron content not lower than 97 wt.%, for which the fraction of oxides of alloying elements can be neglected) a sublayer of wustite (FeO, often with cation-deficit crystalline sublattice in the oxide phase, that allows its composition to be more precisely written as Fe1-xO (x < 0.06)) is in a direct contact with metal substrate surface. The next sublayer contains predominantly the spinel phase of Fe3O4 (including Fe(II) and Fe(III) cations). The scale may also contain a third - an outer sublayer based on the hematite Fe2O3 (with Fe+3 cations). As has been found, scale formed on steel under heating conditions at temperatures higher than 850 K consists, as a rule, of the three indicated oxide sublayers of varied thickness [7]. According to some published data, the elemental composition of typical oxidic scale on SCSs (which can be approximately considered as a simulator of heated material in the LC-zone on the surface of non-corrosion-resistant metal products/parts) can be taken to approximately correspond to the brutto-formula Fe3O4, although in its phase composition it can contain mixtures of Fe2O3, Fe3O4, FeO and Fe [5-6].
According to our preliminary thermochemical estimation (using the thermodynamic approach previously used for high-temperature reactive mixtures, including metal-containing ones [8, 9]), as the thermodynamically stable forms of the condensed phase under laser heating conditions of
Наука
итехника. Т. 23, № 3 (2024)
typical scale (with a stoichiometry close to Fe3O4 oxide) at melting temperatures and above them such substances were recognized as Fe3O4 (solid) and FeO (liquid) oxides and metallic iron (in solid and liquid forms). This is consistent with known experimental data [5-7, 18-19, 21]. Tab. 1 summarizes some data on the previously published thermochemical properties of condensed components of the scale, which are thermally stable (as the results of our above-mentioned estimation show) under the conditions of approximately calculated reactive mixtures (oxidative and non-oxidative types) based on the oxide scale when heated to the temperatures of melting and boiling points of the scale components.
Approximate energy balance and equations of oxide layer heating kinetics for theoretical assessment of cleaning regimes with varied laser irradiation power. Selection of data on the physical properties of condensed (solid and liquid) components of oxide scale, their comparison
Let us write the energy balance equation for the steady process of laser descaling of a metal surface, taking into account heat losses to secondary heating processes (into solid and gaseous
media surrounding the heated layer of oxide material, which is the target layer from the point of view of processing) and using the expression for the resulting total energy consumption for the cleaning process under the influence of irradiation as Ew (in units of J per 1 kg of heated material, i. e. oxidic scale):
Ew = Qw + Ew(1 - A) + Qhi-i + Qh-2 =
Qw + Qh/-1 + Qhl-2
(1)
In the equation (1), A is radiation absorptance of LI by surface of the material, averaged over the full temperature range of the LC-process. Energy consumption Qw (in J/kg) for heating of removed scale layer from the initial temperature (~298 K) to the final one (taken for technological reasons, e.g. as the temperature of the point of complete evaporation of the layer), i. e. energy consumption only to the target process of scale layer heating -can be approximately evaluated by expressions that use the thermal effects of phase transitions and the heat consumption for heating to the temperatures before these transitions.
Table 1
Thermochemical properties of condensed components of scale (solid (s) and liquid (l)), which are thermodynamically stable in conditions of different reactive mixtures based on scale when heated to the points of complete melting Tm and boiling (evaporation) Tb of the components (with equilibrium composition); pressure P = 0.1 MPa
No Parameter Type of thermochemical system
Scale in oxidative medium Scale in non-oxidative medium Steel*
1 Composition on Fe-containing components (solid) near Tm, K Fe3Û4 (s) Fe (s) Fe (s) + Fe3C (l) impurity
2 Composition on Fe-containing components (a priori liquid) near Tb, K FeO (l) (or Fe^O) Fe (l) Fe (l) + Fe3C (l) impurity
3 K 1870 1809-1811 ~1808 [5] (1500 for Fe3C)
4 Theoretical enthalpy of melting (fusion) AHm (f) [13], MJ/(kg of scale) 0.5843 (in MJ per kg of Fe3O4 -- 0.5960) 0.1754 (in MJ per kg of Fe -- 0.2473) ~0.1754 (and in MJ per kg of steel): ~0.2473 (SCS) [13] -0.270 (◊) [74])
5 Tb, K (on published data) 3687 3133 3133
6 Theoretical enthalpy of vaporization AHV (ff) 3.24 MJ/kg of Fe0 95O 6.34 - 6.367 MJ/kg of Fe 6.34 - 6.367 MJ/kg of Fe
* - unoxidized steel without scale; J - in MJ per 1 kg of initial steel; ◊ - for structural carbon steel (SCS) of S235JR G2 grade (EU standard, it contains 0.063 % C, 0.41 % Mn, 0.13 % Si, 0.34 % Ni, 0.10 % Mo, 98.68 % Fe) [74]; f - for Fe-containing substance, which is thermodynamically stable under the given conditions at its melting point (per kg of initial scale (assuming its simplified composition)); ff - for Fe-containing substance, which is thermodynamically stable under given conditions at its boiling point according to the reference data on evaporation of iron and its oxide (wustite) [59-61].
■ HayKa
uTexHMKa. T. 23, № 3 (2024)
Conductive heat losses into the surrounding (quasi-cylindrical scale heating region) layers of materials - scale and steel substrate - are characterized by the following value:
Qhi-1 = fai, an, T, t),
(2)
and the heat losses into the "cold" gas area surrounding the scale heating zone via the convection-radiation mechanism is:
Qhi-2 = f(a, S, T, t),
(3)
where aI, aII are coefficients of thermal diffusivity of materials in the solid state (for the scale and for steel substrate, respectively); a - coefficient of convective heat transfer from the scale heated surface to the surrounding colder gas; S - integral emissivity of the surface material, T - determining temperature of the heated surface, t - average heating time of the Li-spot area (i. e. the full exposure/duration of LI per the
The time spent for the heating, in particular, at the stage of phase transition (melting) tm, can be determined from approximate expressions that were used, for example, in [15, 6] (this is kinetic dependence for the minimum time value and one more dependence, which includes theoretical enthalpy of melting AHm). They contain such values as Km, am, Am and pm (i. e. is physical properties of the scale material at the melting temperature Tm): thermal conductivity, thermal diffusivity, LI ab-sorptance and density, respectively.
A quite reliable engineering estimation for the intensity of heating under the conditions of laser processing technology can be carried out on the basis of simplified thermal model for regimes with varied irradiation power, by analogy with one previously used in calculations of systems for electron beam and laser melting of inorganic materials [11, 12], as well as the methodology, tested to model laser ablation of organic films [22]. In this case, a standard solution for the problem of heat diffusion in a semi-bounded body (i. e. in the scale in our case) with a second-type boundary condition (considered when modeling local heating of solids [10-12]) can be applied, using some revised thermophysical properties of iron oxides and steel substrate, given below (Tab. 2).
In many practical cases (including laser and electron beam processing of materials), the heat flux to the surface of a semi-bounded solid can be represented as a thin circular heat source with
a uniform distribution of its intensity. In this case, we can consider a non-stationary axisymmetric problem of the influence of a continuous heat flow with constant intensity q, uniformly distributed within a circular region of radius R on the body surface. For a boundary-value problem (with mentioned boundary condition) to determine the temperature distribution T(r, z, t) in a given type of half-space with an unsteady heat field, where the heating occurs from an external heat source constant in time, the following standard statement can be used [10, 11]:
aAT = T(r > 0, z > 0, t > 0), -KTz |z = 0 = qH(t)H(r - R), T(r, z, 0) = T(«, z, t) = T(r, «5, t) = Tr(0, z, t) = 0. (4)
The analytical solution of a two-dimensional parabolic problem for a non-stationary temperature field in heated half-space (with boundary condition of the second kind), suitable to simulate some solid materials [10], has the following form:
Q(p, x, t) = 0.5 j(J1(X))[(exp(-Xx))erfc x
2x°
-Xt05 l-(exp(-Xx))erfc
2 t0
-Xt0
(5)
d X
x.
This equation contains the following nomenclature: J0 and Ji are Bessel functions (of the real argument) of zero and first order; erfc - complementary error function; X - dummy variable [10]; thermal Fourier number for heat diffusion process Fo = т = (at/R2) [11]; a - coefficient of thermal diffusivity of the material (oxide scale in our case); t - time; R - radius of the heating zone (i. e., the LI-spot on the heated surface); dimen-sionless simplexes for the axial and radial coordinates (i. e., depth z and radius r coordinates of the laser beam spot on the surface) of the cylindrical heating region in the material: x = z/R and p = r/R.
When solving an equation (5), one can find the values of several basic values that characterize the LC-process, including Fourier number for heat diffusion т* and the corresponding heating time t* required to melt the scale layer in the cylindrical zone (under the LI-spot) to complete depth of the layer, and the heat flux q* required for the melting.
As mentioned above, to perform this kind of kinetic heating calculations, which make it possible to find the efficiency parameters of LC-pro-
Наука
итехника. Т. 23, № 3 (2024)
X
cess, data set on the properties of scale in various forms, depending on temperature and other factors, used in (4), (5) equations, is needed. We carried out a special review of published data on the thermophysical properties (including some transport and optical characteristics) of the phases, which exist in the layers of the metal oxide scale under consideration and at the boundary with them, that necessary both for calculations in laser cleaning technology and in related ones (e.g. cutting, drilling etc.). The results of the review are presented in Table 2.
A comparison of the values of the thermal dif-fusivity coefficient a calculated by us (based on the published values of k, p and cp , using extrapolation to the high-temperature region) for the seven types of scale components under consideration with the experimental values of this parameter available in modern literature (see rows 8 and 9 in the Tab. 2) shows the presence of certain differences for both oxidic and metallic phases, reaching for the solid phases such level as 50% and
even higher. This extrapolation procedure allows us to fill the gap in the region T = 1600-1800 K, which currently exists in array of published data on the thermal diffusivity a of iron-containing phases. In addition, such new calculated range of a as 0.8310-6 to 0.92-10-6 m2/s was obtained for liquid FeO at ~1800 K (i. e. averaged value a = (0.875 ± 0.045) 10-6), which was absent in the literature, and this made it difficult until now to carry out correct modeling not only for laser-thermal processes, but for related metallurgical ones in devices with zones of fused FeOx formation. It should be noted that, as we showed above, according to a preliminary thermochemical estimation, the thermodynamically stable forms of condensed phase under laser heating conditions of typical oxidic scale (with a stoichiometry close in Fe : O ratio to the Fe3O4 oxide) on carbon steels at melting temperatures and above them include only two oxides (Fe3O4, FeO) and metallic iron, which is consistent with known experimental data on the Fe-O-system chemistry [7, 18-19, 21, 46, 48].
Table 2
Thermophysical properties of iron-containing components for calculation of heating kinetics and efficiency parameters for laser cleaning of scale layers on carbon steel surface, given according to the published data [5, 13-58, 62-79] and on our extrapolation of these data to high temperatures; pressure P = 0.1 MPa
Crystalline solids Liquid substances
No Properties Iron (Fe) Steel Hematite Fe2Û3 Magnetite Fe3O4 Wüstite Fe1-xO (x < 0,06) FeO melt / iron melt
1 2 3 4 5 6 7 8
1 Melting point Tm, K (on published data) 1809 [14, 44], 1811 [13] 1808 [5] (Q345 SCS #) 1812 [13] -1838 [5] 1870 [5, 13] 1642 [17]; 1644 [18, 19]
2 Boiling point Tb, K (on published data) 3133 [14] 3023 [5] (Q345) 2973 [5] 2896 [13], 3273 [5] 3687 [20-21]
3 Boiling point Tb-c, K (on calculated thermodynamic data for systems with different gases) 24604- 3300 3200^3400
4 Thermal conductivity k, W/(m-K) 78.48 [22] and 78.0 [24] (at 293 K); 35.0 (our extrapolation (extr.) of [24] data to the Tm = 1810 K); 8.0 (for Fe3C) [55, 56] ~52.0 [5] (Q345), 49.8 [15, 16] (AISI 1095), 56.0 [80] (for low-carbon steels); 30.24 (for SCS at 1623 K) [70]; 27.3 (at the range of 1073-1473 K) and 37.5 (at T < 1073 K) for SCS [29] 4.0 [5], 0.58 [58]; 3.3 (our extr. of [24] data to the Tm ~ ~ 1810K) Decrease from 3.5 to 1.7 (in the range of 3004676 K) [51], 2.0 [5]; 3.0 (our extr. of [24] data to the Tm ~ ~ 1870K) Rise from 1.8 to 2.5 (in the range of 30041164K) [41] (FeO); 4.3 (our extr. of [24] data to the Tm = =1640 K) 4.0 (it is extrapolation of author of [27] to the T = =1823K)/ 33.3434.4 (at T = = 1818-1868 K) [49] and 37.0-38.0 (at ~1830 K) [81], 39.1±2.5 (at T = = 1794-2050 K) [79], from 40.0 to 60.0 (calculation for the range of T from 2250 to ~3700 K) [83]; 36.5 (for SCS) [74, 75]
■ HayKa
«TexHMKa. T. 23, № 3 (2024)
Continuation of the Table 2
1 2 3 4 5 6 7 8
5 Density p, kg/m3 7874 7860 4900 [57] 5190 [51] 58504- 6050 ~4600 (extrapo-
(at 293 K) [13]; (at 300 K) [5] and 5260 [58] и 5000 [57] [41] (300 K, lation to 1773 K)
7500 (estima- (for Q345 SCS) (at 300 K); (при 300 K); FeO); [28]; ~5079 (esti-
tion for S-Fe and [57] (for 4950 (our extr. 4850 (our extr. 5300 (our extr. mation of [46]);
for the range SCS with the of [23] data of [23] data of [23] data 45204 3390 (at T
1644 K < T < carbon fraction to the to the Tm = to the Tm ~ from 1650
< 1809 K) [46] of 0.0840.17 %) Tm = 1810 K) =1870 К); ~ 1640 K); to 3400 K) [71] /
for Fe3O4 melt 5587 (for FeO 7015 (estimation
-438043715 at T < 1644 K) for T > 1809 K)
(at Т from [48] [46]; 7030
1870 to (T = 1810 K)
2900 К) [71] and ~5974
(T = 3000 K) [63];
702346208 (for
the range T =
= 1810 4 3133 K)
[71]
6 Molar heat capa- 25.1 (for the 4404760 104.2 147.7 49.97 68.20 (at T =
city cp, J/(mol-K) a-8-phase J/(kgR) (at 300 K); (at 300 К); (at T = 300 K); = 1650-5000 K)
[13-14]) and (for the range 145.8 200.8 (at 1800 64.03 for FeO [14] /
26.5 (for the of2934873 К) (at 1800 K) К) [14] (at T = 1600 K) 46.02 (at T =
y-phase [14]) and 650 [14] [14] = 1809-3100 K)
(at 300 K); J/(kgR) [14]; 45.4±3.2 (at
42.6 and 39.0 at 1473 К [29]; T = 1848-1992K)
(at 1800 K for ~920 J/ (kgR) [79] and 45.1±3
the a-8-phase (at ~1800 К for (at Tm ~ 1810 K)
and y-phase) Q345 SCS) [5] [82]
[14]
7 Molar 0.055845 ~0.055 0.159688 0.231533 0.071844 0.071844 (FeO);
mass ^ (on [14]), kg/mol (FeO); 0.06889 0.068886
(Fec.947O [42, (Fe„.947O [42]) /
24]) 0.055845
8 Thermal diffusive- 23.0 (at 300 K) at 300 К - 19.0 at 293 K ~0.70 Decrease from ~0,3 - 1.4 (at - / 6.046.5 (at
ty a (♦), m2/s (*106) [43], 22.06 (AISI 1010 SCS and at 1273 K - 1.1 to 0.41 ~300-500 K) 1818-1900K)
(at 293 K) [22] with 0.1 % С) ~0.20 (sintered (for the range [53-54] (at [49]
[45] and samples with of 3004676 K) porosity
14,9415,1 20 % porosity) [51]; at 293 К of 42 % [54]));
(SCS [54, 57] ~0.340.42 the rise from
with 0.17 % and at 1273 К 0.37 to 0.58
carbon frac- - -0.40 (sin- (in the range
tion) [57]; tered samples of300-1164K)
at 300 K: 12.2, with 30 % [41] (FeO);
and at 1676 K: porosity) [54] ~0.3 (1023 K)
6.02 (SCS [51]; ~0.48
with 0.135 % (300-870 K) -
carbon frac- Fe„91O [68]
tion) [50]
9 Calculated (by us) thermal at T = 300 K: ~7.19 ~0.73 1.06 (at 300 К; 0.42 (at 300 K; 0.9240.83
diffusivity a (♦), m2/s 21.0-22.1; ~6.12 (at ~1800 К (at 1800 K - on -0.713 (at ~0.873 (at ~1800 K for
(106), based on the given (at ~1800 K on for Q345 SCS) the 1800 К - on (at 1600 K on FeO(l)) /
(in this Table) values the extrapo- extrapolation the extrapo- the extrapo- ~5.76 (at
of k, p and cp, presented lation data) data) lation data) lation data) ~1810 K) 4 ~6.9 (at
in the references ~(1850-2000 K),
with use of values
of k and cp
from [79])
198 Наука
итехника. Т. 23, № 3 (2024)
Continuation of the Table 2
1 2 3 4 5 6 7 8
10 Absorptance (§) A at wavelength of LI X = 1064 nm (or 1053 nm [30] (at T ~ 300 K)) 0.36-0.363 [22]; 0.31-0.38 (T = 300 K) nd ~0.32 (T = 1800 K) [65]; 0.39 (for T = 1800 K) [63] 0.35 (◊) [5], 0.46 [15-16] (AISI 1095 f), 0.52 [30] (CR4 J) and 0.30 [34] (AISI 1006 ff); 0.30-0.36 (T = 300 K) and 0.31-0.32 (T = 1270 K) for steel of 35NCD16 grade ( i ) [65]; 0.35-0.38 (at T ~ 1809-3000 K) for SCS [64] 0.60 (◊) [5]; 0.69 [30, 32] 0.53 (◊) [5]; 0.80-0.83 [30, 33] 0.81 [30, 31] For the oxide melt - from 0.56^0.64 (at T = = 1840-1900K) to 0.66^0.71 (at T=2100-2300K) (and the drop of A in the range of T > 2300 K) [76] / 0.31 [62]; -0.45^0.49 [63]
11 Absorptance (§) A at wavelength of LI X = 527 nm [30] (at T ~ 300 K) ~0.42 (T = 300 K) and ~0.44 (T = = 1800 K) [65] 0.67 [30] (CR4 steel) 0.97 [30, 32] 0.83 [30, 33] 0.80 [30, 31] - / 0.48 [62]
12 Reflectance (§) R at wavelength of LI X = 1064 nm (or 1053 nm [30] (at T ~ 300 K)) 0.637-0.64 [22]; 0.69-0.62 (T = 300 K) and ~0.68 (at T= =1800 K) [65]; 0.61 (at T = =1800 K) [63] 0.65 [5], 0.54 [15, 16] (AISI 1095), 0.48 [30] (CR4) and 0.70 [34] (AISI 1006); 0.64-0.70 (T = 300 K) and 0.68-0.69 (T = 1270 K) for the 35NCD16 steel [65]; 0.65-0.62 (T = 18093000 K) for the SCS [64] 0.31 [30, 32] 0.17-0,20 [30, 33] 0.19 [30, 31] for the oxide melt - from 0.36^0.44 (at 1840-1900 K) to 0.29^0.43 (at 2100-2300 K) [76] / -0.69 [62]; -0.51^0.55 [63]
13 Reflectance (§) R at wavelength of LI X = 527 nm [30] (at T ~ 300 K) ~0.58 (T = = 300 K) and ~0.56 (T = 1800 K) [65] 0.33 [30] (CR4) 0.03 [30, 52] 0.17 [30, 33] 0.20 [30, 31] - / 0.52 [62]
14 Integral emissivity (IE) s 0.35-0.36 (at T = = 1672-1811 K) [52] (for the X = 650 nm); 0.61 (at 1050 K) [37, 38]; ~0.35 (at ~300 K) [78] 0.35, 0.60 and 0.62 (at the values of T = 348 K, 1773Kand 3133 K, respectively) [34] (for AISI 1006); 0.61 (at 1050 K) [38]; ~0.45 (at T > 1270 K for X = =1000-1500 nm for the SCS) [74] 0.626 (at 300 K) [69]; 0.75-0.85 (at 850-1300 K) [37, 39]; rise from 0.57 to 0.74 (for the range of 1100-1400K for powder samples) [59]; 0.75-0.87 (at 740 K) and 0.64-0.83 (1220 K) - for ~0.61 (at 1050 K) [37, 38]; 0.85-0.89 (at 773^1473 K for ~(Fe3O4 + + FeO)) [36, 67] ~0.61 (at 1050 K) [37, 38], 0.70 (at T >1000 K) [35] IE at X = = 600-1064 nm for the oxide melt: -0.70 (at T > 2000 K) [73, 77], / 0.35 (at 1810 K) [37, 40] and 0.314 (at Tm ~ 1810 K) [82]; normal spectral emissive- ty - 0.3-0.44 (at 1810-1970 K) [47] (for the X = 650 nm), 0.362 (at 1811 K
■ HayKa
uTexHMKa. T. 23, № 3 (2024)
End of Table 2
1 2 3 4 5 6 7 8
powder samples [66] for the X = = 684 nm) and 0.38 (2300 K for the X = = 684 nm) [52]; IE for X = = 650-850 nm for the melt of S235 SCS (1) 0.354- 0.095 (at the range of 181042100 K) [72]
§ - as a rule, in the direction of irradiation normal to the surface; ♦ - values are given for materials assuming their near-zero porosity; ◊ - values of ^4-parameter in [5] are taken for the conditions of LI-absorption with a wavelength X = 1064 nm [26]; f - structural carbon steel (SCS) of AISI 1095 - composed of 98.4-98.8 % Fe, 0.3-0.5 % Mn and 0.9-1.03 % C (analogues in the Russian Federation (RF) and CIS - y8 and yi0 steels); ff - AISI 1006 SCS - composed of 99.4-99.7 % Fe, 0.25-0.4 % Mn and 0.08 % C (analogue in the RF - 05m steel); J - CR4 SCS - composed of 99 % Fe, 0.6 % Mn and 0.1% C (analogue in the RF - 08^ steel); # - Q345 SCS (standard of China, it contains 0.21 % C, 0.96 % Mn, 0.12 % Si and up to 98.5 % Fe) - analogues in the RF - 09L2, 09r2C, 10r2E; % - low-alloyed structural steel of 35NCD16 grade (French standard, it contains up to 0.4 % C, up to 0.6 % Mn, up to 0.4% Si, up to 2.0 % Cr, up to 4.2 % Ni, up to 0.6 % Mo) - analogue in the RF - 40X2H4MA grade; ; - S235 SCS (EU standard, it contains up to 0.20 % C, up to 1.40 % Mn and up to 98 % Fe; analogue in the RF is the steel of CT3cn grade).
CONCLUSIONS
1. In order to form the data sets on a number of industrially significant characteristics of oxide scale components, a detailed review and selection of published experimental information were carried out on the group of physical properties (including transport and optical) of iron oxides and steel base (at a pressure of 0.1 MPa), required for theoretical assessment of thermal technical parameters of the efficiency of laser cleaning technology for carbon steels, as well as related technologies, using calculation methods. Information on the properties of iron-containing components, including density, coefficients of thermal conductivity and thermal diffusivity (a), optical absorp-tance and emissivity in the temperature range from T = 298 K to the melting points of oxide and metal phases and above them, was systematized. According to a preliminary estimation, Fe3O4, FeO, and metallic iron belong to the thermody-namically stable condensed phases under conditions of laser heating of a typical mill scale (with integral stoichiometry close to Fe3O4 oxide) at melting temperatures and above them, which is consistent with empirical data.
2. Comparison of the values of the coefficient a for thermodynamically stable scale components, which were calculated using currently known values values of k, p and heat capacity and using additional extrapolation of properties to the high-
temperature range, with a set of experimental values of this a parameter available in the literature showed certain differences for both oxide and metallic phases. These values make it possible to fill in the existing gap in the T = 1600-1800 K region in the data set on thermal diffusivity of the phases. A calculated value a = (0.83-0.92) 10-6 m2/s was obtained for Fe(II) oxide for temperature above the melting boundary T ~ 1800 K, which was not measured before, which limited the opportunities not only for modeling surface laser heat treatment and cleaning of steels, but also made it difficult to calculate the kinetic data in the field of metallurgical and related processes and apparatuses in which some zones exist with iron oxide melts during the heating of steel, cast iron and their partial oxidation products.
REFERENCES
1. Xie X., Huang Q., Long J., Ren Q., Hu W., Liu S. (2020) A New Monitoring Method for Metal Rust Removal States in Pulsed Laser Derusting Via Acoustic Emission Techniques. Journal of Materials Processing Technology, 275, 116321. https://doi.org/10.1016/j.jmatprotec. 2019.116321.
2. Sofronov V.L., Kartashov E.Yu., Tkachuk S.A., Pak A.D., Tinin V.V., Galata A.A. (2022) Research on Laser Deactivation Cleaning of Metal Surfaces Contaminated with Radioactive Materials. Izvestiya Tomskogo Politekh-nicheskogo Universiteta. Inzhiniring Georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets En-
HayKa
wTexHMKa. T. 23, № 3 (2024)
gineering, 333 (11), 171-182 (in Russian). https://doi. org/10.18799/24131830/2022/11/3734.
3. Ma M., Wang L., Li J., Jia X., Wang X., Ren Y., Zhou Y. (2020) Investigation of the Surface Integrity of Q345 Steel After Nd:YAG Laser Cleaning of Oxidized Mining Parts. Coatings, 10 (8), 716. https://doi.org/10.3390/coa tings10080716.
4. Deschênes J. M., Fraser A. (2020). Empirical Study of Laser Cleaning of Rust, Paint, and Mill Scale from Steel Surface. Lee J., Wagstaff S., Lambotte G., Allanore A., Tesfaye F. (eds) Materials Processing Fundamentals 2020. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-36556-1_17.
5. Ren Y., Wang L., Ma M., Cheng W., Li B., Lou Y., Li J., Ma X. (2022) Stepwise Removal Process Analysis Based on Layered Corrosion Oxides. Materials, 15 (21), 7559. https://doi.org/10.3390/ma15217559.
6. Zhou Z., Sun W., Wu J., Chen H., Zhang F., Wang S. (2023) The Fundamental Mechanisms of Laser Cleaning Technology and Its Typical Applications in Industry. Processes, 11 (5), 1445. https://doi.org/10.3390/pr 11051445.
7. Avdeev Ya. G., Gorichev I. G., Luchkin A. Yu. (2012) Effect of IFKhAN-92 Inhibitor on Scale Removal during Sulfuric Acid Pickling of Steel. International Journal of Corrosion and Scale Inhibition, 1 (1), 26-37. https://doi.org/10.17675/2305-6894-2012-1-1-026-037.
8. Mourao R., Marquesi A. R., Gorbunov A. V., Filho G. P., Halinouski A. A., Otani C. (2015). Thermochemical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE Transactions on Plasma Science, 43 (10), 3760-3767. https://doi.org/10.1109/TPS.2015.2416129.
9. Gorbunov A. V., Devoino O. G., Gorbunova V. A., Yats-kevitch O. K., Koval V. A. (2021) Thermodynamic Estimation of the Parameters for C-H-O-N-Me-Systems as Operating Fluid Simulants for New Processes of Powder Thermal Spraying and Spheroidizing. Nauka i Tehnika = Science and Technique, 20 (5), 390-398. https://doi.org/ 10.21122/2227-1031-2021-20-5-390-398.
10. Carslaw H. S., Jaeger J. C. (1986) Conduction of Heat in Solids. Oxford University Press. 2nd ed. 520.
11. Pinsker V. A. (2006). Unsteady-State Temperature Field in a Semi-Infinite Body Heated by a Disk Surface Heat Source. High Temperature, 44 (1), 129-138. https://doi. org/10.1007/s10740-006-0015-1.
12. Pinsker V. A. (2008) Quasi-Static Thermoelastic Stresses in a Half-Space Heated by a Circular Surface Heat Source. VI Minskii Mezhdunarodnyi Forum po Teplo-i Massoobmenu, 19-23 Maya 2008 g.: Tezisy Dokladov i Soobshchenii. T. 2 [VI Minsk Medunarodny Forum for Heat and Mass, 19-23 May 2008: These are the Documents and the Information]. Minsk, HMTI of NAS of Belarus. 10 pp. (in Russian).
13. CRC Handbook of Chemistry and Physics, 95th ed.; Haynes W. M. (Editor); CRC Press, USA, 2014-2015, 2704 p. ISBN-10: 1482208679, ISBN-13: 978-1482208672.
14. Gas Phase Thermochemistry Data. Available at: https:// webbook.nist.gov/cgi/cbook.cgi?ID=C74828&Units=SI& Mask=1#Thermo-Gas.
15. Okumu H. W. (2022) Cleaning of Metal Surfaces by Laser Irradiation; Mathematical Modeling and Experimental Analysis. Tesis de Maestría en Ciencias. Centro de Investigaciones en Óptica, León, Guanajuato, Mexico. 91.
16. Kermanpur A., Mahmoudi Sh., Hajipour A. (2008). Numerical Simulation of Metal Flow and Solidification in the Multi-Cavity Casting Moulds of Automotive Components. Journal of Materials Processing Technology, 206 (1-3), 62-68. https://doi.org/10.1016/jjmatprotec. 2007.12.004.
17. Schneider S. (1963) Compilation of the Melting Points of the Metal Oxides. National Bureau of Standards Monograph 68. Gaithersburg, MD. https://doi.org/10.6028/ NBS.MONO.68.
18. Chen Z., Qu Y., Zeilstra C., Van Der Stel J., Sietsma J., Yang Y. (2019) Prediction of Density and Volume Variation of Hematite Ore Particles during In-Flight Melting and Reduction. Journal of Iron and Steel Research International, 26, 1285-1294. https://doi.org/10.1007/s42243-019-00265-3.
19. Qu Y., Yang Y., Zou Z., Zeilstra C., Meijer K., Boom R. (2014). Thermal Decomposition Behaviour of Fine Iron Ore Particles. ISIJ International, 54 (10), 2196-2205. https://doi.org/10.2355/isij international.54.2196.
20. Iron (II) Oxide. Available at: https://ceramica.fandom. com/wiki/Iron(II)_oxide.
21. Cotton F. A., Wilkinson G., Murillo C. A., Bochmann M. (1999). Advanced Inorganic Chemistry. 6th Ed. New York, Wiley-Interscience.
22. Zou W.F., Xie Y.M., Xiao X., Zeng X.Z., Luo Y. (2014). Application of Thermal Stress Model to Paint Removal by Q-Switched Nd:YAG Laser. Chinese Physics B, 23 (7), 074205. https://doi.org/10.1088/1674-1056/23/7Z074205.
23. Beygelzimer E., Beygelzimer Y. (2021) Generalized Estimates for the Density of Oxide Scale in the Range From 0 C to 1300 C [Preprints]. Arxiv. Available at: https://arxiv.org/ abs/2110.09791.ttps://doi.org/10.48550/arXiv.2110.09791.
24. Beygelzimer E., Beygelzimer Y. (2021) Thermal Conductivity of Oxide Scale and its Components in the Range from 0 °C to 1300 °C: Generalized Estimates with Account for Movability of Phase Transitions [Preprints]. Arxiv. Available at: https://arxiv.org/abs/2110.11632. https://doi.org/10.48550/arXiv.2110.11632.
25. Beygelzimer E., Beygelzimer Y. (2021) Heat Capacity of Oxide Scale in the Range from 0 C to 1300 C: Generalized Estimates with Account for Movability of Phase Transitions. [Preprints]. Arxiv. Available at: https://arxiv.org/abs/2110. 11101 .https://doi.org/10.48550/arXiv.2110.11101.
26. Max Metal Surface Cleaning Tyre Mold Portable 200w Pulse Laser Cleaning Machine. Available at: https://www. alibaba.com/product-detail/Max-Metal-Surface-Cleaning-Tyre-Mold_1600762853557.html.
27. Vil'danov S. K. (2021) Calculation of Viscosity and Thermal Conductivity at a High Temperature for Glasses Based on the SiO2-Al2O3-R2O System (R = Na, K) and Doped with CaO, MgO, and FeO. Glass Physics and Chemistry, 47, 235-244. https://doi.org/10.1134/S10876 59621030135.
28. Hara S., Irie K., Gaskell D. R., Ogino K. (1988) Densities of Melts in the FeO-Fe2O3-CaO and FeO-Fe2O3-2CaO^SiO2 Systems. Transactions of the Japan Institute of Metals, 29 (12), 977-989. Available at: https://www.jsta ge.jst.go.jp/article/matertrans1960/29/12/29_12_977/_pdf/-char/en.
29. Li G., Wang P. (2013) Properties of Steel at Elevated Temperatures. Advanced Analysis and Design for Fire Safety of Steel Structures. Advanced Topics in Science
■ HayKa
uTexHMKa. T. 23, № 3 (2024)
and Technology in China. Springer, Berlin, Heidelberg, 37-65. https://doi.org/10.1007/978-3-642-34393-3_3.
30. Bergstrom D., Powell J., Kaplan A.F.H. (2007). The Ab-sorptance of Steels to Nd:YLF and Nd:YAG Laser Light at Room Temperature. Applied Surface Science, 253 (11), 5017-5028. https://doi.org/10.1016/j.apsusc.2006.11.018.
31. Henning T., Mutschke H. (1997) Low-Temperature Infrared Properties of Cosmic Dust Analogues. Astronomy and Astrophysics, 327, 743-754.
32. Marusak L.A., Messier R., White W. B. (1980). Optical Absorption Spectrum of Hematite, aFe2O3 Near IR to UV. Journal of Physics and Chemistry of Solids, 41 (9), 981-984. https://doi.org/10.1016/0022-3697(80)90105-5.
33. Schlegel A., Alvarado S.F., Wachter P. (1979) Optical Properties of Magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12 (6), 1157-1164. https://doi.org/10. 1088/0022-3719/12/6/027.
34. Frewin M. R. (1997) Experimental and Theoretical Investigation of Tandem Laser Welding. Doctor of Philosophy Thesis. Department of Materials Engineering, University of Wollongong, Australia. 179. Available at: https://core. ac.uk/download/pdf/37028176.pdf.
35. Mich J., Braig D., Gustmann T., Hasse C., Scholtissek A. (2023) A Comparison of Mechanistic Models for the Combustion of Iron Microparticles and Their Application to Polydisperse Iron-Air Suspensions. Combustion and Flame, 256, 112949. https://doi.org/10.1016/).combust flame.2023.112949.
36. Mi X. C., Fujinawa A., Bergthorson J. M. (2022) A Quantitative Analysis of the Ignition Characteristics of Fine Iron Particles. Combustion and Flame, 240, 112011. https://doi.org/10.1016/jxombustflame.2022.112011
37. Jones J. M., Mason P. E., Williams A. (2019). A Compilation of Data on the Radiant Emissivity of Some Materials at High Temperatures. Journal of the Energy Institute, 92 (3), 523-534. https://doi.org/10.1016/jjoei.2018.04.006.
38. Touloukian Y. S., DeWitt D. P. (1970) Thermal Radiative Properties: Metallic Elements and Alloys. Vol. 7. New York, IFI/Plenum Press.
39. Touloukian Y.S., DeWitt D.P. (1971) Thermal Radiative Properties. Non-Metallic Solids. Vol. 8. New York, IFI/Plenum Press.
40. Ratanapupech P., Bautista R. G. (1981) Normal Spectral Emissivities of Liquid Iron, Liquid Nickel and Liquid Iron-Nickel Alloys. High Temperature Science, 14 (4), 269-283.
41. Li M., Endo R., Akoshima M., Susa M. (2017). Temperature Dependence of Thermal Diffusivity and Conductivity of FeO Scale Produced on Iron by Thermal Oxidation. ISIJ International, 57 (12), 2097-2106. https://doi.org/10. 2355/isijinternational.ISIJINT-2017-301.
42. Iron Oxide (Wustite) Fe0.947O (c, l; wustite)). Available at: https://www.chem.msu.su/Zn/F e/print-Fe0.947O_c.html (in Russian).
43. Wilson J. (August 2007) Materials Data. Available at: http://www.electronics-cooling.com/2007/08/thermal-dif fusivity/.
44. Gaskell D. R., Laughlin D. E. (2017) Introduction to the Thermodynamics of Materials. 6th Ed. Boca Raton, USA, CRC Press. 714. https://doi.org/10.1201/9781315119038.
45. Lienhard J. H. IV, Lienhard J. H. V. (2019) A Heat Transfer Textbook. 5th ed. Dover Publications. 715.
46. Grinchuk P. S., Dmitriev S. I., Khina B. B. (2012). Modeling of the Reduction of Iron Oxide by Methane-
Conversion Products in a Plasma Jet. II. Heat and Mass Transfer. Journal of Engineering Physics and Thermo-physics, 85 (2), 265-273. https://doi.org/10.1007/s10891-012-0649-2.
47. Susa M., Endo R. K. (2009) Emissivities of High Temperature Metallic Melts. Fukuyama H, Waseda Y. (eds.) High Temperature Measurements of Materials. Berlin, Springer, 111-129. https://doi.org/10.1007/978-3-540-85918-5.
48. Chen R. Y., Yeun W. Y. D. (2003) Review of the High-temperature Oxidation of Iron and Carbon Steels in Air or Oxygen. Oxidation of Metals, 59 (5-6), 433-468. https://doi.org/10.1023/A:1023685905159.
49. Nishi T., Shibata H., Waseda Y., Ohta H. (2003). Thermal Conductivities of Molten Iron, Cobalt, and Nickel by Laser Flash Method. Metallurgical & Materials Transactions - A, 34 (12), 2801-2807. https://doi.org/10.1007/s1 1661-003-0181-2.
50. Nishi T., Shibata H., Tsutsumi K., Ohta H., Waseda Y. (2002). Measurement of Thermal Diffusivity of Steels at Elevated Temperature by a Laser Flash Method. ISIJ International, 42 (5), 498-503. https://doi.org/10.2355/ isijinter national.42.498.
51. Li M., Akoshima M., Endo R., Ueda M., Tanei H., Susa M. (2022) Thermal Diffusivity and Conductivity of Fe3O4 Scale Provided by Oxidation of Iron. ISIJ International, 62 (1), 275-277. https://doi.org/10.2355/isijinter national.ISIJINT-2021-326.
52. Pottlacher G., Boboridis K., Cagran C., Hüpf T., Seifter A., Wilthan B. (2013) Normal Spectral Emissivity Near 680 nm at Melting and in the Liquid Phase for 18 Metallic Elements. AIP Conference Proceedings, 1552 (1), 704-709. https://doi.org/10.1063/L4819628.
53. Endo R., Hayashi H., Li M., Akoshima M., Okada H., Tanei H., Hayashi M., Susa M. (2020) Determination of Thermal Diffusivity/conductivity of Oxide Scale Formed on Steel Plate by Laser Flash Method through Thermal Effusivity Measurement by Transient Hot-strip Method. ISIJ International, 60 (12), 2773-2779. https://doi.org/ 10.2355/isijinternational.ISIJINT-2020-163.
54. Akiyama T., Ohta H., Takahashi R., Waseda Y., Yagi J. (1992). Measurement and Modeling of Thermal Conductivity for Dense Iron Oxide and Porous Iron Ore Agglomerates in Stepwise Reduction. ISIJ International, 32 (7), 829-837. https://doi.org/10.2355/isijinternational.32.829.
55. Chen J. K., Chen S. F. (2011) On Thermal Conductivity of an in-situ metal matrix Composite-cast Iron / In: Cuppoletti J. (ed.) Metal, Ceramic and Polymeric Composites for Various Uses. Intech Open. Taiwan, 211-224. https://doi.org/10.5772/21537.
56. Helsing J., Grimvall G. (1991). Thermal Conductivity of cast Iron: Models and Analysis of Experiments. Journal of Applied Physics, 70 (3), 1198-1206. https://doi.org/10. 1063/1.349573.
57. Endo R., Yagi T., Ueda M., Susa M. (2014). Thermal Diffusivity Measurement of Oxide Scale Formed on Steel during Hot-rolling Process. ISIJ International, 54 (9), 2084-2088. https://doi.org/10.2355/isijinternational. 54.2084.
58. Masdeu F., Carmona C., Horrach G., Muñoz J. (2021) Effect of Iron (III) Oxide Powder on Thermal Conductivity and Diffusivity of Lime Mortar. Materials, 14 (4), 998. https://doi.org/10.3390/ma14040998.
Наука
итехника. Т. 23, № 3 (2024)
59. Samsonov G. V. (1982). The Oxide Handbook. 2nd ed. New York and London, IFI/Plenum. 463. https://doi.org/ 10.1007/978-1-4757-1613-9.
60. Sipkens T. A. Hadwin P. J. Grauer S. J., Daun K. J. (2018). Predicting the Heat of Vaporization of Iron at High Temperatures Using Time-Resolved Laser-Induced Incandescence and Bayesian Model Selection. Journal of Applied Physics, 123 (9), 095103. https://doi.org/10.1063/ 1.5016341.
61. Heat of Fusion and Vaporization. Chemistry 301. Data base of Texas University. Available at: https://ch301.cm. utexas.edu/data/section2 .php?target=heat-transition.php.
62. Kaplan A. F. H. (2014). Laser Absorptivity on Wavy Molten Metal Surfaces: Categorization of Different Metals and Wavelengths. Journal of Laser Applications, 26 (1), 012007. https://doi.org/10.2351/L4833936.
63. Mahrle A., Beyer E. (2009). Theoretical Aspects of Fibre Laser Cutting. Journal of Physics D: Applied Physics, 42 (17), 175507. https://doi.org/10.1088/0022-3727/42/ 17/175507.
64. Volpp J. (2023). Laser Beam Absorption Measurement at Molten Metal Surfaces. Measurement, 209, 112524. https://doi.org/10.1016/j.measurement.2023.112524.
65. Dausinger F., Shen J. (1993). Energy Coupling Efficiency in Laser Surface Treatment. ISIJ International, 33 (9), 925-933. https://doi.org/10.2355/isijinternational.33.925.
66. Gorewoda J., Scherer V. (2016). The Influence of Carbonate Decomposition on Normal Spectral Radiative Emittance in the Context of Oxy-Fuel Combustion. Energy & Fuels, 30 (11), 9752-9760. https://doi.org/10. 1021/ acs.energyfuels.6b0139.8.
67. Burgess G. K., Foote P. D. (1916) The Emissivity of Metals and Oxides. IV. Iron Oxide. Bulletin of the Bureau of Standards, 12 (1), 83-89. https://doi.org/10.6028/bul letin.273.
68. Yang Y., Watanabe H., Akoshima M., Hayashi M., Susa M., Tanei H., Okada H., Endo R. (2021) Determination of Thermal Diffusivity and Its Temperature Dependence of Fe1-xO Scale at High Temperature by Electrical-Optical Hybrid Pulse-Heating Method. ISIJ International, 61 (1), 26-32. https://doi.org/10.2355/isijinternational. isijint-2019-635.
69. Gahmousse A., Ferria K., Rubio J., Cornejo N., Tamayo A. (2020). Influence of Fe2O3 on the Structure and Near-infrared Emissivity of Aluminosilicate Glass Coatings. Applied Physics A, 126 (9), 732. https://doi.org/10.1007/ s00339-020-03921-8.
70. Timoshpolsky V. I., Samoilovich Yu. A., Trusova I. A., Khopova O. G. (2001) Calculation Analysis of the Occurrence of "Dark Spots" During Thermal Interaction of heated wares with Supporting Devices of Reheating/ Continuous Furnaces. Metallurgiya: Respublikanskiy Mezhve-domstvennyy Sbornik Nauchnykh Trudov [Metallurgy. Republican Interdepartmental Collection of Scientific Works]. Minsk, Vysshaya Shkola Publ., Iss. 25, 12-23 (in Russian).
71. van Gool C. E. A. G., Thijs L. C., Ramaekers W. J. S., van Oijen J. A., de Goey P. (2023). Particle Equilibrium Composition Model for Iron Dust Combustion. Applications in Energy and Combustion Science, 13, 100115. https://doi.org/10.1016/jjaecs.2023.100115.
72. Schopp H; Sperl A; Kozakov R; Gött G; Uhrlandt D; Wilhelm G (2012). Temperature and Emissivity Determination of Liquid Steel S235. Journal of Physics D: Applied Physics, 45 (23), 235203. https://doi.org/10.1088/ 0022-3727/45/23/235203.
73. Muller M., El-Rabii H., Fabbro R. (2015). Liquid Phase Combustion of Iron in an Oxygen Atmosphere. Journal of Materials Science, 50 (9), 3337-3350. https://doi.org/10. 1007/ s10853-015-8872-9.
74. Teulet P., Girard L., Razafinimanana M., Gleizes A., Bertrand P., Camy-Peyret F., Baillot E., Richard F. (2006) Experimental Study of an Oxygen Plasma Cutting Torch: II. Arc-Material Interaction, Energy Transfer and Anode Attachment. Journal of Physics D: Applied Physics, 39 (8), 1557-1573. https://doi.org/10.1088/0022-3727/ 39/8/01.
75. Zaitsev A. V., Ermolaev G. V., Polyanskiy T. A., Gu-rin A. M. (2018). Calculation of Intrinsic Absorption Coefficient in High Power Laser Material Processing. Journal of Physics: Conference Series, 1109, 012011. https://doi.org/10.1088/1742-6596/1109/1/012011.
76. Seibold G., Dausinger F., Hügel H. (2000) Absorptivity of Nd: YAG-Laser Radiation on Iron and Steel Depending on Temperature and Surface Conditions. International Congress on Applications of Lasers & Electro-Optics, 89, 125-132. https://doi.org/10.2351/L5059485.
77. Muller M., El-Rabii H., Fabbro R., Coste F., Rostaing J.-C., Ridlova M., Colson A., Barthelemy H. (2016) Detailed Investigation of the Sequence of Mechanisms Participating in MetalsIgnition in Oxygen Using Laser Heating and In Situ, Real-Time Diagnostics. Flammability and Sensitivity of Materials in Oxygen-Enriched Atmospheres. Vol. 14. ASTM International, 308-325. https://doi.org/10. 1520/STP159620150065.
78. Krishnan S., Yugawa K., Nordine P. (1997). Optical Properties of Liquid Nickel and Iron. Physical Review B -Condensed Matter and Materials Physics, 55 (13), 82018206. https://doi.org/10.1103/physrevb.55.8201.
79. Sugie K., Kobatake H., Uchikoshi M., Isshiki M., Sugioka K.-I., Tsukada T., Fukuyama H. (2011) Noncontact Laser Modulation Calorimetry for High-Purity Liquid Iron. Japanese Journal of Applied Physics. 50, 11RD04. https://doi.org/10.1143/JJAP.50.11RD04.
80. Makovsky V. A., Lavrentik I. I. (1977) Heating Furnace Control Algorithms. Moscow, Metallurgiya Publ. 183 (in Russian).
81. Watanabe M., Adachi M., Uchikoshi M., Fukuyama H. (2019). Thermal Conductivities of Fe-Ni Melts Measured by Non-Contact Laser Modulation Calorimetry. Metallurgical and Materials Transactions A, 50, 3295-3300. https://doi.org/10.1007/s11661-019-05250-9.
82. Lee G. W., Jeon S., Kang D. H. (2013). Crystal-Liquid Interfacial Free Energy of Supercooled Liquid Fe Using a Containerless Technique. Crystal Growth & Design, 13 (4), 1786-1792. https://doi.org/10.1021/cg4001889.
83. Korell J. A., French M., Steinle-Neumann G., Redmer R. (2019). Paramagnetic-to-Diamagnetic Transition in Dense Liquid Iron and Its Influence on Electronic Transport Properties. Physical Review Letters, 122 (8), 086601. https://doi.org/10.1103/PhysRevLett.122.086601.
Received: 11.09.2023 Accepted: 03.01.2024 Published online: 31.05.2024
■ HayKa
«TexHMKa. T. 23, № 3 (2024)